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ANNOUNCEMENTS

• Memory reclamation: last time was hopefully enough detail for A5, but

maybe not enough to fully understand the limitations of EBR in complex scenarios

• Would like to talk more about memory reclamation, but a bit later…



USEFULNESS OF KCAS

• KCAS is an awesome tool, but it doesn’t solve everything

• It makes it easy to change multiple addresses atomically

(and with lock-free progress)

• Locks do this too (but without lock-freedom)

• Implement KCAS with locks, if you like (can also be fast).

surprisingly tricky to get right, though… more later…

• It does not make it trivial to argue searches work

• And searches are part of updates!

• So, we still need some ad-hoc correctness arguments for both searches and updates!

• Question: how to get fast data structures with easy/trivial proofs for searches

(as well as the search/traversal part of updates)?

Lock-based algorithms that do 

not lock while searching also 

have this same challenge: 

proving correctness for 

searches is hard.

This is why I think

lock-free algorithms

and fast lock-based ones are 

somewhat similar…



THIS TIME

• A technology that can help with correctness arguments for searches

• Implemented in some modern hardware

• Many recent Intel CPUs

• IBM POWER8+ (IMO, not as good as Intel’s implementation)

• ARMv8 (haven’t used it yet…)

• Can also be used to greatly accelerate some algorithms such as KCAS

• And can even accelerate lock-based algorithms



TRANSACTIONAL MEMORY (TM)

• Allows a programmer to perform arbitrary blocks of code atomically

• Note: locks also do this (just not always efficiently or easily)

bool transfer(int *src, int *dst, int amt)

bool result = false;

atomic {

if (*src > amt) {

*src -= amt;

*dst += amt;

result = true;

}

}

return result;



DEFINITIONS

• Each transaction commits or aborts

• Commit: as if the entire transaction happened atomically

• Abort: as if the transaction never happened at all

• Read-set (at time t): the set of all addresses read by a transaction (up to time t)

• Write-set (at time t): the set of all addresses written by a transaction (up to time t)

• Data-set: (read-set) + (write-set)

• Data conflicts: two concurrent transactions have a data conflict if the write-set of 

one intersects the data-set of the other (examples soon)



TRANSACTIONAL OPERATIONS

• Studying Intel’s hardware implementation of TM

• xbegin: start a new transaction and return XSTARTED

• xend: try to commit the transaction (might abort instead)

• xabort: abort the transaction

• read *addr: Read & add addr to the transaction’s read-set (in L3 cache)

• write *addr = val: Write & add addr to the transaction’s write-set (in L1 cache)

Note: xbegin, xend, xabort are actual x86/64 assembly instructions

Instruction set: TSX-NI / RTM (provided in several modern Intel chips)



HIGH LEVEL IDEA

• Transaction works sort of like a lock, but can abort

• Suppose thread p reads *src at line 3,

then thread q subsequently modifies *src

• This causes a data conflict, which will cause p’s transaction to abort

(since its view of memory is no longer atomic)

bool transfer(int *src, int *dst, int amt)

1 bool result = false;

2 xbegin();

3 if (*src > amt) {

4 *src -= amt;

5 *dst += amt;

6 result = true;

7 }

8 xend();

9 return result;

Work might not be done 

because of an abort

Must handle aborts 

somehow



A BIT MORE DETAIL ON
INTEL’S HARDWARE TM (HTM)

• Threads can execute transactions that read/write/CAS/F&A any addresses

• They can also read/write/CAS/F&A addresses non-transactionally (as usual)

• Transactions abort as soon as there is a data conflict

• Data conflicts can be between two transactions,

or between a transaction and a thread that performs non-transactional accesses

• Suppose a transaction T accesses (read/write/CAS/F&A) an address,

and then before T commits, a different thread p modifies (write/CAS/F&A) that address.

Whether p’s modification is inside a transaction or not, T will abort immediately.

• Suppose a transaction T modifies an address, and then before T commits,

a different thread p reads that address.

If p’s read is not performed inside a transaction, then T will abort immediately.

• Moreover, transactions can abort at any time, for any reason!



WHAT HAPPENS
WHEN A TRANSACTION ABORTS

• When a transaction aborts,

the thread jumps to its last xbegin,

and this xbegin returns XABORTED

bool transfer(int *src, int *dst, int amt)

1 bool result = false;

2 xbegin();

3 if (*src > amt) {

4 *src -= amt;

5 *dst += amt;

6 result = true;

7 }

8 xend();

9 return result;

p: execute xbegin, which 

returns XBEGIN_STARTED

p: read *src

q: write to *src

p: write to *src

p: write to *dst

p: jumps back to xbegin,

which returns XABORTED

Note: in practice, p will even abort if q writes to the 

same cache line (or even sometimes the adjacent 

cache line, i.e., the other member of a 128b aligned 

pair of cache lines); very careful padding is advised!



HANDLING ABORTS

• Branch based on

the return value of xbegin

• Handle abort in else case

• Useful to record # of aborts,

debug, change code behaviour, etc.

• Usually desirable to

retry aborted transactions

• Often want to wait a bit before retrying…

bool transfer(int *src, int *dst, int amt)

1 bool result = false;

2 retry:

3 if (xbegin() == XSTARTED) {

4 if (*src > amt) {

5 *src -= amt;

6 *dst += amt;

7 result = true;

8 }

9 xend();

10 } else { // we aborted

11 handleTheAbort();

12 goto retry;

13 }

14 return result;



FIRST ATTEMPT: TRANSACTIONAL HASH TABLE

1   retry:

2   if (xbegin() == XSTARTED) {

3     int result = sequentialInsert(key);

4     xend();

5     return result;

6   } else {

7     // transaction aborted

8     goto retry;

9   }

int insert(int key)

1   int h = hash(key);

2   for (int i=0;i<capacity;++i) {

3   | int index = (h+i) % capacity;

4   | int found = data[index];

5   | if (found == key) {

6   |   return false;

7   | } else if (found == NULL) {

8   |   data[index] = key;

9   |   return true;

10  | }

11  }

12  return FULL;

int sequentialInsert(int key)

But there’s a problem with 

this implementation…



THE PROBLEM WITH HTM

• Transactions can abort for any reason

• No progress guarantee!

• Not hard to write code in which all transactions abort forever

• Example: if a transaction causes a page fault, it will execute the page fault handler inside a 

transaction, and this tends to abort, reverting any progress towards loading the page!

• So, the transaction retries, and aborts again! And again! …

• Need to provide a fallback code path (for example, using locks)

to run when a transaction aborts too many times

• Two code paths: fast path (using HTM), fallback path



TRANSACTIONAL LOCK ELISION (TLE)

• TLE uses the simplest and most common choice of fallback code path:

• Acquire a global lock then execute the transaction’s code (without xbegin/xend)

• Transactions on the fast path should not run while the global lock is held

• This prevents transactions from changing data

that the global lock is supposed to protect

• So, on the fast path, each transaction reads the lock state

• If it is locked, the transaction aborts,

and the thread waits until the lock is free to try again

• If it is not locked, the transaction proceeds

• If the lock is acquired at any time during the transaction,

this will be a data conflict, and the transaction will abort!

Crucial point: transactions 

only need to read the lock to 

ensure that the operation 

succeeds only if no one else

holds the lock.

Without HTM, you would 

need to acquire the lock to 

guarantee no one else holds 

it when you change the data 

structure.



EXAMPLE: TLE-BASED HASH TABLE

1   int retriesLeft = 5;

2   retry:

3   if (xbegin() == XSTARTED) {

4     if (locked) xabort();

5     int result = sequentialInsert(key);

6     xend();

7     return result;

8   } else {

9     // transaction aborted

10    while (locked) { /* wait */ }

11    if (--retriesLeft > 0) goto retry;

12    acquire(&locked);

13    int result = sequentialInsert(key);

14    release(&locked);

15    return result;

16  }

int insert(int key)

Fast path

(transactions)

Fallback path

(global lock)

Why does TLE work?

What do we know about a (fast 

path) transaction that commits?

If it read an address, and then that 

address was later changed,

the txn would have aborted.

So, the transaction’s behaviour is 

the same as it would be if it had 

actually acquired the global lock 

(since it observed no changes 

during its execution)!

What about the fallback path?

We hold the global lock, so no 

one else can access anything. 

Equivalent to running in a single 

threaded system.


