MULTICORE PROGRAMMING

Optimizing lock-based KCAS with HTM, OpenMP, debugging/perf

Lecture 16

Trevor Brown

LAST TIME

* Try-locks

* Naive (incorrect) KCAS using these

* Versioned (try-)locks
» KCAS using these

THIS TIME

» Accelerating version-lock-based KCAS with HT'M

* Purpose: to demonstrate accelerating a lock-based algorithm using HTM!

* OpenMP

* Debugging and performance

e Checksums/validation

USING HTM TO ACCELERATE
TRY-LOCK BASED KCAS

« Similar to accelerating the lock-free algorithm (but a bit simpler)

* Goal
« HTM-based KCAS that uses try-lock based KCAS as the fallback path

* Approach

* Fast path algorithm:
 Wrap try-lock based KCAS in a transaction: xstart ; KCAS ; xend
 Now each KCAS on the fast path is atomic, just because it is in a transaction

* Getrid of parts of the algorithm that are unnecessary

ADDING TRANSACTIONS

template <int K>
bool KCAS (addr t ** addr, val t * expv, val t * newv)

Fast path: try- Lot retedes = oo (We use the same
lock based LS ELAtUE version-lock-based

KCAS code retry: KCASRead for both
code paths)

inside a if ((status = xbegin()) == XBEGIN STARTED) ({
transaction bool result = KCAS txn<K>(addr, expv, newv);

enel i KCAS txn is initially
return result;
else { // transaction aborted the Samess KCAS locks,
R aleie kbt . . We will optimize it.
try-lock based 1f (--retries >= () goto retry;
KCAS code bool result = KCAS locks addr, expv, newv);

return result;

Before retrying, should wait a bit...

Maybe we could sneak
it out using an explicit
_xabort() status code?

Idea: if we aborted because a lock But that information was
was held, could we wait until that lost when we aborted...
lock is released?

Could pass an index < 127

into addr[] to _xabort!

TURNING LOCK ACQUISITION INTO READING

1 template <int K>
2 bool KCAS txn(addr t ** addr, val t * expv, val t * newv) ({
3 retry:
4 TryLockSet<K> tls; // auto-unlock when this goes out of scope
' 1=0; i<K; ++1 '
5 fo? (int 1=0;i<K;++1i) { .// try to acquire locks No need to lock!
6 1f (!tls.trylock(addr[1]->addrOfLock())) . .
HTM ensures atomicity.
7 goto retry; // (release locks and) retry
, , , However, we must respect
8 1f (addr[i]->value != expv/[i]) others’ locks
9 return false; // (release locks and) fail . '
This becomes a read.
Lo) But, be careful! Still need to increment
11 for (int 1=0;i<K;++1i) { >] With no locking, we don’t
. . version numbers so fallback path can
12 *addr[i] = newv[i]; need TryLockSet
13 } tell we changed addresses!
! return true; // (release locks and) succeed

15) Wemodify the versioned iydock

implementation to expose the “lock” word...

TURNING RETRIES INTO ABORTS

1 template <int K>

2 bool KCAS txn(addr t ** addr, val t * expv, val t * newv) ({

3 retry:

4

5 for (int i=0;i<K;++i) { No point retrying here,
6 if (addr[i]->addrOfLock ()->lock & 1) since we can only make
7 goto retry; progress if the lock is
8 if (addr[i]->value != expv[i]) released, which will
9 return false; abort us. So, just xabort.
10 J So, no need for the
11 for (int 1=0;i<K;++1) { ‘“yetry:” label anymore.
12 *addr[i] = newv][1];

13 addr[i] ->addrOfLock () ->lock += 2; // update version numbers

14 }

15 return true;

16 }

OPTIMIZED CODE

1 template <int K>

2 bool KCAS txn(addr t ** addr, val t * expv, val t * newv) ({

3

4

5 for (int 1=0;i<K;++1) {

6 if (addr[i]->addrOfLock()->lock & 1)

7 _xabort (i) ; User defined xabort status
8 if (addr[i]->value != expv[1]) code (assuming i < 127)
9 return false;

10 }

11 for (int i=0;i<K;++1i) {

12 *addr[i] = newv|[1i];

13 addr [i1] ->addrOfLock () ->1lock += 2; // update version numbers
14 }

15 return true;

16 }

CLEANED UP THE SPACING/COMMENTS

1 template <int K>

2 bool KCAS txn(addr t ** addr, val t * expv, val t * newv) {

3 for (int i=0;i<K;++1) {

4 if (addr[i]->addrOfLock()->lock & 1) xabort(i); // read locks
5 if (addr[i]->value != expv([i]) return false; // read values
0 }

7 for (int 1=0;i<K;++1) {

8 *addr[i] = newv[i]; // update values

9 addr [1i]->addrOfLock () ->1lock += 2; // update version numbers

10 }

11 return true;

12}

o J o O s W DN -

HF PP PP RRPRRPE O
w Joy Ul WN RO

19

USING OUR NEW XABORT STATUS CODE

template <int K>

bool KCAS (addr t ** addr, val t * expv, val t * newv) {
int retries = 5;
int status;

retry:
1f ((status = xbegin()) == XBEGIN STARTED) ({
bool result = KCAS txn (addr, expv, newv);
xend () ;

return result; If the abort was caused
} else { // transaction aborted
if (status & XABORT EXPLICIT) { :
int idx = _XABORT CODE (status) S Gt the user-provided abort code _

while (add;[idx]—>addrOfLock()—>read() & 1) { /* wait */ }
}

if (-—-retries >= 0) goto retry;
bool result = KCAS locks<K>(addr, expv, newv);
return result;

}

Wait until the returned

index is no longer locked

OPENMP (OPEN MULTI PROCESSING)

A library for fork-join parallelism

Parallel Regions A Nested
Master / ! \ Parallel

Thread region

in red
\equentlal Part/14

OVERVIEW

* Easy to use in your own C/C++ pr01ects “

4 '/ !

* Tons of features; we just look at a couple of 51mp1e tools

.-/‘ o /
- ."5‘ '\«2‘, ’ .
f RSN S,

1. Parallel sections

2. Parallel for loops

3. Reductions

4. OMP Single, OMP Tasks

* Usage:
* #include <omp.h>

* GCC: compile with -fopenmp

1. PARALLEL SECTION

» Shortcut for: spawning n threads, where n = # of logical processors in the system,
having them all execute the same code block, and then joining them

Spawn n
threads

Sequential code Concurrent/parallel code

#include <cstdio> #include <omp.h>

void main () { void main () |{ What is my thread
int id = 0; #fpragma omp parallel ID (in 0..n-1)?
printf (" hello(%d)", 1id); {
printf (" world(%d)\n", id); int id = omp get thread num();

} printf (" hello(%d)", 1id);

printf (" world(%d)\n", id);

n threads
execute this

}
Output:)

“ hello(0) world(0)” Stop n

threads

PARALLEL OUTPUT

hello(ll9{ hello(69) hello(95) hellofl5) hello (68) hello(Bé) heilo(77) hello(61) hel

hello(138) hello(5) world(119)

world (95)

world(15)

hello(67) world(138)

hello(131) hello(27) hello(42) hello(80) world(11l5)
hello(112) hello(78) hello(110) hello(113) world(131)
hello(23) hello(109) hello(26) hello(12) world(110)
hello(16) hello(35) hello(55) hello(13) hello(38) world(16)
hello(45) hello(99) hello(105) world(45)

hello(40) world(40)
hello(4) world(4)
hello (3) world(3)
hello(82) world(82)
hello (1) world(1l)

hello(11)
hello (21)
hello (39)
hello(81)
hello (22)
hello(2)

hello (9)

hello (17)
hello (83)
hello (36)
hello (10)

world(11)
world(21)
world(39)
world(81)
world(22)

world(2)
world(9)

world(17)
world (83)
world(36)
world (10)

WHY IS THIS USEFUL?

Using OpenMP Equivalent code using pthreads
fpragma omp parallel const 1nt n = SomehowGetNumLogicalProcessors() ;
doSomething () ; pthread t *threads = new pthread t[n];

for (int 1i=0;i<n;++1) {

1f (pthread create (&threads[i], NULL, doSomething)) {
std: :cerr<<"ERROR: could not create thread"<<std::endl;

Equivalent code using std::thread

const 1nt n = SomehowGetNumLogicalProcessors|() ;

std: :thread * threads = new std::thread|[n];

Efor (int 1=0;i<n;++1) { {

threads[1] = new std::thread(doSomething) thread"<<std: :endl;

Efor (int i=0;i<n;++i) {
threads[1]—->join () ;
}

1
2
3
4
o}
6
7
8
9 delete|[] threads;

2. PARALLEL FOR

matrix * multiply (matrix * o) {

OpenMP automatically decides
how many threads (n) to spawn

9 matrix * ret = new matrix(h, o->w);

It splits work evenly between the
for (i1nt y=0; y < ret->h; ++y) { n threads (each does approx.

o for (int x=0; x < ret->w; ++x) { T2 jterations of this loop)
Implicit fork) ,
(thread spawning) tor (int k=0; k < w; ++k) {
: ret->dataly] [x] += dataly] [k] * o->datalk] [x]~
}
}
}

18 timer.split (i
19 return ret;

Using OpenMP

#pragma omp parallel for

for (long 1i=0;i<n;++1)
loop body (i) ;

WHY IS THIS USEFUL?

Without using OpenMP: starting threads to run loop body

1
2
3
4
2
&
7
8
9

const int numThreads = GetNumberOfLogicalProcessors|() ;
std: :thread * threads = new std::thread[numThreads];

Efor (int i1i=0;i<numThreads;++1i) {

threads[i] = new std::thread(loop body);

}

Efor (int i=

;i<numThreads;++1) {

threads[i].join () ;

}
delete|]

threads;

Without using OpenMP: loop body
int id = getMyThreadID() ;

int istart = id * n / numThreads;
int iend = (id+1l) * n / numThreads;
if (id == numThreads-1) iend = n;

for (int i=istart; i<iend; i++)
original loop body (i) ;

PERFORMANCE OF
OPENMP VS MANUAL THREADING

seconds needed to muItlpIy VS

number of threads
1.8

1.6
1.4
1.2

0.8
0.6
0.4
0.2

B Threaded
B OpenMP

[T

48

3. REDUCTIONS

» A reduction takes a vector (array) and turns it into a scalar (single number)

Example: summing an array Naive use of OpenMP

long sum = 0; long sum = O; Problem: many threads
for (long i=0;i<n;++i) { #pragma omp parallel for do this, and this
sum += array[i];

for (long i=0;i<n;++1i) increment is not atomic!
} sum += arrayl[i];

}

How about using fetché&add? Problem: correct, but not
very scalable!
long sum = 0;
fpragma omp parallel for
for (long 1=0;1<n;++1) {
__sync fetch and add(&sum, arrayli]):;

}

Ideally: want a thread to

maintain a local sum while
processing a batch, and
fetch&add its local sum into
the global sum at the end of
the batch

OPENMP REDUCTIONS

* OpenMP natively supports reductions over numerous operators (+, *, &, |, ...)

* Must tell OpenMP which variable will be used to store the reduction

Example: summing an array Correct OpenMP reduction

long sum = 0; long sum = 0;

for (long 1i=0;i<n;++1i) { fpragma omp parallel for reduction (+:sum)
sum += arrayl[i]; for (long 1=0;i<n;++1i) {

} sum += array[i];

}

1 thread, time to complete: 4330 ms
48 threads, time to complete: 185ms

4(A). OPENMP SINGLE

* Sometimes you want a single threaded computation
in the middle of your parallel computation

1 fpragma omp parallel
2 B
/ 3 multiThreadedStuffl () ;
by - :
e ér 5 fpragma omp single
o prag omp slingdle
7 singleThreadedStuff () ;
8
9

10 multiThreadedStuff2 () ;
11 '

4(B). OPENMP TASK

* Define a task that should be completed by any available thread in a parallel section

 Common design pattern: one thread generates & launches tasks, tasks run in parallel

1 #pragma omp parallel Spin up n threads to run tasks

2 B

:’ i #{%pr agma omp single Single thread generates tasks

5 B _fc:rr (linked list node n = head; n != NULL; n = n—>next) {
f #Ezgz;igo;ji} _ This function call, with this

- P ' argument, becomes a task, and is

5 run in the background (by one of

10 } the n-1 other threads)

This closing brace waits for all

tasks to complete Can also manually wait for all

tasks, whenever you like, with
#pragma omp taskwait

TOOLS FOR DEBUGGING AND PERFORMANCE

* Debugging and optimizing concurrent programs is very hard. Tools can help!

 Debugging * Performance
 GNU Debugger (GDB) * Linux Perftools (perf)
» Segfaults, infinite loops » Studying cycles, cache misses,
- Address Sanitizer (ASan) instructions, stalled cycles

« At the whole-application level
* C/C++ Performance API (PAPI)

* Precise information from perf, but

* Segfaults, memory leaks

e]1~2x slowdown

e Valgrind
recorded within your program
* Segfaults, memory leaks,

* VTune Amplifier

memory access erxrxors

* many-x slowdown * Powerful (and now free!) profiler

* Graphviz A lot of errors in concurrent programs manifest as

TN A et de el memory access errors! For example, a thread may write

a bad value into a pointer because of a concurrency
bug, and another thread may then read it.

data structures

USING VALGRIND TO FIND
MEMORY ACCESS ERRORS

$ valgrind --fair-sched=yes ./alcode segfault/workload timed.out 4 1000 naive
==107893== Command: ./alcode segfault/workload timed.out 4 1000 naive

==107893=7

==107893=4 Use of uninitialised value of size 8

==107893== at UXDIUFUDZ: std::thread::join() (1in /.../x86 64-lrus—gnu/libstdetstrsob-0.22)
==107893== by 0x1092DC: void runExperiment<CounterNaive>(...) | (workload timed.cpp:46)
==107893== by 0x108E3B: main (workload timed.cpp:70)

==107893==

==107893== Invalid read of size 8

==107893== at 0x510F0D4: std::thread::join() (in /.../x86 64-linux-gnu/libstdc++.s0.6.0.22)
==107893== by 0x1092DC: void runExperiment<CounterNaive>(...) (workload timed.cpp:46)
==107893== by 0x108E3B: main (workload timed.cpp:70)

==107893== Address 0x190 is not stack'd, malloc'd or (recently) free’d

» Typical first step in debugging any error that isn’t obvious:
* Ensure that valgrind runs without any such errors.

« If there are such errors, fix those first!

Using Address Sanitizer to check for memory leaks

$ g++ -pthread|-g -fsanitize=address -static-libasan|-fopenmp -03 ex2 mmult threads.cpp
$./a.out 24
matrix created: 0.02s

randomize call finished: 0.10s

multiply call finished: 2.82s

Direct leak of 192 byte(s) in 24 object(s) allocated from:
#0 0x555b294992d8 in operator new(unsigned long) (/home/.../a.qutilxcl2d8)

#1 0x555b294dab9%e in matrix::multiply(matrix*, int) (/home/...fex2 mmult threads.cpp:12)

SUMMARY : AddressSanitizer: 192 byte(s) leaked in 24 allocation(s).

GRAPHVIZ: WHEN YOU JUST NEED TO SEE IT

digraph g {
node [
fontsize = "16"

Shape = “record" 0x10ba
15 |
edge []; |
"node@"” [

label = "<f0> 0x10baSTT1>“
1;
"nodel" |
label = "<f0> Oxf7fc4380|<fl>|A2>]-1"

15

(...]

"node@":f0 -> "nodel":f0O [
id = ©

[o o o] ¥ Tip: try to get your toughest bugs to happen in
} SMALL data structures, so you can graphviz them

SANITY CHECKING: EXPERIMENT CHECKSUMS

* Important to perform sanity checks wherever you can!

* Helps to catch obvious (and non-obvious) mistakes

* One good sanity check: checksum based validation
* Reduce the data structure to a number (a data structure checksum)
* Reduce each threads’ completed operations to a number (a thread checksum)
» verify that thread checksums “match” the data structure checksum

* (I.e., the work the threads think they’ve done is reflected in the data structure!)

* Creativity needed to come up with good checksum functions

EXAMPLE: SYNTHETIC KCAS BENCHMARK

* n threads repeatedly do the following for 3 seconds
* Pick K uniform random slots in an array
* Read integers stored in those slots
* Do a KCAS to change each of the K slots from the value exp that we read,

to a new value of exp + 1

* Report average throughput (KCAS operations/sec) over all trials

EXAMPLE: CHECKSUM VALIDATION
FOR SUCH A BENCHMARK

« Data structure checksum
« Sum of all array entries

» Each successful KCAS increments k array slots by 1

* Should add k to the data structure checksum
« Thread checksum
kX where X = # of successful KCAS operations performed by the thread
* Each successful KCAS should add k to the thread checksum
« Validation

* sum(thread checksums) == data structure checksum ?

» (If a KCAS operation is lost, or screws up the array, validation [hopefully] fails)

