
MULTICORE PROGRAMMING

Versioned locks, snapshots, version-lock-based KCAS

Lecture 15

Trevor Brown

LAST TIME

• When does TLE perform well? Poorly?

• More sophisticated uses of hardware transactional memory (HTM)

• Concept: algorithms that allow fast-path transactions to run

concurrently with fallback-path operations

• Accelerating lock-free KCAS

THIS TIME

• Try-locks

• Implementing try-locks

• Try-lock set (a simple engineering trick for easily acquiring/releasing multiple locks)

• Naïve (incorrect) KCAS using try-locks

• Versioned (try-)locks

• Implementing versioned locks

• KCAS using versioned locks

TRY-LOCKS

• Traditional lock operations

• lock(): blocks until lock is acquired – may take a LONG time

• unlock(): release the lock (usually a small number of instructions w/o blocking)

• Try-lock

• tryLock(): either acquires the lock and returns true,

or does not and returns false

• unlock(): release the lock

• tryLock and unlock should both be wait-free

(but algorithms that use them are not; those algorithms are lock-based)

WHY DO WE CARE ABOUT TRY-LOCKS?

• Two-phased locking with try-locks

• Try to lock all data

• If a tryLock returns false, release all locks and try again

• Make changes

• Release all locks

• Deadlock is impossible in this algorithm,

even if you do not lock addresses in any consistent order

• Livelock is possible, but can be extremely unlikely

IMPLEMENTING A TRY-LOCK

Fail fast (try to avoid CAS

when contended) Why?

A write is enough. No

CAS needed. Why?

TRY LOCK SET: A SIMPLE ABSTRACTION
FOR TAKING MULTIPLE TRY LOCKS

1 template <int MAX_K>

2 class TryLockSet { // contains info on locks we have locked

3 Lock * locks[MAX_K];

4 int k; // number of locks acquired

5 public:

6 TryLockSet() { k = 0; }

7 ~TryLockSet() {

8 for (int i=0;i<k;++i) locks[i]->unlock();

9 }

10 bool tryLock(Lock * lock) {

11 if (lock->tryLock()) {

12 locks[k++] = lock;

13 return true;

14 }

15 return false;

16 }

17 }

Just some simple

software engineering

Locks we

currently hold

Destructor: code executed

when this object goes out

of scope

Unlock all of our locks

Try to acquire lock,

and add it to locks

if successful

Supply an upper bound on k

via a template parameter

TRY-LOCK BASED KCAS:
WHERE ARE THE LOCKS STORED?

• Option 1: alongside program data

• For each program value,

place a lock next to it in memory

• Upsides: simple, good locality (locks

usually in same cache lines as data)

• Downsides:

• Requires program memory layout changes

• Can double memory requirements

1 class addr_t {

2 private:

3 Lock lock;

4 public:

5 word_t value;

6 Lock * addrOfLock() { return &lock; }

7 };

Each variable that can be

modified by KCAS becomes an

instance of addr_t

data lock data lock data lock

data lock data lock data lock

• Option 2: in a dedicated lock table

• Don’t give each address a unique lock

• Have each lock protect a set of addresses

• How to map an address to “its” lock?

• Hash addresses to obtain a lock ID

• lockID = hash(addr) % numLocks

data data data data data data

lock0 lock2lock1

400 408 416 424 432 440

Hash(432)%3 = 1Hash(408)%3 = 1

What if I want to lock both 432 and 408?

Careful about acquiring the same lock twice!

Lock() should be re-entrant. (For example, the

lock can store the ID of the thread currently

holding it, and you can check if you’ve already

locked it, so you don’t try to lock again.)

TRY-LOCK BASED KCAS:
WHERE ARE THE LOCKS STORED?

WHY WOULD YOU WANT
TO USE A LOCK TABLE?

• If you can’t (or don’t want to) change the program’s memory layout

• If you want to save space in data structure nodes (and the cache)

by using fewer locks

• Maybe you can even use the same lock table across many data structures?

(if the table is large enough)

• Practical consideration: false sharing on locks in the table?

(they are next to each other, after all…)

• Padding is probably a bad idea (can try and see…)

• If number of locks is huge, relative to # of threads, expected contention should be low…

IMPLEMENTING A LOCK TABLE

1 // put padding before

2 Lock lockTable[LOCKTAB_SZ];

3 // put padding after

4

5 class addr_t {

6 public:

7 word_t value;

8 Lock * addrOfLock() {

9 int idx = hash(&value) % LOCKTAB_SZ; // hash the address of value

10 return &lockTable[idx];

11 }

12 };

Should be much larger than (max # threads) *

(max # addresses written by KCAS)

Small optimization: if the lock table size is a

power of 2, then h & (LOCKTAB_SZ-1) is

exactly the same as h % LOCKTAB_SZ, but

bitwise-& can be cheaper than modulo

How many locks do we need to

get good scalability? e.g., 1 million

Can use either option for our try-lock

based KCAS… Option 2 is cleaner, IMO…

NAÏVE TRY-LOCK BASED KCAS

1 template <int K>

2 bool KCAS_locks(addr_t ** addr, val_t * expv, val_t * newv) {

3 retry:

4 TryLockSet<K> tls; // auto-unlock when this goes out of scope

5 for (int i=0;i<K;++i) { // try to acquire locks

6 if (!tls.tryLock(addr[i]->addrOfLock()))

7 goto retry; // (release locks and) retry

8 if (addr[i]->value != expv[i])

9 return false; // (release locks and) fail

10 }

11 for (int i=0;i<K;++i) *addr[i] = newv[i];

12 return true; // (release locks and) succeed

13 }

Supply K via a template parameter

Try to

acquire

all locks

Write,

unlock,

return

Array of addr_t *,

each having a lock

and a value

18 val_t KCASRead(addr_t * addr) {

19 return addr->value;

20 }

Is it OK if KCASRead

ignores locks?
Where is KCASRead linearized?

Only one step to

linearize at!

KCASREAD CANNOT IGNORE LOCKS!

time

Thread p

Thread q

KCAS(&X, &Y, 0, 0, 1, 1)

Lock X Lock Y Write X = 1

KCASRead(&X) KCASRead(&Y)

Return value?

Sees X = 1

Return value?

Sees Y = 0

Implies KCAS has

already been

linearized

Implies KCAS has

not been

linearized yet

Implies KCAS has

already been

linearized

Implies KCAS has

not been

linearized yet

If KCAS is really atomic,

then once you’ve seen X=1,

a subsequent read of Y

should not see 0!

(In contrast, if you see X=0,

then read Y and see 1, that’s

actually possible with an

atomic KCAS between reads)

So, because this can happen,

our KCAS is not atomic!

HOW CAN WE FIX THIS PROBLEM?
FIRST ATTEMPT:

time

Thread p

Thread q

KCAS(&X, &Y, 0, 0, 1, 1)

Lock X Lock Y Write X = 1

Return value?

Sees X = 1

Unlock XWrite Y = 1

KCASRead(&Y)

Return value?

Sees Y = 1

KCASRead(&X) should read

only after X is unlocked
This KCAS can

be linearized at

any time when

X and Y are

both locked!

read(X)

Unlock Y

ANOTHER ATTEMPT AT KCASREAD

• Consider an invocation of KCASRead that returns V

• Want to linearize at a time t during the KCASRead when:

• addr contained V, and

• addr is not locked

• Can we find such a time to linearize KCASRead?

1 val_t KCASRead(addr_t * addr) {

2 while (true) {

3 if (addr->addrOfLock()->isLocked()) continue;

4 return addr->value;

5 }

6 }

Wait until addr is

unlocked

Then read

No, addr might be locked again by

the time we read addr->value!

Need a tool to help us find a

single time when

addr contained V

and was unlocked

How about locking addr,

reading, and unlocking?

Correct but slow!

(Why slow?)

VERSIONED TRY-LOCKS

• Like a try-lock, but also has a version number associated with it

• Version number = # of times lock was acquired

• Represented as an integer

• Least significant bit = lock-bit (is it currently locked)

• Other bits = version number

• “Unlocked, after being acquired 4819 times” <4819, 0> = (4819 << 1) | 0

• “Locked, after being acquired 17 times” <17, 1> = (17 << 1) | 1

• Checking if a lock is held: if (lock & 1) { … }

• Getting the version number from a lock: ver = (lock >> 1);

• Offers operations: unlock(), tryLock() and read()

IMPLEMENTING VERSIONED TRY-LOCKS

Since the lock bit (LSB) is 1, incrementing lock changes the

LSB to 0 (unlocked), and increments the version #

If lock is held

Try to acquire

Note: “relaxed” is strong

enough here because of the

CAS before and data

dependency after…

CORRECT KCASREAD

1 val_t KCASRead(addr_t * addr) {

2 Lock * l = addr->addrOfLock();

3 while (true) {

4 uint64_t s1 = l->read();

5 if ((s1 & 1) == 0) {

6 casword_t v = addr->value;

7 uint64_t s2 = l->read();

8 if (s2 == s1) return v;

9 }

10 }

11 }

Read lock state (i.e., <version_number, lock_bit>

Read value

Read lock state again

Then addr was not locked at any time

between the two read() operations.

So when we read addr->value,

addr is not locked!

If it is unlocked

If still unlocked, and same

version number as before

The rest of the code is the same as the naïve try-lock based KCAS,

but with versioned try-locks instead of try-locks.

WHAT ELSE CAN WE DO WITH THESE VERSION NUMBERS?

• E.g., can implement a snapshot operation, which atomically performs many reads (all at

once)

Example of the

famous “double

collect” paradigm

For each addr, read the lock

state (incl. version number)

Retry if we see a lock is held

Then read the value guarded by the

lock (crucially, after the lock state)

Locally save

the lock state

we saw

Reread all lock states and check that all locks

are still released, and version numbers are

the same as we saw above (else retry)

If we get past this loop,

then no value has

changed since we read it!

This is called version/sequence-based validation
Can linearize the entire

snapshot between loops

