
MULTICORE PROGRAMMING

Advanced usage of HTM

Lecture 14

Trevor Brown

LAST TIME

• Transactional memory (TM)

• Intel’s restricted transactional memory (RTM / HTM / TSX-NI)

• Transactional lock elision (TLE)

• Hash table

THIS TIME

• When does TLE perform well? Poorly?

• More sophisticated uses of hardware transactional memory (HTM)

• Accelerating lock-free KCAS

SOMETIMES TLE PERFORMS POORLY

• Lists: when a thread is traversing the list,

a huge prefix of the list is in its read-set!

17 20 25−∞ 15 +∞27

p’s read-set

Thread p:

Search(27)

Thread q:

Insert(6)

q’s write-set

Abort!

Any change aborts p

TLE is GREAT with few aborts,

but sometimes we need a different

approach to get good performance

PERFORMANCE PROBLEMS WITH TLE

• Traversals are performed inside the transaction

• Usually fine for trees and hash tables, where threads naturally spread out

• But terrible for lists, where many threads follow the same path

• Global locking fallback path kills scalability when aborts are common

• Different fallback path?

• What if we use HTM to accelerate existing concurrent algorithms like KCAS?

• Does not help with correctness / progress arguments

• But can obtain big performance benefits!

Use another technique

(such as KCAS)

USING HTM TO ACCELERATE
LOCK-FREE KCAS

• Goal

• HTM-based KCAS that uses lock-free KCAS as the fallback path

• Fast path transactions should be able to run concurrently with the fallback path!

• Approach

• Fast path algorithm:

• Wrap KCAS in a transaction: xstart ; KCAS ; xend

• Now each KCAS on the fast path is atomic, just because it is in a transaction

• Some parts of the algorithm are no longer needed because of the transaction

• Example: DCSS is not needed – could just do two reads and a write in the transaction!

• Get rid of parts of the algorithm that are unnecessary

STEP 1: ADDING TRANSACTIONS

2 int retries = 5;

3 retry:

4 if (xbegin() == XSTARTED) {

5 bool result = KCAS_TXN(addr1..., exp1..., new1...);

6 xend();

7 return result;

8 } else {

9 if (--retries > 0) goto retry;

10 return KCAS_LF(addr1..., exp1..., new1...);

11 }

bool KCAS(addr1..., exp1..., new1...)

1 KCAS_desc * d = new KCAS_desc(addr1...);

2 d->status = Undecided;

3 SortRowsByAddress(d);

4 return KCASHelp(d);

bool KCAS_LF(addr1..., exp1..., new1...)

Recall:

(lock-free KCAS)

Fallback path:

lock-free KCAS

code

Fast path: lock-

free KCAS

code inside a

transaction

KCAS_TXN is initially

the same as KCAS_LF.

We will optimize it.

(We still use the same

old KCASRead)

Ideally we probably want some sort

of waiting before we retry…

OPTIMIZING KCAS_TXN

12 KCAS_desc * d = new KCAS_desc(addr1...);

13 d->status = Undecided;

14 SortRowsByAddress(d);

15 return KCASHelp(d);

bool KCAS_TXN(addr1..., exp1..., new1...)

Inline this help function so we can

modify it here (and not affect the lock-

free KCAS code)

12 KCAS_desc * d = new KCAS_desc(addr1...);

13 d->status = Undecided;

14 SortRowsByAddress(d);

15 if (d->status == Undecided)

16 | int newStatus = Succeeded;

17 | for (int i = 0; i < d->n; i++)

18 | | word_t val2 = DCSS(&d->status, d->row[i].addr,

| | | Undecided, d->row[i].exp,

| | | packKCAS(d));

19 | | if (val2 != d->row[i].exp) // if DCSS failed

20 | | | if (isKCAS(val2)) // because of a KCAS

21 | | | if (unpack(val2) != d) // a DIFFERENT KCAS

22 | | | KCASHelp(unpack(val2));

23 | | | --i; continue; // retry "locking" this addr

24 | | | else // addr does not contain its exp value

25 | | | newStatus = Failed; break;

26 | CAS(&d->status, Undecided, newStatus);

27 bool succ = (d->status == Succeeded);

28 for (int i = 0; i < d->n; i++)

29 | val = (succ) ? d->row[i].new : d->row[i].exp;

30 | CAS(d->row[i].addr, packKCAS(d), val);

31 return succ;

bool KCAS_TXN(addr1..., exp1..., new1...)

Phase 1:

lock-free

“locking”

Phase 2:

completion

Status

CAS

Runs entirely

inside one

transaction!

DCSS: change addr from

exp to my KCAS

descriptor, only if my

descriptor has status

Undecided.

Can any other thread

access my KCAS

descriptor?

Only if I store a pointer

to it and commit (xend)!

I never do that… Before

I return, I always CAS

each address to the new

value, or back to the

expected value…

If no one can see my

descriptor, why create it

at all?

Status is always

Undecided here

Status is always

Undecided here

Status is always

Undecided here

bool KCAS_TXN(addr1..., exp1..., new1...)

12

13

14 SortByAddress(addr1..., exp1..., new1...);

15

16

17 for (int i = 0; i < d->n; i++)

18 | word_t val2 = DCSS(&d->status, d->row[i].addr,

| | Undecided, d->row[i].exp,

| | packKCAS(d));

19 | if (val2 != d->row[i].exp) // if DCSS failed

20 | | if (isKCAS(val2)) // because of a KCAS

21 | | if (unpack(val2) != d) // a DIFFERENT KCAS

22 | | KCASHelp(unpack(val2));

23 | | --i; continue; // retry "locking" this addr

24 | | else // addr does not contain its exp value

25 | | newStatus = Failed; break;

26 CAS(&d->status, Undecided, newStatus);

27 bool succ = (d->status == Succeeded);

28 for (int i = 0; i < d->n; i++)

29 | val = (succ) ? d->row[i].new : d->row[i].exp;

30 | CAS(d->row[i].addr, packKCAS(d), val);

31 return succ;

Now that we have no descriptor

pointer to store. This becomes a

READ.

bool KCAS_TXN(addr1..., exp1..., new1...)

12

13

14 SortByAddress(addr1..., exp1..., new1...);

15

16

17 for (int i = 0; i < d->n; i++)

18 | word_t val2 = *addri;

|

|

19 | if (val2 != d->row[i].exp) // if DCSS failed

20 | | if (isKCAS(val2)) // because of a KCAS

21 | | if (unpack(val2) != d) // a DIFFERENT KCAS

22 | | KCASHelp(unpack(val2));

23 | | --i; continue; // retry "locking" this addr

24 | | else // addr does not contain its exp value

25 | | newStatus = Failed; break;

26 CAS(&d->status, Undecided, newStatus);

27 bool succ = (d->status == Succeeded);

28 for (int i = 0; i < d->n; i++)

29 | val = (succ) ? d->row[i].new : d->row[i].exp;

30 | CAS(d->row[i].addr, packKCAS(d), val);

31 return succ;

Descriptor d does not exist. Fix

references to it.

Descriptor d does not exist. Fix

references to it.

Descriptor d does not exist. Fix

references to it.

Descriptor d does not exist. Fix

references to it.

Descriptor d does not exist. Fix

references to it.

Descriptor d does not exist.

Must fix references to it.

bool KCAS_TXN(addr1..., exp1..., new1...)

12

13

14 SortByAddress(addr1..., exp1..., new1...);

15

16

17 for (int i = 0; i < n; i++)

18 | word_t val2 = *addri;

|

|

19 | if (val2 != expi) // if DCSS failed

20 | | if (isKCAS(val2)) // because of a KCAS

21 | | if (unpack(val2) != d) // a DIFFERENT KCAS

22 | | KCASHelp(unpack(val2));

23 | | --i; continue; // retry "locking" this addr

24 | | else // addr does not contain its exp value

25 | | newStatus = Failed; break;

26 CAS(&d->status, Undecided, newStatus);

27 bool succ = (d->status == Succeeded);

28 for (int i = 0; i < n; i++)

29 | val = (succ) ? d->row[i].new : d->row[i].exp;

30 | CAS(d->row[i].addr, packKCAS(d), val);

31 return succ;

Since d does not exist,

this if-statement always

evaluates to true! Kill it.

Wherever we got n from to put in

the descriptor, we pass it to

functions etc., to make it

available here

bool KCAS_TXN(addr1..., exp1..., new1...)

12

13

14 SortByAddress(addr1..., exp1..., new1...);

15

16

17 for (int i = 0; i < n; i++)

18 | word_t val2 = *addri;

|

|

19 | if (val2 != expi) // if DCSS failed

20 | | if (isKCAS(val2)) // because of a KCAS

21 | |

22 | | KCASHelp(unpack(val2));

23 | | --i; continue; // retry "locking" this addr

24 | | else // addr does not contain its exp value

25 | | newStatus = Failed; break;

26 CAS(&d->status, Undecided, newStatus);

27 bool succ = (d->status == Succeeded);

28 for (int i = 0; i < n; i++)

29 | val = (succ) ? d->row[i].new : d->row[i].exp;

30 | CAS(d->row[i].addr, packKCAS(d), val);

31 return succ;

If we get here, KCAS will return false.

Any further steps are simply done to roll

back previous changes.

But we haven’t made any changes!

Just return false (and commit)!

Small optimization: why not

abort instead of commit?

We want to return false, and

xabort will move our program

counter back to the last xbegin

immediately without doing any

writes to shared memory…

Could we make xabort work?

bool KCAS_TXN(addr1..., exp1..., new1...)

12

13

14 SortByAddress(addr1..., exp1..., new1...);

15

16

17 for (int i = 0; i < n; i++)

18 | word_t val2 = *addri;

|

|

19 | if (val2 != expi) // if DCSS failed

20 | | if (isKCAS(val2)) // because of a KCAS

21 | |

22 | | KCASHelp(unpack(val2));

23 | | --i; continue; // retry "locking" this addr

24 | | else // addr does not contain its exp value

25 | | return false;

26 CAS(&d->status, Undecided, newStatus);

27 bool succ = (d->status == Succeeded);

28 for (int i = 0; i < n; i++)

29 | val = (succ) ? d->row[i].new : d->row[i].exp;

30 | CAS(d->row[i].addr, packKCAS(d), val);

31 return succ;

d->status does not existd->status does not exist

bool KCAS_TXN(addr1..., exp1..., new1...)

12

13

14 SortByAddress(addr1..., exp1..., new1...);

15

16

17 for (int i = 0; i < n; i++)

18 | word_t val2 = *addri;

|

|

19 | if (val2 != expi) // if DCSS failed

20 | | if (isKCAS(val2)) // because of a KCAS

21 | |

22 | | KCASHelp(unpack(val2));

23 | | --i; continue; // retry "locking" this addr

24 | | else // addr does not contain its exp value

25 | | return false;

26 | |

27 | |

28 for (int i = 0; i < n; i++)

29 | val = (succ) ? d->row[i].new : d->row[i].exp;

30 | CAS(d->row[i].addr, packKCAS(d), val);

31 return succ;

If we are here, we saw all of our

expected values.

No need to test for success or

store expected values. We

haven’t stored anything yet!

Just store new values!

Also fix references to d

bool KCAS_TXN(addr1..., exp1..., new1...)

12

13

14 SortByAddress(addr1..., exp1..., new1...);

15

16

17 for (int i = 0; i < n; i++)

18 | word_t val2 = *addri;

|

|

19 | if (val2 != expi) // if DCSS failed

20 | | if (isKCAS(val2)) // because of a KCAS

21 | |

22 | | KCASHelp(unpack(val2));

23 | | --i; continue; // retry "locking" this addr

24 | | else // addr does not contain its exp value

25 | | return false;

26 | |

27 | |

28 for (int i = 0; i < n; i++)

29 |

30 | CAS(addri, expi, newi);

31 return succ;

No need for CAS. We only got

here because addri contains its

expected value. If that changes,

we are aborted!

We can just write!

bool KCAS_TXN(addr1..., exp1..., new1...)

12

13

14 SortByAddress(addr1..., exp1..., new1...);

15

16

17 for (int i = 0; i < n; i++)

18 | word_t val2 = *addri;

|

|

19 | if (val2 != expi) // if DCSS failed

20 | | if (isKCAS(val2)) // because of a KCAS

21 | |

22 | | KCASHelp(unpack(val2));

23 | | --i; continue; // retry "locking" this addr

24 | | else // addr does not contain its exp value

25 | | return false;

26 | |

27 | |

28 for (int i = 0; i < n; i++)

29 |

30 | *addri = newi;

31 return succ;

If we get here, we succeeded.

Just return true.

bool KCAS_TXN(addr1..., exp1..., new1...)

12 SortByAddress(addr1..., exp1..., new1...);

13 for (int i = 0; i < n; i++)

14 | word_t val2 = *addri;

15 | if (val2 != expi) // if we see a non-expected val

16 | | if (isKCAS(val2)) // --that is a KCAS descriptor

17 | | KCASHelp(unpack(val2)); // unpack & help it

18 | | --i; continue; // retry "locking" this addr

19 | | else // addr contain a non-expected program val

20 | | return false;

21 for (int i = 0; i < n; i++)

22 | *addri = newi;

23 return true;

CLEANING UP WHITE SPACE / COMMENTS

Seems implausible that we will get

to retry “locking” this addr (by

reading it). Aren’t we likely to get

aborted by then?

HELPING AND TRANSACTIONS

• Helping involves touching data other threads are working on (data conflicts!!)

• Transactions that help non-transactional operations

• If you read some data, and someone else writes to it, your transaction will abort

• They are highly likely to write to data you’ve read,

since you have found them in the middle of their operation

• Non-transactional operations helping transactions

• If you perform a write that a transaction is trying to do also, two cases arise:

• (a) you write after the transaction commits, and you didn’t really help

• (b) you write before the transaction commits, and it must abort

• Transactions helping transactions

• No. Just no.

WHY DO WE HELP AT ALL?

• To guarantee lock-free progress:

• Some operation always completes in the future

• How much helping is needed to guarantee progress in our algorithm?

• What if transactions don’t help, and we don’t help them?

• Suppose all transactions abort (so they do not make progress)

• Then all operations go to their fallback code paths, and run lock-free code

• This lock-free code guarantees progress

bool KCAS_TXN(addr1..., exp1..., new1...)

12 SortByAddress(addr1..., exp1..., new1...);

13 for (int i = 0; i < n; i++)

14 | word_t val2 = *addri;

15 | if (val2 != expi) // if we see a non-expected val

16 | | if (isKCAS(val2)) // --that is a KCAS descriptor

17 | | KCASHelp(unpack(val2)); // unpack & help it

18 | | --i; continue; // retry "locking" this addr

19 | | else // addr contain a non-expected program val

20 | | return false;

21 for (int i = 0; i < n; i++)

22 | *addri = newi;

23 return true;

REMOVING TRANSACTIONAL HELPING

Instead of helping, just assume we will

get aborted, and issue our own explicit

xabort. (After this we’ll try again.)

Note: could even remove this

sorting as a fast-path

optimization!

bool KCAS_TXN(addr1..., exp1..., new1...)

12 SortByAddress(addr1..., exp1..., new1...);

13 for (int i = 0; i < n; i++)

14 | word_t val2 = *addri;

15 | if (val2 != expi) // if we see a non-expected val

16 | | if (isKCAS(val2)) // --that is a KCAS descriptor

17 | | xabort(); // give up (and try again)

18 | | else // addr contain a non-expected program val

19 | | return false;

20 for (int i = 0; i < n; i++)

21 | *addri = newi;

22 return true;

FINAL KCAS_TXN IMPLEMENTATION

Step 1: Sort args by address

Step 2: Read all addresses and check if they

contain their expected values.

If an address contains a non-expected

program value, return false.

If we encounter a KCAS descriptor, abort

(and retry)

Step 3: Write new values and

return true

EXAMPLE EXECUTION 1

• Consider an execution where KCAS is used to increment cells in an array

• Suppose thread p runs on the fallback path,

and “lock-free locks” k addresses

• Then thread q runs on the fast path and reads one of these addresses

• Thread q sees a pointer to p’s KCAS descriptor and aborts

• Thread p then completes its KCAS

• Thread q can then retry and perform its KCAS

7 11 5 3 9 10 14 8 9 5 9 4 11 13 6 124 11 15 10 10 14

EXAMPLE EXECUTION 2

• Consider an execution where KCAS is used to increment cells in an array

• Suppose thread p runs on the fast path,

reads all k addresses, and sees the expected values

• Before p commits, thread q runs on the fallback path

and uses CAS to store a descriptor pointer in one of these addresses

• Thread p will be immediately aborted by the HTM system due to a data conflict

7 11 5 3 9 10 14 8 9 5 9 4 11 13 6 12

q’s KCAS

descriptor

CORRECTNESS ARGUMENT INTUITION

• For simplicity, consider a system with two threads

• Imagine two operations running on the fallback path

• Both behave correctly because the lock-free algorithm is correct

• Two operations on the fast path

• Correct because both are atomic, because of transactional memory

• One operation on the fast path and one operation on the fallback path

• Claim: the fast path operation does not modify addresses

while they are “lock-free locked” by the fallback path operation

• I.e., fast path respects the “lock-free locks” taken by the fallback path

MECHANICS OF PROVING CORRECTNESS

• Correctness of each path in isolation:

• Fallback path is correct in isolation

• Fast path is atomic because of transactions, and correct in isolation

• Compatibility between paths:

• Fast path was obtained from fallback by wrapping it in a transaction

(which makes it atomic)

and then performing correctness-preserving transformations

To be rigorous, one option is to start

with a correct lock-free algorithm, and

prove that each transformation

preserves correctness

USING HTM TO IMPLEMENT
SYNCHRONIZATION PRIMITIVES LIKE KCAS

• Advantages

• Programmer only needs to write one code path

(fast path & fallback path are hidden in the KCAS implementation)

• Hides the complexity of proving correctness

for interactions between fast path & fallback path

• Makes it practical to design / accelerate data structures with KCAS

(should result in great performance)

• Code still works on systems with no HTM (just run the fallback path)

• Disadvantages

• Still need to prove correctness for searches

• Minor: must use KCASRead to read

SUMMARIZING

• We can use TLE to make designing new data structures easy

• We can use advanced HTM-based techniques to make existing data structures faster

• Open question: can we make designing new data structures both easy and fast?

• Hybrid transactional memory?

• Combines HTM with software implementations of transactional memory to guarantee progress

• Good algorithms have been designed, but they may be too complex to implement in compilers!

• KCAS with some generic theory that proves searches work?

• Some work has been done in this direction

• “Generalized hindsight” and “Data expansion” lemmas

• Easy proofs that searches work for data structures that satisfy some simple invariants

