
MULTICORE PROGRAMMING

Epoch-based memory reclamation and experimental methodology

Lecture 17

Trevor Brown



THIS TIME

• Epoch-based memory reclamation

• (The algorithm itself, as well as a bit more on usage)

• Time permitting:

• A discussion on experimental methodology



LIFECYCLE OF A RECORD (OBJECT)

Unallocated

Uninitialized

In the data 
structure

Retired

Safe to free

AllocateFree

Insert

Remove

Reuse

Safe memory

Reclamation

(such as 

EBR!)



RECLAMATION WITH AND WITHOUT LOCKS

• Easy with locks: correct locking ensures that

no process can access an unlinked record

• Hard without locks: processes must carefully coordinate to avoid 

accessing freed nodes

• Challenge: any record you are about to free

could be pointed to by another process

a b c f

process p



• Definition: a process is quiescent iff

its private memory does not contain any pointers to records in the data structure

• Definition: a grace period is an interval during which

each thread has some time when it is quiescent

(different threads can be quiescent at different times---that is fine)

• Fact: a retired record can be freed after a subsequent grace period

Record b retired

q quiescent p quiescent

Grace period

time

Process p

Process q

Insert(b)

Delete(b)

Insert(a)

Insert(c)

Find(b)Insert(d)

QUIESCENCE AND GRACE PERIODS

Safe to free b

But how to detect 

when there has been 

a grace period since

b was retired?

If we can detect

this, we can know 

it is safe to free b



• Key assumption: threads are quiescent when not executing data structure operations

• The execution is divided into epochs,

and the current epoch number is stored (as a global) in shared memory

• At the start of each data structure operation:

1. read current epoch and announce it (in a global array with one slot per thread)

2. check whether all other threads have announced it

3. if so, increment the current epoch

time

Current epoch 

incremented 

from e-2 to e-1

Current epoch 

incremented 

from e-1 to e

This is a grace period!

USING EPOCHS TO DETECT GRACE PERIODS

Before this time, no thread 

has announced epoch e-1

Each thread must have 

announced e-1 by this time

Therefore, each thread starts a new 

data structure operation and 

announces e-1 at some point 

between these two times!

(And each thread 

is quiescent just 

before it starts 

this data structure 

operation…)

Recall: anything retired before a 

grace period can be freed after it!

How to figure out which 

objects were retired 

before this grace period?



DETERMINING WHICH RECORDS ARE SAFE TO FREE
• Maintain a shared limbo bag for each of the last 3 epochs

• Records retired by thread p are added to the bag for the last epoch announced by p

• So, if p reads epoch 7, then retires a node u, it will place u in the limbo bag for epoch 7

• Note: by the time p retires u, the current epoch might be 8 (but it cannot be 9 or larger… why?)

• When the current epoch changes from e to e+1,

we free all records in the limbo bag for e-2 (lets see why…)

time

Current epoch 

incremented

from e-1 to e

Current epoch 

incremented

from e to e+1

Retired records are added to 

limbo bags for e-1 and e only.

No record is added to 

the limbo bag for e-2

And, this is a grace period!

Can free all records in 

the limbo bag for e-2Every record added to 

the limbo bag for e-2 is 

retired before this!



-1-1 00 11 22

0123

Steps in a 2-thread execution

Current epoch

Announced epochs

thread p thread q

Insert(a)

Insert(b)

Delete(b)

Insert(f)

Delete(f)

Insert(g)

Insert(e)

Insert(c)

Delete(a)

Insert(b)

Insert(d)

0

1

2

0

1

2

EXAMPLE EXECUTION OF THE EBR ALGORITHM

Limbo

bag[0]

Limbo

bag[1]

Limbo

bag[2]

b (0)

a (1)

f (2)

Implicit

current bag

pointer:

epoch%3

Free everything in this bag, 

clear it out, and reuse it…

Insert(g)3

Insert(k) Delete(g) 3

4
g (3)

3 3

Free/clear/

reuse bag…

Bags represent

these epochs:

0

1

2

3

4



IMPLEMENTATION:
DATA TYPES

Sequential implementationSequential implementation

alignas to serve as padding

Threads’ epoch announcements 

represent the epoch they are 

conceptually running in

Limbo bags for the current epoch 

and the previous two epochs

API: let’s see how these 

are implemented Another option instead of 

passing tid to every function

Type T of objects to 

manage/reclaim is templated

Note: freeAll should cause object 

destructors to be called just 

before the objects are freed



IMPLEMENTATION: EASY PARTS

Paranoia: double check that 

alignment really implies data is 

padded the way we think it is

announce[tid] is the epoch we are 

conceptually running in, and this 

modulo 3 is the limbo bag for that 

epoch. We put obj in that bag.

Paranoia: check that 

our tid is a valid one



THE HARD PART (NOT OPTIMIZED)

currEpoch can conceptually 

be “locked” by a thread, who 

temporarily sets it to -1. So, we 

repeatedly read until we see 

an “unlocked” value.

Paranoia: check that 

our tid is a valid one

If we see a new epoch, we 

update our announcement

Check if all threads 

have announced seen

If so, we will try to 

increment currEpoch

and reclaim memory

This involves “locking” 

currEpoch, freeing contents 

of the new current bag, and 

“unlocking” currEpoch to 

the new epoch value



OPTIMIZING
Each thread keeps track of how many 

calls it has ever made to startOp()

We try to advance the epoch 

only after performing 

THRESHOLD operations

Tradeoff: it takes longer 

to reclaim garbage, but we 

amortize the overhead of 

scanning announcements 

over many operations

Caveat: I have not run this 

code, and have not spent time 

tuning THRESHOLD

static: accessible only within the 

function, but preserves its value across 

function calls (“= 0” happens once)



ADDING AN RAII GETGUARD() OPERATION

Note: getGuard() has somewhat 

limited usefulness when there is no 

endOp() operation…

Just showing you 

how to do this RAII 

design pattern…



USAGE EXAMPLE 1: RECALL THE TREIBER STACK



TREIBER STACK WITH MEMORY RECLAMATION



EXAMPLE 2: EXPANDABLE HASH TABLE

1   char padding1[64];

2   atomic<int> * data;

3   atomic<int> * old;

4   int capacity;

5  int oldCapacity;

6   counter * approxIns;

7   counter * approxDel;

8   char padding2[64];

9   atomic<int> chunksClaimed;

10  char padding3[64];

11  atomic<int> chunksDone;

12  char padding4[64];

struct table

1   char padding1[64];

2   atomic<table *> currentTable;

3   char padding2[64];

struct hashmap

Want to reclaim object types:

hashmap, table, counter, atomic<int> array

Suppose we allocate 

new counter objects 

for each table object



EXPANDABLE HASH TABLE WITH MEMORY RECLAMATION

1   char padding1[64];

2   atomic<int> * data;

3   atomic<int> * old;

4   int capacity;

5  int oldCapacity;

6   counter * approxIns;

7   counter * approxDel;

8   char padding2[64];

9   atomic<int> chunksClaimed;

10  char padding3[64];

11  atomic<int> chunksDone;

12  char padding4[64];

struct table

1   char padding1[64];

2   atomic<table *> currentTable;

3   char padding2[64];

4   ebr_manager<table> mgr;

5   char padding3[64];

struct hashmap

If CAS succeeds, then we unlinked t, so 

we have the right to call mgr->retire(t)

Observation: if a table object t is safe to 

free, then no thread will ever access

t->old or t->approxIns or t->approxDel

So those objects can be directly passed to free() 

whenever a table object is freed (carefully do 

this in ~table(), which is invoked by EBR)



OPTIMIZING INTO A “REAL” ALGORITHM
(ONE WORTH IMPLEMENTING)



Distributed

Epoch

Based

Reclamation

Algorithm

Refers not to distributed systems,

but to distributing the limbo bags

across threads…

Note: the memory reclamation 

algorithm you were given in A5 is 

based on DEBRA… 



SIGNIFICANT CHANGE FROM EBR

• Per-thread quiescent bit to allow reclamation to continue

while a process is quiescent

• Useful if some threads finish their work and stop,

or work on something else

• Partial fault tolerance

• Crashing while quiescent does not block reclamation



EASY CHANGE: SCANNING EPOCH 
ANNOUNCEMENTS

• Amortize cost over several operations

• Each operation checks one epoch announcement

(or you could check one announcement per K operations)

• After checking n announcements, where n is the number of threads,

and seeing the announcements are up to date, the epoch can be advanced



EFFICIENT BAGS

• Per-process limbo bags

• Each process rotates its limbo bags whenever its announcement changes

• Per-process free bags and one shared free bag

• When rotating its limbo bags,

a process appends its oldest limbo bag to its own free bag

• Entire blocks moved to/from shared free bag

• More details (and optimizations) in the paper

Brown, T. Reclaiming memory for lock-free data structures. PODC 2015.

• Conference paper

• Extended paper 

• Slides for that talk

https://mc.uwaterloo.ca/pubs/debra/paper.podc15.pdf
https://arxiv.org/pdf/1712.01044.pdf
https://mc.uwaterloo.ca/pubs/debra/slides.podc15.pptx


COMPLEXITY OF DEBRA

• leaveQstate: O(1) steps  called at start of operation

• enterQstate: O(1) steps  called at end of operation

• retire: O(1) steps  called after unlinking a record

• Reclamation operations are wait-free!

• However, this does not mean reclamation is fault tolerant!

• A thread that crashes while non-quiescent can still block reclamation!

• This is addressed in the DEBRA+ algorithm (same paper as DEBRA)

• … and more recently with Ajay Singh and Ali Mashtizadeh in

Neutralization Based Reclamation, PPoPP 2021. [paper] [talk]

https://arxiv.org/pdf/2012.14542.pdf
https://www.youtube.com/watch?v=ShrcKbWkQJU

