MULTICORE PROGRAMMING

Implementing KCAS and reclaiming descriptors

Lecture 12

Trevor Brown

LAST TIME

* Implementing double-compare-single-swap

» Using descriptors and helping to guarantee lock-free progress

 Started implementing k-word compare-and-swap

THIS TIME

 Finishing the implementation of KCAS
* Reclaiming memory for DCSS and KCAS

* How to use epoch-based memory reclamation

* On the slides (but not in the lecture):

* Quick intro to some debugging/perf tools

INTUITION: HOW A SUCCESSFUL KCAS WORKS:
DOUBLY-LINKED LIST AS AN EXAMPLE

Delete(17)

status = [T E 00T

n=>5

&pred.next succ

&after.prev succ

&pred.mark false
&succ.mark false

&after.mark false

INTUITION: HOW A FAILED KCAS WORKS:

DOUBLY-LINKED LIST AS AN EXAMPLE

pred succ

Delete(17)

status = ({2100

n=>5

&pred.next succ

&after.prev succ

&pred.mark false
&succ.mark false

&after.mark false

after

Failed to change succ.mark

from false to point to d!

after
pred
false
true

false

CAS from d back to
expected values

KEEPING HELPER THREADS IN SYNC

* Key ideas:

* In phase 1 (lock-free “locking™),
helpers compete to CAS the status from Undecided to Succeeded or Failed
* Only one helper can “win” and change status

* Once the status is Succeeded or Failed,
no more lock-free “locking” should happen

* IL.e., helpers should no longer change addresses to point to the KCAS descriptor

* Accomplish this with DCSS!

* In phase 2 (completion), all helpers agree (based on the status)
to change all addresses to new values, or back to their old values (exp;...exp;)

USING DCSS IN THE “LOCKING” PHASE

* Threads use DCSS to “lock’ addresses (storing a pointer to a KCAS descriptor)
 DCSS addrl = status field of the KCAS descriptor
« DCSS expl = Undecided
« DCSS addr2 = address to be “locked” for the KCAS (from KCAS arguments)
* DCSS exp2 = expected value for that address (from KCAS arguments)
* DCSS new?2 = pointer to the KCAS descriptor

* Semantics of DCSS guarantee:
« KCAS will successfully “lock” an address only if the KCAS status is still Undecided

« Without this guarantee, something called an ABA problem can occur. (discussion...)

DISTINGUISHING BETWEEN DESCRIPTORS

* Now that we have DCSS descriptors and KCAS descriptors,
we must be able to distinguish between them

» Steal another bit from each word
(DCSS uses the least significant bit, KCAS uses 2"9-least significant)

* The two least significant bits tell us whether an address contains
a value, DCSS descriptor, or KCAS descriptor
* pack(d): returnd | 1 [making it “look like” a DCSS descriptor pointer]
» packKCAS(d): returnd | 2 [making it “look like’” a KCAS descriptor pointer]

* unpack(d): returnd & ~3 [zeroing out the bottom two bits]

struct KCAS desc {

IMPLEMENTATION

bool KCAS (addrl, ..., expl, ..., hewl, c..)

atomic<word t> status; 1 KCAS desc * d = new KCAS desc(addrl, ...);
word t n; 2 d->status = Undecided;
KCAS row row[K] ; 3 SortRowsByAddress (d); // to avoid livelock
char padding[24]; 4 return KCASHelp (d) ;

} attribute @ ((aligned(64)));

struct KCAS row

atomic<word_t> * addr;
word t
word t

exp;
new;

¥

word t KCASRead(atomic<word_t> * addr)

5 word t vy

6 do {

7 v = DCSSRead (addr) ;

2 if (isKCAS(v)) KCASHelp (unpack(v));
9 } while (isKCAS(v))

10 return v;

bool KCASHelp (KCAS desc * d)

11 int newStatus = Succeeded;
12 1f (d->status == Undecided)
[13 | for (int i = 0; i < d->n; i++)
14 | | word t val2 = DCSS(&d->status, d->row[i].addr,
|| Undecided, d->row[i].exp,
|| packKCAS (d)) ;
Phase 1: 15 | | 1f (val2 != d->row[i] .exp) // 1f DCSS failed
lool oo . 16 | | | 1f (isKCAS (val2)) // because of a KCAS
“locking” 17 1] if (unpack(val2) != d) // a DIFFERENT KCAS
18 || | KCASHelp (unpack (valZ2)) ;
19 | | | -—-1i; continue; // retry "locking" this addr
20 | | | // else another helper "locked" for us
21 | | | else // addr does not contain its exp value
22 | | | newStatus = Failed; break;
23 | CAS(&d->status, Undecided, newStatus) ;
24 bool succ = (d->status == Succeeded) ;
Phamaz:_< 25 for (int 1 = 0; 1 < d->n; 1i++)
completion 26 | val = (succ) ? d->row[i].new : d->row[i].exp;
27 | CAS(d->row[i1].addr, packKCAS(d), wval);

28 return succ;

bool KCASHelp (KCAS desc * d)

11 1int newStatus = Undecided;

the outcome of the KCAS,

12 if (d->status == Undecided) Recall: KCAS just returns
13 | for (int i = 0; i < d->n; i++) KCASHelp(d)
14 | | word t valZ2 = DCSS(&d->status, d->row[i].addr,

| Undecided, d->rowl[1i].exp, Where should we

| packKCAS (d)) ; linearize a successful KCAS?
15 | f (val2 !'= d->rowl[i] .exp) // if DCSS failed
16 | At the .status CAS!
17 | if (unpack(val2) != d) // a DIFFERENT KCAS The behaviour of all helper
18 | KCASHelp (unpack (valZ2)) ; threads, and hence,

|

|

|

|

|
|
| 1
| | if (isKCAS (val2)) // because of a KCAS
|
|
|
|
|
.

19 -—-1i; continue; // retry "locking" this addr : .

20 // else another helper "locked" for us .1s de.czldedthere. .
21 else // addr does not contain its exp value (C?rucmlpomts:(l) e.verythmg
22 newStatus = Failed; break; is “locked” at that time, and
23 | CAS (&d->status, Undecided, newStatus) ; (2) no threadcansee'the“old”
24 bool succ = (d->status == Succeeded); values after that time.)

25 for (int i = 0; i < d->n; 1i++) Why does this work?

26 | val = (succ) ? d->row[i].new : d->row[i].exp; Complicated argument!
27 | CAS(d->row[i].addr, packKCAS(d), wval); Model checking + proof
28 return succ; sketch in paper.

Deeper than we need to go.

RECLAIMING DESCRIPTORS

LIFECYCLE OF A NODE

Can’t reach from shared memory ‘l’
+ can’t reach from private memory

= safe to free
Free/’
Safe memory

reclamation problem: Safe to free

Unallocated

\Allocate

Uninitialized

Determine that no thread
can reach the record by
following pointers from 777\
private/stack memory 5y

Make node accessible
to other threads

In the data

Retired
structure

Remove
(all incoming pointers)

EPOCH BASED RECLAMATION (EBR)

EBR is a relatively low-overhead blocking solution to the safe memory reclamation problem

Consider a data structure composed of ¥ecoxds (e.g., descriptors) that should be reclaimed

Suppose threads do not remember pointers to records found in one operation,
and then use them in another subsequent operation

» Instead, when starting a new operation, a thread “forgets” all pointers to records,
and can only access a record by starting at some address in shared memory
that is not part of a record, and following pointers from there.)

EBR interface:
» startOp()

* Must be invoked at the beginning of each operation before accessing any shared records
(i.e., records that have previously been made accessible to other threads)

 retire(rec) How is EBR

» Should be invoked once rec is no longer reachable from shared memory implemented?

« Can still be reachable from threads’ local memories, however... this is fine! Will see later...
Let’s see how to use it.

* Unlike free(), retire will delay reclamation until no thread has a pointer to node

USING EBR IN DCSS

DCSS_desc is our “record” type

Do we always access a DCSS_desc by
following pointers starting from an
address that is not part of a DCSS_desc?

Yes! Any DCSS_desc that we access is
found by reading an address passed to

DCSS/DCSSRead (and this address
cannot be part of a DCSS_desc)

word

H P O 6 J o U i W DN -

= O

_t DCSS (addrl, addr)

DCSS desc * d = new DCSS desc (addrl, ...);

word t valZ;

while (true) {
val2 = VAL CAS (d->addr2, d->exp2, pack(d)):;
1f (1sDCSS(val2)) DCSSHelp (unpack(val2));
else break;

}
1f (val2 == d >exp2

word t DCSSRead (atomlc<word t> * addr)

17
18
19
20
21
22
23

word t vy

while (true)
v = *addr;
1f (isDCSS(v)) DCSSHelp (unpack (v)) ;
else break;

}

return v;

USING EBR IN KCAS

KCAS_desc is our ‘“record” type

Do we always access a KCAS_desc by
following pointers starting from an
address that is not part of a KCAS_desc?

Yes! Any KCAS_desc that we access is
found by reading an address passed to
KCAS/KCASRead (and this address
cannot be part of a KCAS_desc)

No need to worry about DCSS_desc
records, as those are completely
encapsulated in DCSS (black box)

., expl,

., hewl, c..)
KCAS desc * d = new KCAS desc(addrl, ...);

d->status = Undecided;

SortRowsByAddress(d); // can skip sometimes
bool ret = KCASHelp (d);

return ret;-

word t KCASRead (atomic<word t> * addr)

word £ [EEHOBOREeN
do {

v = DCSSRead (addr) ;
if (isKCAS(v)) KCASHelp (unpack(v));
} while (isKCAS(v));
0 return v;

O b w N

H W 00 J O Ul

TOOLS FOR DEBUGGING AND PERFORMANCE

* Debugging and optimizing concurrent programs is very hard. Tools can help!

 Debugging * Performance
 GNU Debugger (GDB) * Linux Perftools (perf)
» Segfaults, infinite loops » Studying cycles, cache misses,
- Address Sanitizer (ASan) instructions, stalled cycles

« At the whole-application level
* C/C++ Performance API (PAPI)

* Precise information from perf, but

* Segfaults, memory leaks

e]1~2x slowdown

e Valgrind
recorded within your program
* Segfaults, memory leaks,

* VTune Amplifier

memory access exrxors

* many-x slowdown * Powerful (and now free!) profiler

* Graphviz A lot of errors in concurrent programs manifest as

TN A et de el memory access errors! For example, a thread may write

a bad value into a pointer because of a concurrency
bug, and another thread may then read it.

data structures

USING VALGRIND TO FIND MEMORY
ACCESS ERRORS

$ valgrind --fair-sched=yes ./alcode segfault/workload timed.out 4 1000 naive
==107893== Command: ./alcode segfault/workload timed.out 4 1000 naive

==107893=5

==107893=H Use of uninitialised value of size 8

==107893== at UXDIUFUDZ: std::thread: :jJoin() (1n /.../x86 64-lnus—gnullibstdetstrsob-0.22)
==107893== by 0x1092DC: void runExperiment<CounterNaive>(...) | (workload timed.cpp:46)
==107893== by 0x108E3B: main (workload timed.cpp:70)

==107893==

==107893== Invalid read of size 8

==107893== at 0x510F0D4: std::thread::join() (in /.../x86 64-linux-gnu/libstdc++.s50.6.0.22)
==107893== by 0x1092DC: void runExperiment<CounterNaive>(...) (workload timed.cpp:46)
==107893== by 0x108E3B: main (workload timed.cpp:70)

==107893== Address 0x190 1s not stack'd, malloc'd or (recently) free’d

Using Address Sanitizer to check for memory leaks

$ g++ -pthread|-g -fsanitize=address -static-libasan|-fopenmp -03 ex2 mmult threads.cpp
$./a.out 24
matrix created: 0.02s

randomize call finished: 0.10s

multiply call finished: 2.82s

Direct leak of 192 byte(s) in 24 object(s) allocated from:
#0 0x555b294992d8 in operator new(unsigned long) (/home/.../a.qutilxcl2d8)

#1 0x555b294dab9%e in matrix::multiply(matrix*, int) (/home/...fex2 mmult threads.cpp:12)

SUMMARY : AddressSanitizer: 192 byte(s) leaked in 24 allocation(s).

GRAPHVIZ: WHEN YOU JUST NEED TO SEE IT

digraph g {
node [
fontsize = "16"

Shape = “record" 0x10ba
15 |
edge []; |
"node@"” [

label = "<f0> 0x10baSTT1>“
1;
"nodel" |
label = "<f0> Oxf7fc4380|<fl>|A2>]-1"

15

(...]

"node@":f0 -> "nodel":f0O [
id = ©

[o o o] ¥ Tip: try to get your toughest bugs to happen in
} SMALL data structures, so you can graphviz them

SANITY CHECKING: EXPERIMENT CHECKSUMS

* Important to perform sanity checks wherever you can!

* Helps to catch obvious (and non-obvious) mistakes

* One good sanity check: checksum based validation
* Reduce the data structure to a number (a data structure checksum)
* Reduce each threads’ completed operations to a number (a thread checksum)
» verify that thread checksums “match” the data structure checksum

* (I.e., the work the threads think they’ve done is reflected in the data structure!)

* Creativity needed to come up with good checksum functions

PERFORMANCE TOOLS

Investigating cache misses with Linux Perftools: perf record

$ perf record -e cache-misses ./ex4 counting events counter4.out 24
matrix created: 0.00s
randomize call finished: 0.03s

number of additions = 1000000000
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.802 MB perf.data (20591 samples) |

$ perf report

Investigating performance with Linux Perftools: perf report

Samples: 20K of event 'cache-misses', Event count (approx.): 543388
OQverhead Command Shared Object Symbol
22.51% ex4 counting ev ex4 counting [..].out .] ZNomatrix8multiplyE...

O.0b4% eX4 counting ev
.07% ex4 counting ev kernel.kallsyms]
.02% ex4 counting ev kernel.kallsyms]

[Kernel.kKallsyms]|
[
[
.21% ex4 counting ev [kernel.kallsyms
[
[
[

decay Ioad
native sched clock

.75% ex4 counting ev kernel.
.73% ex4 countiling ev kernel.
.34% ex4 counting ev kernel.

[...]

_raw spin lock
cgroup rstat updated
task tick fair

w W W & U1 O
NN AN AN N AN N

Interactive console... select this

line and press [ENTER] twice...

update load avg se...
perf event alloc.par...

Percent XOr sebp, $ebp
nop
for (int k=0; k < w; ++k) {
test Fedx, $edx
1 Jle c9

lea 0x0(, 5rbp,4), %rsi

XOr $eax, seax

xchg $ax, $ax

ret—>datal[y] [x] += datalvy][k] * o->datalk] [x];

mowv ($rbx), $rdx

mowv (3rl1ll), srl0
0.07 mowv ($rdx, $rdi,1l), $rcx
0.11 mowv ($r8), %rdx

mowv ($rl1l0, $rax,8),%rl10

mowv ($rdx, $rdi, 1), $rdx
0.10 add $rsi, $rcx
0.4 mov ($rdx, $rax, 4) , sedx In reality it’s this line, where we fetch &
0.01 imul ($r10, %$rsi, 1), $edx add a subcounter in a sharded counter

add Sedx, ($rcx) that suffers from false sharing
0.11 lock addl S0x1, (%r

for (int k=0; k < w; ++k) {
_ Perf claims cache misses are at

U.01 lea O0xl (%rax), $ecx . e .
0 13 ~dd 50x1, $rax this line, but the real cPlpnt can be
0.09 cmp secx, $edx off by a few lines

C/C++ LIBRARY: PAPI

 https://icl.utk.edu/papi/

* Gives access to most of the same stuff as perf stat/record/report,
but programmatically inside your own code

* Can always include some measurements in your runs
* Fast --- no real overhead on Intel for ~2-4 performance monitoring counters
* Can easily measure only part of your execution (skip measuring setup/teardown)

« Can present results in a nice format (e.g., L3 cache misses PER data structure operation)

total throughput : 94906203
PAPI L1 DCM=36.4196

PAPI L2 TCM=24.8331 These are all “per data
PAPI L3 TCM=11.8196 structure operation”

PAPI_TOT CYC=5515.5

https://icl.utk.edu/papi/

WHEN YOU NEED A REAL PROFILER: VITUNE

* Surprisingly, Intel’s VTune is free. Even for commercial use!
* Great profiler for seeing what threads are doing throughout your execution

* Surprisingly easy to learn and use, even in complex scenarios...
* Profiling code that runs locally is trivial

 Profiling code that runs remotely:

* ~6 hours invested to learn the idiosyncrasies of VTune + remote execution

& Advanced Hotspots Hotspots viewpoint (change) ©

INTELVTUNE AMPLIFIER 2018

(] Collection Log O Analysis Target A Analysis Type [E Summary & Bottom-up & Caller/Callee &3 Top-down Tree ' Platform
v||%|[Q
| Context : A

Grouping: | Function / Call Stack

Function / Call Stack

v updateBusinessAccount

CPUTime v

Effective Time by Utilization
idle @ Poor Ok @ !deal B Over

7.915s @

Spin Time

Context Switch Time

Wait Time | Inactive Time | Preempfi

S R S e R R T S g T

—
v mainSompSparallel for@269 | 7915 w0
EE——

» = _ kmp_invoke_microtask — [Op
p = updateBusinessAccount « mair
» updateCustomerAccount
» _kmpc_atomic_fixed8_add
» __kmpc_critical

o~

< >

79155 D
Os
7.766s |0

2.772s |V D
0s 2.021s

‘- san . — -~

<

QUQECQ=Qe ‘5.55 _ S.?s -

AR

OMP Worker Thread ... |
= OMP Worker Thread .. \
F= = rtmtest _openmp (TID:.. :

OMP Worker Thread .. \

CPU Time

FILTER 100.0%

selasnatonnn Pe e i rratannstlannaton

Any Modu v Any Ul »

RN LR LR B ..-.uln-'u-u“nn'lc|||||||-||A.-|||||un|tun
5.7¢ 5.8s 5.95 |5.99-isi 6.1s 62 6,35 B,
Tosostlnnsslonsye v 1 s0essslassoPanonlosnntons

Userfunclio v

0s 0.055s

¢
= :‘T‘rz’—,?:j‘r_i‘ et 1:1:"'?‘-

P JI5 -5
0.042s 3
0.013s

0.052s

0.014s

A AR~

Ruler Area

| /X Region Instance
v Thread

| @ Running

v| Context Switches

[_J Preemption
[Synchronization

v Bk CPU Time
v| ik Spin and Overhead ...

Show inlir + Funclion: »

