
MULTICORE PROGRAMMING

Implementing KCAS and reclaiming descriptors

Lecture 12

Trevor Brown



LAST TIME

• Implementing double-compare-single-swap

• Using descriptors and helping to guarantee lock-free progress

• Started implementing k-word compare-and-swap



THIS TIME

• Finishing the implementation of KCAS

• Reclaiming memory for DCSS and KCAS

• How to use epoch-based memory reclamation

• On the slides (but not in the lecture):

• Quick intro to some debugging/perf tools



INTUITION: HOW A SUCCESSFUL KCAS WORKS:
DOUBLY-LINKED LIST AS AN EXAMPLE

15 17 20

pred succ after

X

KCAS descriptor

status = Undecided

n = 5

&pred.next succ after

&after.prev succ pred

&pred.mark false false

&succ.mark false true

&after.mark false false

Delete(17)

Succeeded



INTUITION: HOW A FAILED KCAS WORKS:
DOUBLY-LINKED LIST AS AN EXAMPLE

15 17 20

pred succ after

X

KCAS descriptor d

status = Undecided

n = 5

&pred.next succ after

&after.prev succ pred

&pred.mark false false

&succ.mark false true

&after.mark false false

Delete(17)

Failed
Failed to change succ.mark

from false to point to d!

CAS from d back to 

expected values



KEEPING HELPER THREADS IN SYNC

• Key ideas:

• In phase 1 (lock-free “locking”),

helpers compete to CAS the status from Undecided to Succeeded or Failed

• Only one helper can “win” and change status

• Once the status is Succeeded or Failed,

no more lock-free “locking” should happen

• I.e., helpers should no longer change addresses to point to the KCAS descriptor

• Accomplish this with DCSS!

• In phase 2 (completion), all helpers agree (based on the status)

to change all addresses to new values, or back to their old values (exp1…expk)



USING DCSS IN THE “LOCKING” PHASE

• Threads use DCSS to “lock” addresses (storing a pointer to a KCAS descriptor)

• DCSS addr1 = status field of the KCAS descriptor

• DCSS exp1 = Undecided

• DCSS addr2 = address to be “locked” for the KCAS (from KCAS arguments)

• DCSS exp2 = expected value for that address (from KCAS arguments)

• DCSS new2 = pointer to the KCAS descriptor

• Semantics of DCSS guarantee:

• KCAS will successfully “lock” an address only if the KCAS status is still Undecided

• Without this guarantee, something called an ABA problem can occur. (discussion…)



DISTINGUISHING BETWEEN DESCRIPTORS

• Now that we have DCSS descriptors and KCAS descriptors,

we must be able to distinguish between them

• Steal another bit from each word

(DCSS uses the least significant bit, KCAS uses 2nd-least significant)

• The two least significant bits tell us whether an address contains

a value, DCSS descriptor, or KCAS descriptor

• pack(d): return d | 1 [making it “look like” a DCSS descriptor pointer]

• packKCAS(d): return d | 2 [making it “look like” a KCAS descriptor pointer]

• unpack(d): return d & ~3 [zeroing out the bottom two bits]



IMPLEMENTATION

atomic<word_t> status;

word_t n;

KCAS_row row[K];

char padding[24];

} __attribute__ ((aligned(64)));

struct KCAS_desc {

atomic<word_t> * addr;

word_t exp;

word_t new;

};

struct KCAS_row {

1   KCAS_desc * d = new KCAS_desc(addr1, ...);

2   d->status = Undecided;

3   SortRowsByAddress(d); // to avoid livelock

4   return KCASHelp(d);

bool KCAS(addr1, ..., exp1, ..., new1, ...)

Data structures Code

5   word_t v;

6   do {

7     v = DCSSRead(addr);

8     if (isKCAS(v)) KCASHelp(unpack(v));

9   } while (isKCAS(v));

10  return v;

word_t KCASRead(atomic<word_t> * addr)

Linearize at last

DCSSRead(addr)



11  int newStatus = Succeeded;

12  if (d->status == Undecided)

13  | for (int i = 0; i < d->n; i++)

14  | | word_t val2 = DCSS(&d->status, d->row[i].addr,

| |                    Undecided, d->row[i].exp,

| |                                packKCAS(d));

15  | | if (val2 != d->row[i].exp) // if DCSS failed

16  | | | if (isKCAS(val2)) // because of a KCAS

17  | | |   if (unpack(val2) != d) // a DIFFERENT KCAS

18  | | |     KCASHelp(unpack(val2));

19  | | |     --i; continue; // retry "locking" this addr

20  | | |   // else another helper "locked" for us

21  | | | else // addr does not contain its exp value

22  | | |   newStatus = Failed; break;

23  | CAS(&d->status, Undecided, newStatus);

24  bool succ = (d->status == Succeeded);

25  for (int i = 0; i < d->n; i++)

26  | val = (succ) ? d->row[i].new : d->row[i].exp;

27  | CAS(d->row[i].addr, packKCAS(d), val);

28  return succ;

bool KCASHelp(KCAS_desc * d)

Phase 1:

lock-free

“locking”

Phase 2:

completion

Status 

CAS

Use DCSS to change 

addresses to point to 

the KCAS descriptor



11  int newStatus = Undecided;

12  if (d->status == Undecided)

13  | for (int i = 0; i < d->n; i++)

14  | | word_t val2 = DCSS(&d->status, d->row[i].addr,

| |                    Undecided, d->row[i].exp,

| |                                packKCAS(d));

15  | | if (val2 != d->row[i].exp) // if DCSS failed

16  | | | if (isKCAS(val2)) // because of a KCAS

17  | | |   if (unpack(val2) != d) // a DIFFERENT KCAS

18  | | |     KCASHelp(unpack(val2));

19  | | |     --i; continue; // retry "locking" this addr

20  | | |   // else another helper "locked" for us

21  | | | else // addr does not contain its exp value

22  | | |   newStatus = Failed; break;

23  | CAS(&d->status, Undecided, newStatus);

24  bool succ = (d->status == Succeeded);

25  for (int i = 0; i < d->n; i++)

26  | val = (succ) ? d->row[i].new : d->row[i].exp;

27  | CAS(d->row[i].addr, packKCAS(d), val);

28  return succ;

bool KCASHelp(KCAS_desc * d)

Recall: KCAS just returns 

KCASHelp(d)

Where should we

linearize a successful KCAS?

Why does this work?

Complicated argument!

Model checking + proof 

sketch in paper.

Deeper than we need to go.

At the status CAS!

The behaviour of all helper 

threads, and hence,

the outcome of the KCAS,

is decided there.

(Crucial points: (1) everything 

is “locked” at that time, and

(2) no thread can see the “old” 

values after that time.)



RECLAIMING DESCRIPTORS



LIFECYCLE OF A NODE

Unallocated

Uninitialized

In the data 
structure

Retired

Safe to free

AllocateFree

Make node accessible

to other threads

Remove

(all incoming pointers)

???

Determine that no thread

can reach the record by 

following pointers from 

private/stack memory

Safe memory 

reclamation problem:

Can’t reach from shared memory

+ can’t reach from private memory

= safe to free



EPOCH BASED RECLAMATION (EBR)

• EBR is a relatively low-overhead blocking solution to the safe memory reclamation problem

• Consider a data structure composed of records (e.g., descriptors) that should be reclaimed

• Suppose threads do not remember pointers to records found in one operation,

and then use them in another subsequent operation

• Instead, when starting a new operation, a thread “forgets” all pointers to records,

and can only access a record by starting at some address in shared memory

that is not part of a record, and following pointers from there.)

• EBR interface:

• startOp()

• Must be invoked at the beginning of each operation before accessing any shared records

(i.e., records that have previously been made accessible to other threads)

• retire(rec)

• Should be invoked once rec is no longer reachable from shared memory

• Can still be reachable from threads’ local memories, however… this is fine!

• Unlike free(), retire will delay reclamation until no thread has a pointer to node

How is EBR 

implemented?

Will see later...

Let’s see how to use it.



USING EBR IN DCSS
1   DCSS_desc * d = new DCSS_desc(addr1, ...);

2   word_t val2;

3   while (true) {

4     val2 = VAL_CAS(d->addr2, d->exp2, pack(d));

5     if (isDCSS(val2)) DCSSHelp(unpack(val2));

6     else break;

7   }

8   if (val2 == d->exp2) {

9     DCSSHelp(d); // finish our operation

10  }

11  return val2;

word_t DCSS(addr1, addr2, exp1, exp2, new2)

17  word_t v;

18  while (true) {

19    v = *addr;

20    if (isDCSS(v)) DCSSHelp(unpack(v));

21    else break;

22  }

23  return v;

word_t DCSSRead(atomic<word_t> * addr)

startOp() here

startOp() here

DCSS_desc is our “record” type

Do we always access a DCSS_desc by 

following pointers starting from an 

address that is not part of a DCSS_desc?

Yes! Any DCSS_desc that we access is 

found by reading an address passed to 

DCSS/DCSSRead (and this address 

cannot be part of a DCSS_desc)

else free(d)

retire(d)



USING EBR IN KCAS

KCAS_desc is our “record” type

Do we always access a KCAS_desc by 

following pointers starting from an 

address that is not part of a KCAS_desc?

Yes! Any KCAS_desc that we access is 

found by reading an address passed to 

KCAS/KCASRead (and this address 

cannot be part of a KCAS_desc)

1   KCAS_desc * d = new KCAS_desc(addr1, ...);

2   d->status = Undecided;

3   SortRowsByAddress(d); // can skip sometimes

4   bool ret = KCASHelp(d);

5   return ret;

bool KCAS(addr1, ..., exp1, ..., new1, ...)

5   word_t v;

6   do {

7     v = DCSSRead(addr);

8     if (isKCAS(v)) KCASHelp(unpack(v));

9   } while (isKCAS(v));

10  return v;

word_t KCASRead(atomic<word_t> * addr)

startOp() here

startOp() here

retire(d)

No need to worry about DCSS_desc

records, as those are completely 

encapsulated in DCSS (black box)

Note: from the perspective of the KCAS algorithm, the DCSS object is a black box. 

Reclamation of DCSS descriptors  is hidden in the implementation of DCSS.

(Conceptually, there are two instances of the EBR algorithm: one for DCSS, one for KCAS)



TOOLS FOR DEBUGGING AND PERFORMANCE

• Debugging

• GNU Debugger (GDB)

• Segfaults, infinite loops

• Address Sanitizer (ASan)

• Segfaults, memory leaks

• 1~2x slowdown

• Valgrind

• Segfaults, memory leaks, 

memory access errors

• many-x slowdown

• Graphviz

• Visualizing pointer based

data structures
17

• Performance

• Linux Perftools (perf)

• Studying cycles, cache misses, 

instructions, stalled cycles

• At the whole-application level

• C/C++ Performance API (PAPI)

• Precise information from perf, but 

recorded within your program

• VTune Amplifier

• Powerful (and now free!) profiler

• Debugging and optimizing concurrent programs is very hard. Tools can help!

A lot of errors in concurrent programs manifest as 

memory access errors! For example, a thread may write 

a bad value into a pointer because of a concurrency 

bug, and another thread may then read it.



DEBUGGING TOOLS



USING VALGRIND TO FIND MEMORY 
ACCESS ERRORS

$ valgrind --fair-sched=yes ./a1code_segfault/workload_timed.out 4 1000 naive

==107893== Command: ./a1code_segfault/workload_timed.out 4 1000 naive

==107893==

==107893== Use of uninitialised value of size 8

==107893==    at 0x510F0D4: std::thread::join() (in /.../x86_64-linux-gnu/libstdc++.so.6.0.22)

==107893==    by 0x1092DC: void runExperiment<CounterNaive>(...) (workload_timed.cpp:46)

==107893==    by 0x108E3B: main (workload_timed.cpp:70)

==107893==

==107893== Invalid read of size 8

==107893==    at 0x510F0D4: std::thread::join() (in /.../x86_64-linux-gnu/libstdc++.so.6.0.22)

==107893==    by 0x1092DC: void runExperiment<CounterNaive>(...) (workload_timed.cpp:46)

==107893==    by 0x108E3B: main (workload_timed.cpp:70)

==107893==  Address 0x190 is not stack'd, malloc'd or (recently) free’d

...



Using Address Sanitizer to check for memory leaks

$ g++ -pthread –g -fsanitize=address -static-libasan -fopenmp -O3 ex2_mmult_threads.cpp

$ ./a.out 24

matrix created: 0.02s

randomize call finished: 0.10s

...

multiply call finished: 2.82s

=================================================================

==76549==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 192 byte(s) in 24 object(s) allocated from:

#0 0x555b294992d8 in operator new(unsigned long) (/home/.../a.out+0xc82d8)

#1 0x555b294dab9e in matrix::multiply(matrix*, int) (/home/.../ex2_mmult_threads.cpp:12)

SUMMARY: AddressSanitizer: 192 byte(s) leaked in 24 allocation(s).



GRAPHVIZ: WHEN YOU JUST NEED TO SEE IT

21

digraph g {
node [
fontsize = "16"
shape = “record"

];
edge [];
"node0" [
label = "<f0> 0x10ba8| <f1>“

];
"node1" [
label = "<f0> 0xf7fc4380|<f1>|<f2>|-1"

];

[...]
"node0":f0 -> "node1":f0 [
id = 0

];

[...]
}

Tip: try to get your toughest bugs to happen in 

SMALL data structures, so you can graphviz them



SANITY CHECKING: EXPERIMENT CHECKSUMS

• Important to perform sanity checks wherever you can!

• Helps to catch obvious (and non-obvious) mistakes

• One good sanity check: checksum based validation

• Reduce the data structure to a number (a data structure checksum)

• Reduce each threads’ completed operations to a number (a thread checksum)

• verify that thread checksums “match” the data structure checksum

• (I.e., the work the threads think they’ve done is reflected in the data structure!)

• Creativity needed to come up with good checksum functions



PERFORMANCE TOOLS



Investigating cache misses with Linux Perftools: perf record

$ perf record -e cache-misses ./ex4_counting_events_counter4.out 24

matrix created: 0.00s

randomize call finished: 0.03s

...

number of additions = 1000000000

[ perf record: Woken up 1 times to write data ]

[ perf record: Captured and wrote 0.802 MB perf.data (20591 samples) ]

$ perf report



Investigating performance with Linux Perftools: perf report

Samples: 20K of event 'cache-misses', Event count (approx.): 543388

Overhead  Command          Shared Object         Symbol

22.51%  ex4_counting_ev  ex4_counting_[…].out  [.] _ZN6matrix8multiplyE...

5.64%  ex4_counting_ev  [kernel.kallsyms]     [k] decay_load

5.07%  ex4_counting_ev  [kernel.kallsyms]     [k] native_sched_clock

5.02%  ex4_counting_ev  [kernel.kallsyms]     [k] __update_load_avg_se...

4.21%  ex4_counting_ev  [kernel.kallsyms]     [k] perf_event_alloc.par...

3.75%  ex4_counting_ev  [kernel.kallsyms]     [k] _raw_spin_lock

3.73%  ex4_counting_ev  [kernel.kallsyms]     [k] cgroup_rstat_updated

3.34%  ex4_counting_ev  [kernel.kallsyms]     [k] task_tick_fair

[...]
Interactive console… select this 

line and press [ENTER] twice…



26

Perf claims cache misses are at 

this line, but the real culprit can be 

off by a few lines

In reality it’s this line, where we fetch & 

add a subcounter in a sharded counter 

that suffers from false sharing



C/C++ LIBRARY: PAPI

• https://icl.utk.edu/papi/

• Gives access to most of the same stuff as perf stat/record/report,

but programmatically inside your own code

• Can always include some measurements in your runs

• Fast --- no real overhead on Intel for ~2-4 performance monitoring counters

• Can easily measure only part of your execution (skip measuring setup/teardown)

• Can present results in a nice format (e.g., L3 cache misses PER data structure operation)

total throughput              : 94906203

PAPI_L1_DCM=36.4196

PAPI_L2_TCM=24.8331

PAPI_L3_TCM=11.8196

PAPI_TOT_CYC=5515.5

These are all “per data 

structure operation”

https://icl.utk.edu/papi/


WHEN YOU NEED A REAL PROFILER: VTUNE

• Surprisingly, Intel’s VTune is free. Even for commercial use!

• Great profiler for seeing what threads are doing throughout your execution

• Surprisingly easy to learn and use, even in complex scenarios…

• Profiling code that runs locally is trivial

• Profiling code that runs remotely:

• ~6 hours invested to learn the idiosyncrasies of VTune + remote execution




