
MULTICORE PROGRAMMING

Optimizing lock-based KCAS with HTM, OpenMP, debugging/perf

Lecture 16

Trevor Brown

LAST TIME

• Try-locks

• Naïve (incorrect) KCAS using these

• Versioned (try-)locks

• KCAS using these

THIS TIME

• Accelerating version-lock-based KCAS with HTM

• Purpose: to demonstrate accelerating a lock-based algorithm using HTM!

• OpenMP

• Debugging and performance

• Checksums/validation

USING HTM TO ACCELERATE
TRY-LOCK BASED KCAS

• Similar to accelerating the lock-free algorithm (but a bit simpler)

• Goal

• HTM-based KCAS that uses try-lock based KCAS as the fallback path

• Approach

• Fast path algorithm:

• Wrap try-lock based KCAS in a transaction: xstart ; KCAS ; xend

• Now each KCAS on the fast path is atomic, just because it is in a transaction

• Get rid of parts of the algorithm that are unnecessary

ADDING TRANSACTIONS

template <int K>

bool KCAS(addr_t ** addr, val_t * expv, val_t * newv) {

int retries = 5;

int status;

retry:

if ((status = _xbegin()) == _XBEGIN_STARTED) {

bool result = KCAS_txn<K>(addr, expv, newv);

_xend();

return result;

} else { // transaction aborted

if (--retries >= 0) goto retry;

bool result = KCAS_locks<K>(addr, expv, newv);

return result;

}

}

Fallback path:

try-lock based

KCAS code

Fast path: try-

lock based

KCAS code

inside a

transaction

KCAS_txn is initially

the same as KCAS_locks.

We will optimize it.

(We use the same

version-lock-based

KCASRead for both

code paths)

Before retrying, should wait a bit…

Idea: if we aborted because a lock

was held, could we wait until that

lock is released?

But that information was

lost when we aborted…

Maybe we could sneak

it out using an explicit

_xabort() status code?

Could pass an index < 127

into addr[] to _xabort!

TURNING LOCK ACQUISITION INTO READING

1 template <int K>

2 bool KCAS_txn(addr_t ** addr, val_t * expv, val_t * newv) {

3 retry:

4 TryLockSet<K> tls; // auto-unlock when this goes out of scope

5 for (int i=0;i<K;++i) { // try to acquire locks

6 if (!tls.tryLock(addr[i]->addrOfLock()))

7 goto retry; // (release locks and) retry

8 if (addr[i]->value != expv[i])

9 return false; // (release locks and) fail

10 }

11 for (int i=0;i<K;++i) {

12 *addr[i] = newv[i];

13 }

14 return true; // (release locks and) succeed

15 }

No need to lock!

HTM ensures atomicity.

However, we must respect

others’ locks.

This becomes a read.

With no locking, we don’t

need TryLockSet

But, be careful! Still need to increment

version numbers so fallback path can

tell we changed addresses!

We modify the versioned try-lock

implementation to expose the “lock” word…

TURNING RETRIES INTO ABORTS

1 template <int K>

2 bool KCAS_txn(addr_t ** addr, val_t * expv, val_t * newv) {

3 retry:

4

5 for (int i=0;i<K;++i) {

6 if (addr[i]->addrOfLock()->lock & 1)

7 goto retry;

8 if (addr[i]->value != expv[i])

9 return false;

10 }

11 for (int i=0;i<K;++i) {

12 *addr[i] = newv[i];

13 addr[i]->addrOfLock()->lock += 2; // update version numbers

14 }

15 return true;

16 }

No point retrying here,

since we can only make

progress if the lock is

released, which will

abort us. So, just xabort.

So, no need for the

“retry:” label anymore.

OPTIMIZED CODE

1 template <int K>

2 bool KCAS_txn(addr_t ** addr, val_t * expv, val_t * newv) {

3

4

5 for (int i=0;i<K;++i) {

6 if (addr[i]->addrOfLock()->lock & 1)

7 _xabort(i);

8 if (addr[i]->value != expv[i])

9 return false;

10 }

11 for (int i=0;i<K;++i) {

12 *addr[i] = newv[i];

13 addr[i]->addrOfLock()->lock += 2; // update version numbers

14 }

15 return true;

16 }

User defined _xabort status

code (assuming i < 127)

CLEANED UP THE SPACING/COMMENTS

1 template <int K>

2 bool KCAS_txn(addr_t ** addr, val_t * expv, val_t * newv) {

3 for (int i=0;i<K;++i) {

4 if (addr[i]->addrOfLock()->lock & 1) _xabort(i); // read locks

5 if (addr[i]->value != expv[i]) return false; // read values

6 }

7 for (int i=0;i<K;++i) {

8 *addr[i] = newv[i]; // update values

9 addr[i]->addrOfLock()->lock += 2; // update version numbers

10 }

11 return true;

12 }

USING OUR NEW _XABORT STATUS CODE

1 template <int K>

2 bool KCAS(addr_t ** addr, val_t * expv, val_t * newv) {

3 int retries = 5;

4 int status;

5 retry:

6 if ((status = _xbegin()) == _XBEGIN_STARTED) {

7 bool result = KCAS_txn(addr, expv, newv);

8 _xend();

9 return result;

10 } else { // transaction aborted

11 if (status & _XABORT_EXPLICIT) {

12 int idx = _XABORT_CODE(status);

13 while (addr[idx]->addrOfLock()->read() & 1) { /* wait */ }

14 }

15 if (--retries >= 0) goto retry;

16 bool result = KCAS_locks<K>(addr, expv, newv);

17 return result;

18 }

19 }

If the abort was caused

by a user _xabort call

Get the user-provided abort code

Wait until the returned

index is no longer locked

OPENMP (OPEN MULTI PROCESSING)

A library for fork-join parallelism

OVERVIEW

• Easy to use in your own C/C++ projects

• Tons of features; we just look at a couple of simple tools

1. Parallel sections

2. Parallel for loops

3. Reductions

4. OMP Single, OMP Tasks

• Usage:

• #include <omp.h>

• GCC: compile with -fopenmp

Warning: Windows Subsystem for Linux v1 appears to use

a global lock in its implementation of OpenMP.

It offered no speedup in my testing.

(Try running on a real Linux box or a virtual machine!)

1. PARALLEL SECTION

• Shortcut for: spawning n threads, where n = # of logical processors in the system,

having them all execute the same code block, and then joining them

#include <cstdio>

void main() {

int id = 0;

printf(" hello(%d)", id);

printf(" world(%d)\n", id);

}

#include <omp.h>

void main() {

#pragma omp parallel

{

int id = omp_get_thread_num();

printf(" hello(%d)", id);

printf(" world(%d)\n", id);

}

}

Sequential code Concurrent/parallel code

Spawn n

threads

n
 t

h
re

a
d

s

e
x

e
c

u
te

 t
h

is

Stop n

threads

Output:

“ hello(0) world(0)”
Output?

What is my thread

ID (in 0..n-1)?

PARALLEL OUTPUT

WHY IS THIS USEFUL?

#pragma omp parallel

doSomething();

Using OpenMP

const int n = SomehowGetNumLogicalProcessors();

pthread_t *threads = new pthread_t[n];

for (int i=0;i<n;++i) {

if (pthread_create(&threads[i], NULL, doSomething)) {

std::cerr<<"ERROR: could not create thread"<<std::endl;

exit(-1);

}

}

for (int i=0;i<n;++i) {

if (pthread_join(threads[i], NULL)) {

std::cerr<<"ERROR: could not join thread"<<std::endl;

exit(-1);

}

}

delete[] threads;

Equivalent code using pthreads

Equivalent code using std::thread

2. PARALLEL FOR

OpenMP automatically decides

how many threads (n) to spawn

It splits work evenly between the

n threads (each does approx.
𝑟𝑒𝑡→ℎ

𝑛
iterations of this loop)

Implicit fork

(thread spawning)

Implicit join

WHY IS THIS USEFUL?

#pragma omp parallel for

for (long i=0;i<n;++i)

loop_body(i);

Using OpenMP Without using OpenMP: starting threads to run loop_body

int id = getMyThreadID();

int istart = id * n / numThreads;

int iend = (id+1) * n / numThreads;

if (id == numThreads-1) iend = n;

for (int i=istart; i<iend; i++)

original_loop_body(i);

Without using OpenMP: loop_body

PERFORMANCE OF
OPENMP VS MANUAL THREADING

3. REDUCTIONS

• A reduction takes a vector (array) and turns it into a scalar (single number)

long sum = 0;

for (long i=0;i<n;++i) {

sum += array[i];

}

Example: summing an array

long sum = 0;

#pragma omp parallel for

for (long i=0;i<n;++i) {

sum += array[i];

}

Naïve use of OpenMP

Problem: many threads

do this, and this

increment is not atomic!

long sum = 0;

#pragma omp parallel for

for (long i=0;i<n;++i) {

__sync_fetch_and_add(&sum, array[i]);

}

How about using fetch&add? Problem: correct, but not

very scalable!

Ideally: want a thread to

maintain a local sum while

processing a batch, and

fetch&add its local sum into

the global sum at the end of

the batch

OPENMP REDUCTIONS

• OpenMP natively supports reductions over numerous operators (+, *, &, |, …)

• Must tell OpenMP which variable will be used to store the reduction

long sum = 0;

#pragma omp parallel for reduction (+:sum)

for (long i=0;i<n;++i) {

sum += array[i];

}

Correct OpenMP reduction

long sum = 0;

for (long i=0;i<n;++i) {

sum += array[i];

}

Example: summing an array

1 thread, time to complete: 4330 ms
48 threads, time to complete: 185ms

4(A). OPENMP SINGLE

• Sometimes you want a single threaded computation

in the middle of your parallel computation

4(B). OPENMP TASK

• Define a task that should be completed by any available thread in a parallel section

• Common design pattern: one thread generates & launches tasks, tasks run in parallel

Spin up n threads to run tasks

Single thread generates tasks

This function call, with this

argument, becomes a task, and is

run in the background (by one of

the n-1 other threads)

This closing brace waits for all

tasks to complete
Can also manually wait for all

tasks, whenever you like, with
#pragma omp taskwait

OMP task tutorial: https://openmp.org/wp-

content/uploads/sc13.tasking.ruud.pdf

TOOLS FOR DEBUGGING AND PERFORMANCE

• Debugging

• GNU Debugger (GDB)

• Segfaults, infinite loops

• Address Sanitizer (ASan)

• Segfaults, memory leaks

• 1~2x slowdown

• Valgrind

• Segfaults, memory leaks,

memory access errors

• many-x slowdown

• Graphviz

• Visualizing pointer based

data structures
23

• Performance

• Linux Perftools (perf)

• Studying cycles, cache misses,

instructions, stalled cycles

• At the whole-application level

• C/C++ Performance API (PAPI)

• Precise information from perf, but

recorded within your program

• VTune Amplifier

• Powerful (and now free!) profiler

• Debugging and optimizing concurrent programs is very hard. Tools can help!

A lot of errors in concurrent programs manifest as

memory access errors! For example, a thread may write

a bad value into a pointer because of a concurrency

bug, and another thread may then read it.

DEBUGGING TOOLS

USING VALGRIND TO FIND
MEMORY ACCESS ERRORS

• Typical first step in debugging any error that isn’t obvious:

• Ensure that valgrind runs without any such errors.

• If there are such errors, fix those first!

$ valgrind --fair-sched=yes ./a1code_segfault/workload_timed.out 4 1000 naive

==107893== Command: ./a1code_segfault/workload_timed.out 4 1000 naive

==107893==

==107893== Use of uninitialised value of size 8

==107893== at 0x510F0D4: std::thread::join() (in /.../x86_64-linux-gnu/libstdc++.so.6.0.22)

==107893== by 0x1092DC: void runExperiment<CounterNaive>(...) (workload_timed.cpp:46)

==107893== by 0x108E3B: main (workload_timed.cpp:70)

==107893==

==107893== Invalid read of size 8

==107893== at 0x510F0D4: std::thread::join() (in /.../x86_64-linux-gnu/libstdc++.so.6.0.22)

==107893== by 0x1092DC: void runExperiment<CounterNaive>(...) (workload_timed.cpp:46)

==107893== by 0x108E3B: main (workload_timed.cpp:70)

==107893== Address 0x190 is not stack'd, malloc'd or (recently) free’d

...

Using Address Sanitizer to check for memory leaks

$ g++ -pthread –g -fsanitize=address -static-libasan -fopenmp -O3 ex2_mmult_threads.cpp

$./a.out 24

matrix created: 0.02s

randomize call finished: 0.10s

...

multiply call finished: 2.82s

===

==76549==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 192 byte(s) in 24 object(s) allocated from:

#0 0x555b294992d8 in operator new(unsigned long) (/home/.../a.out+0xc82d8)

#1 0x555b294dab9e in matrix::multiply(matrix*, int) (/home/.../ex2_mmult_threads.cpp:12)

SUMMARY: AddressSanitizer: 192 byte(s) leaked in 24 allocation(s).

GRAPHVIZ: WHEN YOU JUST NEED TO SEE IT

27

digraph g {
node [
fontsize = "16"
shape = “record"

];
edge [];
"node0" [
label = "<f0> 0x10ba8| <f1>“

];
"node1" [
label = "<f0> 0xf7fc4380|<f1>|<f2>|-1"

];

[...]
"node0":f0 -> "node1":f0 [
id = 0

];

[...]
}

Tip: try to get your toughest bugs to happen in

SMALL data structures, so you can graphviz them

SANITY CHECKING: EXPERIMENT CHECKSUMS

• Important to perform sanity checks wherever you can!

• Helps to catch obvious (and non-obvious) mistakes

• One good sanity check: checksum based validation

• Reduce the data structure to a number (a data structure checksum)

• Reduce each threads’ completed operations to a number (a thread checksum)

• verify that thread checksums “match” the data structure checksum

• (I.e., the work the threads think they’ve done is reflected in the data structure!)

• Creativity needed to come up with good checksum functions

EXAMPLE: SYNTHETIC KCAS BENCHMARK

• n threads repeatedly do the following for 3 seconds

• Pick K uniform random slots in an array

• Read integers stored in those slots

• Do a KCAS to change each of the K slots from the value exp that we read,

to a new value of exp + 1

• Report average throughput (KCAS operations/sec) over all trials

7 11 5 3 9 10 14 8 9 5 9 4 11 13 6 124 11 15 10 10 14

EXAMPLE: CHECKSUM VALIDATION
FOR SUCH A BENCHMARK

• Data structure checksum

• Sum of all array entries

• Each successful KCAS increments k array slots by 1

• Should add k to the data structure checksum

• Thread checksum

• kX where X = # of successful KCAS operations performed by the thread

• Each successful KCAS should add k to the thread checksum

• Validation

• sum(thread checksums) == data structure checksum ?

• (If a KCAS operation is lost, or screws up the array, validation [hopefully] fails)

