
MULTICORE PROGRAMMING

Implementing multi-word CAS (KCAS)

Lecture 11

Trevor Brown

LAST TIME

• DCAS

• Surprisingly not enough to implement doubly-linked list (at least not easily)

• KCAS

• Doubly-linked list using KCAS

• Linearizability sketch

• Searches are the hard part

THIS TIME

• Implementing KCAS

• Built from CAS and double-compare-single-swap (DCSS)

• Show how to implement DCSS first

• Most complex lock-free algorithm we will see

• Uses lock-free helping to guarantee progress

LOCK-FREE HELPING

• Suppose

• p starts an operation O

• q is blocked by O

• Lock-based approach

• q waits for p

• Lock-free approach

• q performs O on behalf of p

• How does it know how to perform O?

DESCRIPTORS

• Each operation O creates a descriptor d

• Descriptor d encodes how to perform O

• usually contains arguments to O

• sometimes some status information

• Help by invoking a function Help(d)

• Completes the operation that created d

DOUBLE COMPARE SINGLE SWAP (DCSS)
[HARRIS2002]

• Semantics:

atomic {

val1 = *addr1;

val2 = *addr2;

if (val1 == exp1 && val2 == exp2) *addr2 = new2;

return val2;

}

DCSS(addr1, addr2, exp1, exp2, new2)

return the value last stored in *addr by a DCSS

DCSSRead(addr)

Not to be confused with DCAS

• Usage constraints:

• addr2 must only be

modified by DCSS

• addr2 must only be

read with DCSSRead

• addr1 can never be

modified by DCSS

Note: no such restriction for

DCAS or KCAS… just DCSS

USING CAS TO BUILD DCSS

IMPLEMENTATION SKETCH:
DCSS(400, 424, N, B, D)

N

C

Y

B

F

0x400

408

416

424

432

Main memory

…

400

424

N

B

D

Descriptor

addr1

addr2

exp1

exp2

new2
I

H

440

448

824

Help(d) function:

if *d.addr1 = d.exp1

CAS(d.addr2, d, d.new2)

else

CAS(d.addr2, d, d.exp2)

let d = pointer to new descriptor

CAS(addr2, exp2, d)

Help(d)

D

“Activation” CAS

for this DCSS

“Deactivation” CAS

for this DCSS

“Deactivation” CAS

for this DCSS

0x824

HOW TO TELL IF AN ADDRESS
POINTS TO A DESCRIPTOR?

• Steal the least significant bit (LSB) from

each field that can be modified by DCSS

• Use it to indicate addr points to a descriptor

• if (*addr & 1) then it’s a descriptor …

• What if application values USE the LSB?

• Can shift values left (then can’t use MSB)

• No need to shift word-aligned pointers!

• Packing/unpacking a descriptor pointer d

• pack(d): return d | 1

[making it “look like” a descriptor pointer]

• unpack(d): return d & ~1

[so we can dereference it]

<N, 0>

<C, 0>

<Y, 0>

<B, 0>

<F, 0>

0x400

408

416

424

432

Main memory

…

400

424

N

B

D

Descriptor

addr1

addr2

exp1

exp2

new2
<I, 0>

<H, 0>

440

448

<824, 1>

0x824

IMPLEMENTATION: DATA TYPES

atomic<word_t> * addr1;

atomic<word_t> * addr2;

word_t exp1;

word_t exp2;

word_t new2;

char padding[24];

} __attribute__ ((aligned(64)));

struct DCSS_desc {

VALUE CAS (VAL_CAS)

• Slightly different definition of CAS(addr, exp, new)

• Instead of returning true/false,

it returns the value that was contained in *addr

when the CAS occurred

• For successful CAS, this is exp

• For failed CAS, this is different from exp

• → the value that caused the CAS to fail!

Note: in GCC, this is

__sync_val_compare_and_swap.

C++ <atomic> also implements

value CAS semantics.

Java has no equivalent!

IMPLEMENTATION: DCSSREAD

17 word_t v;

18 while (true) {

19 v = *addr;

20 if (isDCSS(v)) DCSSHelp(unpack(v));

21 else break;

22 }

23 return v;

word_t DCSSRead(atomic<word_t> * addr)

Try to read *addr.

If we do not see a descriptor pointer,

we are done.

If we read a descriptor pointer,

we help that DCSS and then retry

We linearize DCSSRead at its last read of *addr

(where it sees an application value)

This continues until we see an

application value (not a descriptor)

IMPLEMENTATION: DCSS

1 DCSS_desc * d = new DCSS_desc(addr1, ...);

2 word_t val2;

3 while (true) {

4 val2 = VAL_CAS(d->addr2, d->exp2, pack(d));

5 if (isDCSS(val2)) DCSSHelp(unpack(val2));

6 else break;

7 }

8 if (val2 == d->exp2) {

9 DCSSHelp(d); // finish our operation

10 }

11 return val2;

word_t DCSS(addr1, addr2, exp1, exp2, new2)

Create DCSS

operation

descriptor
Activation CAS: try to CAS our

descriptor pointer into addr2

(temporarily replacing exp2)

If the value returned from the CAS is a

descriptor pointer (which means our

CAS failed), we help the other DCSS,

then we retry

Retry until we see an application

value (not a descriptor pointer)

If our activation CAS succeeds,

we help our own DCSS complete
Not handled here: how to free d

THE HELP FUNCTION: DCSS SUCCEEDS

12 if (*d->addr1 == d->exp1) {

13 CAS(d->addr2, pack(d), d->new2);

14 } else {

15 CAS(d->addr2, pack(d), d->exp2);

16 }

void DCSSHelp(DCSS_desc * d)
N

C

Y

B

F

400

408

416

424

432

Main memory

…

400

N

424

B

D

Descriptor

addr1

exp1

addr2

exp2

new2I

H

440

448

D

DWhere should this DCSS be linearized?

The read at line 12… by the thread that does

the successful CAS at line 13!

Deactivation CASDeactivation CAS

At the read??? You might have suggested

the successful CAS… but no!

DCSS -- successful

A: Activation CAS

on d->addr2

C: Deactivation CAS

on d->addr2
B: Read *d->addr1

Thread p

Thread q

time

DCSSReadDCSSRead

Makes no difference

to this operation if

DCSS LP is at B or C

DCSSRead

Read *d->addr2 and see an

application value (LP)

12 if (*d->addr1 == d->exp1) {

13 CAS(d->addr2, pack(d), d->new2);

14 } else {

15 CAS(d->addr2, pack(d), d->exp2);

16 }

void DCSSHelp(DCSS_desc * d)

This operation might be

affected by the choice of LP

But this operation must help the DCSS,

so it must do its last read of *d->addr2 after C!

It sees the new value. So, it makes no difference to

this operation whether DCSS LP is at B or C.

Either way, the DCSS has happened and we see it.

But B needs to be the DCSS LP, so we know

*d->addr1 == d->exp1 at the LP

(required by the ADT for DCSS success)

EXPLAINING IN FURTHER DETAIL:
LINEARIZING A SUCCESSFUL DCSS THAT

CHANGES ADDR2 FROM D TO NEW2

• Consider a successful DCSS operation O with descriptor d

which performs a deactivation CAS that changes addr2 to new2

• Want to linearize when addr1 == exp1 and addr2 == exp2. Argue this time exists…

• There is exactly one successful deactivation CAS for O

• Let p be the thread that performs this successful deactivation CAS for O

• Before this CAS, p does at least one read of addr1, and the last such read sees exp1

• Before that read, there is a successful activation CAS for O by some thread

• At all times between the successful activation and deactivation CASs for O,

addr2 points to d (which semantically means addr2 == exp2)

• In particular, when p last reads addr1, we have addr1 == exp1 and addr2 == exp2

THE HELP FUNCTION: DCSS FAILS

12 if (*d->addr1 == d->exp1) {

13 CAS(d->addr2, pack(d), d->new2);

14 } else {

15 CAS(d->addr2, pack(d), d->exp2);

16 }

void DCSSHelp(DCSS_desc * d)
Z

C

Y

B

F

400

408

416

424

432

Main memory

…

400

N

424

B

D

Descriptor

addr1

exp1

addr2

exp2

new2I

H

440

448

B

B

Where should this DCSS be linearized?

The read at line 12… by the thread that does

the successful CAS at line 15!

LINEARIZING A FAILED DCSS THAT
CHANGES ADDR2 FROM D BACK TO EXP2

• Consider a DCSS operation O with descriptor d

which performs a deactivation CAS that changes addr2 to exp2

• Want to linearize when addr1 != exp1 or addr2 != exp2. Argue this time exists…

• Let p be the thread that performs the deactivation CAS for O

• Before this CAS, p reads addr1 and sees a value different from exp1

• Linearize then

12 if (*d->addr1 == d->exp1) {

13 CAS(d->addr2, pack(d), d->new2);

14 } else {

15 CAS(d->addr2, pack(d), d->exp2);

16 }

void DCSSHelp(DCSS_desc * d)

WHAT ABOUT DCSS OPERATIONS
WITH NO SUCCESSFUL ACTIVATION CAS?

1 DCSS_desc * d = new DCSS_desc(addr1, ...);

2 word_t val2;

3 while (true) {

4 val2 = VAL_CAS(d->addr2, d->exp2, pack(d));

5 if (isDCSS(val2)) DCSSHelp(unpack(val2));

6 else break;

7 }

8 if (val2 == d->exp2) {

9 DCSSHelp(d); // finish our operation

10 }

11 return val2;

word_t DCSS(addr1, addr2, exp1, exp2, new2)
Suppose VAL_CAS fails and returns

an application value different from exp2

We break out of the loop

We skip over the next if-block,

and return val2

Where should this DCSS be linearized?

At the (last) failed VAL_CAS by this thread

(when we read the application value that causes the failure)

WHAT ABOUT A DCSS BY A THREAD
THAT CRASHES BEFORE RETURNING?

• Let O be such a DCSS operation

• The return value of O is not a concern… (it doesn’t exist)

• But O could still affect the return values of other operations!

• Only if some thread performs a successful deactivation CAS for O

that changes addr2 from d to new2

• In this case we linearize O the same way as a successful DCSS!

• Otherwise

• No need to linearize the operation at all…

• To all other threads, it’s as if O didn’t happen!

USING DCSS TO BUILD KCAS

BUILDING KCAS FROM DCSS [HARRIS2002]

• Facilitate helping with KCAS descriptor,

which stores n rows containing: addr, exp, new

• KCAS descriptor also contains a status field,

with a value in {Undecided, Succeeded, Failed}

• The status field helps coordinate threads

• Prevents scenarios where different threads helping a

KCAS have different views of memory,

and one thinks the KCAS is finished,

while another thinks it is still ongoing

(and incorrectly makes changes twice, etc.)

KCAS descriptor

status

n

addr1 exp1 new1

addr2 exp2 new2

… … …

KCAS ALGORITHM IDEA

• Proceeds in two phases

• Phase 1: lock-free “locking”

• Iterate over the addresses, attempting to change each address

from its expected value to a pointer d to the KCAS descriptor

• If we see an unexpected value, then status changes to Failed,

otherwise it changes to Succeeded

• Phase 2: completion

• Iterate over the addresses, attempting to change each address

from d to either its new value, or its expected value, respectively,

depending on whether status is Succeeded or Failed

INTUITION: HOW A SUCCESSFUL KCAS WORKS:
DOUBLY-LINKED LIST AS AN EXAMPLE

15 17 20

pred succ after

X

KCAS descriptor

status = Undecided

n = 5

&pred.next succ after

&after.prev succ pred

&pred.mark false false

&succ.mark false true

&after.mark false false

Delete(17)

Succeeded

