
MULTICORE PROGRAMMING

Higher level sync primitives: Doubly-linked list via k-word CAS

Lecture 10

Trevor Brown

RECALL: TRAVERSING A DOUBLY-LINKED LIST
WITHOUT LOCKING NODES?

• Insert(k):

• Search without locking

until we reach nodes pred & succ

where pred.key < k <= succ.key

• If we found k, return false

• Lock pred, lock succ

• If pred.next != succ, unlock all & retry

• Create new node n

(containing k, pointing to pred & succ)

• pred.next = n

• succ.prev = n

• Unlock all

succpred

7 15 20

17

Insert(17)

• Contains(k):

• curr = head

• Loop

• If curr == NULL or curr.key > k then return false

• If curr.key == k then return true

• curr = curr.next

Works if traversals

are only left-to-right

WHAT IF WE HAVE
BI-DIRECTIONAL TRAVERSALS?

• Could imagine an application that wants a doubly linked list so:

• Some threads can traverse left-to-right (containsLR)

• Some threads can traverse right-to-left (containsRL)

• Can we linearize such an algorithm?

LOCK-FREE BI-DIRECTIONAL TRAVERSALS
COMPLICATE LINEARIZATION

• Insert(k):

• Search without locking

until we reach nodes pred & succ

where pred.key < k <= succ.key

• If we found k, return false

• Lock pred, lock succ

• If pred.next != succ,

unlock all & retry

• Create new node n

• pred.next = n

• succ.prev = n

• Unlock all
time

thread p

thread q

Insert(k)

pred.next = n succ.prev = n

SearchL(k)

Where should we linearize

a successful insert?

thread r

Case 1:

linearize here

SearchR(k)

Finds k

Does NOT

find k

Insert(k) was linearized

already: should find k!

Case 2:

linearize here
Insert(k) was not linearized yet:

should NOT find k!

Need these to happen

atomically together…

Need these to happen

atomically together…

MAKING TWO CHANGES APPEAR
ATOMIC TO A LOCKLESS TRAVERSAL

• Something stronger than CAS?

• Double compare-and-swap (DCAS)

• Like CAS, but on any two memory locations

• DCAS(addr1, addr2, exp1, exp2, new1, new2)

• Not implemented in modern hardware

• But we can implement it in software, using CAS!

DCAS OBJECT: SEQUENTIAL SEMANTICS

• Usage - addresses that

are modified by DCAS:

• must not be modified

with writes/CAS

• must be read using

DCASRead

atomic {

if (*addr1 == exp1 && *addr2 == exp2) {

*addr1 = new1;

*addr2 = new2;

return true;

} else return false;

}

DCAS(addr1, addr2, exp1, exp2, new1, new2)

return the value last stored in *addr by a DCAS

DCASRead(addr)

DCAS-BASED DOUBLY-LINKED LIST

• Add sentinel nodes to avoid edge cases when list is empty

• Consequence: never update head or tail pointers

• Use DCAS to change pointers (but not keys)

• Consequence: must use DCASRead to read pointers (but not keys)

• Note: no need to read head or tail with DCASRead!

−∞

head

15 20 +∞

tail

FIRST ATTEMPT AT AN IMPLEMENTATION

1 pred = head

2 succ = head

3 while (true)

4 if (succ == NULL or succ.key >= k)

5 return make_pair(pred, succ);

6 pred = succ;

7 succ = DCASRead(succ.next);

pair<node, node> InternalSearch(key_t k)

8 pred, succ = InternalSearch(k);

9 return (succ.key == k);

bool Contains(key_t k)

−∞ 15 20 +∞27

succ succ succ succ

Contains(23)

InternalSearch returns

pointers to these

Contains(23) sees

succ.key != k,

and returns false

InternalSearch postcondition:

pred.key < k ≤ succ.key

FIRST ATTEMPT AT AN IMPLEMENTATION

10 while (true)

11 pred, succ = InternalSearch(k);

12 if (succ.key == k) return false;

13 n = new node(k);

14 if (DCAS(&pred.next, &succ.prev, succ, pred, n, n))

15 return true;

16 else delete n;

bool Insert(key_t k)

17 while (true)

18 pred, succ = InternalSearch(k);

19 if (succ.key != k) return false;

20 after = DCASRead(succ.next);

21 if (DCAS(&pred.next, &after.prev, succ, succ, after, pred))

22 return true; // not covered: how to free succ

bool Delete(key_t k)

15 20

17

15 17 20

pred succ

n

pred succ after

IS THIS ALGORITHM CORRECT?

• Recall: main difficulties in node-based data structures

• Atomically modifying two or more variables

• Preventing changes to deleted nodes

DCAS helps with this

Can we argue deleted

nodes don’t get changed?

15 17 20

pred succ after

Just after a node is deleted,

no node points to it… Right?

25

Nope! This is deleted,

but 15 still points to it!

Plausible idea: Once a node is deleted,

no node points to it? And we only change

nodes that are pointed to by other nodes?

So could one of these nodes

actually be modified?

Delete(17)

Delete(20)

A COUNTEREXAMPLE

17 20 25

pred succ after

−∞ 15 +∞27

Thread p: start Delete(20), find pred, succ, after

Thread p: sleep just before executing

DCAS(&pred.next, &after.prev, succ, succ, after, pred)

Thread q: Delete(17)

Thread q: Delete(25)

Thread p: DCAS succeeds, modifying deleted nodes!

Delete(20) returns true, but 20 is not deleted!

p wants to change these

from succ to after/pred

Let’s remove the

garbage…

OVERCOMING THIS PROBLEM: MARKING

• Recall: marking is often used prevent changes to deleted nodes

• How to atomically change two pointers AND mark other pointers/nodes using DCAS?

• Use an even stronger primitive…

• k-word compare-and-swap (KCAS)

• Like a CAS that atomically operations on k memory addresses

• Can be implemented in software from CAS

KCAS OBJECT:
MAKING K CHANGES APPEAR ATOMIC

• Operations

• KCAS(addr1..addrk, exp1..expk, new1..newk)

• Atomically:

• If all addresses contain their expected values,

sets all addresses to their new values

and return true

else return false

• KCASRead(addr):

return the last value stored in addr by a KCAS

• Addresses that are

modified by KCAS:

• must only be

modified with KCAS

• must only be

read with KCASRead

Suppose we are given KCAS.

Let’s see how to use it.

(We’ll see how to actually

implement KCAS later.)

KCAS-BASED DOUBLY-LINKED LIST

• Based on our attempt using DCAS

• When deleting a node,

use KCAS to also mark that node

• When modifying or deleting any node,

use KCAS to verify the node is not marked

• Note: since we use KCAS to mark nodes,

we must use KCASRead to read marks

15 20

17

15 17 20

pred succ

n

pred succ after

XDelete(17)

Insert(17)

15 17 20

pred succ after

XDelete(17)KCAS fails!

LOCK-FREE DOUBLY-LINKED LIST
USING KCAS

1 pred = head

2 succ = head

3 while (true)

4 if (succ == NULL or succ.key >= k)

5 return make_pair(pred, succ);

6 pred = succ;

7 succ = KCASRead(succ.next);

pair<node, node> InternalSearch(key_t k)

8 pred, succ = InternalSearch(k);

9 return (succ.key == k);

bool Contains(key_t k)

10 while (true)

11 pred, succ = InternalSearch(k);

12 if (succ.key == k) return false;

13 n = new node(k);

14 if (KCAS(&pred.mark, false, false,

&succ.mark, false, false,

&pred.next, succ, n,

&succ.prev, pred, n))

15 return true;

16 else delete n;

IMPLEMENTATION OF INSERT

bool Insert(key_t k)

15 20

17

pred succ

n

IMPLEMENTATION OF DELETE

17 while (true)

18 pred, succ = InternalSearch(k);

19 if (succ.key != k) return false;

20 after = KCASRead(succ.next);

21 if (KCAS(&pred.mark, false, false,

&succ.mark, false, true,

&after.mark, false, false,

&pred.next, succ, after,

&after.prev, succ, pred))

22 return true; // not covered yet: freeing succ

bool Delete(key_t k)

15 17 20

pred succ after

X

IS THIS ALGORITHM CORRECT?

• Main challenges

• Atomically modifying two or more variables

• Preventing changes to deleted nodes

• Let’s sketch the correctness argument…

KCAS makes this easy

Marking (with KCAS)

makes this easy

SKETCHING THE DIFFICULT ARGUMENT:
LINEARIZING CONTAINS

1 pred = head

2 succ = head

3 while (true)

4 if (succ == NULL or succ.key >= k)

5 return make_pair(pred, succ);

6 pred = succ;

7 succ = KCASRead(succ.next);

pair<node, node> InternalSearch(key_t k)

8 pred, succ = InternalSearch(k);

9 return (succ.key == k);

bool Contains(key_t k)

Where to linearize Contains that returns true?

Prove there exists a time during Contains when

succ is in the list, and linearize then

Where to linearize Contains that returns false?

Prove there exists a time during Contains when:

pred and succ are both in the list and point to each other.

15 20

pred succ

Implies 16 through 19

can’t be in the list…

A CONTAINS THAT RETURNS TRUE

• Observation: we reached succ (which contains k) by following pointer pred.next

• Case 1: Suppose at the time we read pred.next, pred was in the list

• Then, at that time, succ was also in the list.

• So, at that time, k was in the list. Linearize then!

• Case 2: Suppose at the time we read pred.next, pred was already deleted

• Lemma: pred was deleted during our Contains (or else we could not reach it)

• Since nodes are not changed after they are deleted (---thanks, marking!),

pred.next must have pointed to succ just before it was deleted,

which was during our Contains – linearize at that time!

To be theoretically rigorous here, typically you’d prove several claims at once inductively:

each node you found was in the list at some time during your InternalSearch,

deleted nodes are never modified or reinserted into the data structure,

the data structure is always a list (no cycles) ordered by keys, etc…

A CONTAINS THAT RETURNS FALSE

• Observation: we reached succ by following pred.next

• Case 1: Suppose at the time we followed pred.next,

pred was in the list

• Then, at that time, pred and succ were both in the list,

and we have pred.key < k <= succ.key from InternalSearch

• Linearize at that time!

• Case 2: Suppose at the time we followed pred.next,

pred was already deleted

• Lemma: pred was deleted during our Contains

• Since deleted nodes are not changed, pred.next must have

pointed to succ just before pred was deleted

• This was during our contains --- linearize at that time!

Prove there exists a time

during InternalSearch when:

pred and succ were both in the

list and pred points to succ.

Linearize then.

15 20

pred succ

k

LINEARIZING INSERT

Where to linearize Insert that returns false?

Prove there exists a time during Insert when

succ was in the list, and linearize then

(same argument as Contains returning true)

Where to linearize Insert that returns true?

At its successful KCAS

10 while (true)

11 pred, succ = InternalSearch(k);

12 if (succ.key == k) return false;

13 n = new node(k);

14 if (KCAS(&pred.mark, false, false,

&succ.mark, false, false,

&pred.next, succ, n,

&succ.prev, pred, n))

15 return true;

16 else delete n;

bool Insert(key_t k)

LINEARIZING DELETE

Where to linearize Delete that returns false?

Prove exists a time during Delete when:

pred & succ are both in the list, point to each other

(same argument as Contains returning false)

Where to linearize Delete that returns true?

At its successful KCAS
17 while (true)

18 pred, succ = InternalSearch(k);

19 if (succ.key != k) return false;

20 after = KCASRead(succ.next);

21 if (KCAS(&pred.mark, false, false,

&succ.mark, false, true,

&after.mark, false, false,

&pred.next, succ, after,

&after.prev, succ, pred))

22 return true;

bool Delete(key_t k)

