
MULTICORE PROGRAMMING

Implementing a counter: what could go wrong?

Lecture 2

Trevor Brown

• Must be possible to choose linearization points during each operation

such that all operations return the same values that they would

if they were executed instantly at their linearization points

• Non-linearizable if it is not possible to pick such linearization points

Inc.→0

Inc.→1

Inc.→2

Time

thread p

thread q

thread r

Inc.→6

Inc.→4

Inc.→5Inc.→3

RECALL: WHAT IT MEANS FOR
AN EXECUTION TO BE LINEARIZABLE

• For every possible execution E of the object

• E must be a linearizable execution

• An object is non-linearizable

• if any execution of the object is non-linearizable

• (i.e., the object can possibly behave “badly”)

RECALL: WHAT IT MEANS FOR
AN OBJECT TO BE LINEARIZABLE

RECALL: THIS EXECUTION OF THE
NAÏVE COUNTER

T
im

e

thread p thread q

Read(c) → 0

Write(c, 1)

Read(c) → 0

Write(c, 1)

Return 0

thread r

Read(c) → 1

Write(c, 2)

Return 1

Read(c) → 2

Write(c, 3)

Return 2

Any changes between

this Read and Write are

overwritten!

IMPLEMENTING A LINEARIZABLE COUNTER

• Intuition: increment must atomically Read and Write (“at the same time”)

• Otherwise a thread can always Write a “stale” value

(overwriting “fresh” values)

• Need stronger tools!

• How about using a lock?

A LOCK / MUTEX

• Guards an object: allows only one thread at a time to access it

• Operations

• Acquire / lock

• Blocks until the calling thread has acquired the lock (then returns)

• (Thread is then allowed to access the object)

• Release / unlock

• Releases the lock so other threads can acquire it

• (Thread is no longer allowed to access the object)

Java: synchronized
C: pthread_spin_lock
C++: std::mutex

LOCK-BASED COUNTER

This is really a read

followed by a write…

Both read and write are done

while holding the lock

How does this help?

CAN THIS PROBLEM HAPPEN NOW?

T
im

e

thread p thread q

Read(c) → 0

Write(c, 1)

Return 0

Read(c) → 0

Write(c, 1)

Return 0

m.lock()

m.unlock()

q: do m.lock()

Blocks until p’s

m.unlock()

Will now

Read & Return 1!

WHERE DO WE LINEARIZE
EACH OPERATION?

Linearize increment at the WRITE

(really, any time when the lock is held

would work)

(… because, from the perspective of other threads,

the counter cannot be accessed while it is locked)

(So, anything that happens

while the counter is locked

is effectively atomic)

Linearize get at the READ of v

Intuition behind why these linearization points work:

to all threads, operations appear to happen instantly at these lines

OUTPUT AFTER ADDING A LOCK

• Same as the previous

“accuracy experiment”

• Comparing final counter value

of naïve and lock-based

• Output is now correct!

• (Of course, this experiment is

not a correctness proof)

• What about performance?

PERFORMANCE COMPARISON

• Simple timed experiment

• Each data point = average of 5 trials

• In each trial, for 3 seconds,

• threads repeatedly perform Increment,

• and we measure increments/second

• What is the overhead of locking?

• 10x slower with 1 thread

• 450x slower with 190 threads

• Is there a better tool than locking?

Hyperthreading

happens here

Machine with 4 physical processors

(each with 24 cores + hyperthreading)

Second physical

processor added

FETCH AND ADD (FAA)

• Instruction implemented modern Intel and AMD systems:

• lock xadd

• FAA(addr, val) does the following atomically (all at once)

• old = Read(addr)

• temp = old + val

• Write(addr, temp)

• Return old

EASY FAA-BASED COUNTER

Because v is atomic<int>,

this is really a FAA!

HOW DOES THIS PERFORM IN PRACTICE?

• Same timed experiment

• Excluding Naïve from the graph

(to zoom in on Lock and FAA)

• Compared to Lock

• FAA is up to 5.4x faster

• Compared to Naïve (incorrect)

• FAA is up to 83x slower

• (much better than Lock’s 450x)

PROBLEM: TOO MUCH CONTENTION

• Accessing a single counter creates a contention bottleneck

• What if we shard (partition) the counter into multiple sub counters

• Increment: pick one sub counter and increment it

• What about Get?

• Counter value is distributed over the sub counters

• Trade-off

• Single counter → slow Increment, fast Get

• Sharded counter → fast Increment, slower/more complex Get?

• We are going to ignore these complications and only think about increment…

NAÏVE SHARDED COUNTER

• Each thread uses its own sub counter

• No data sharing, should scale perfectly

HOW DOES THIS PERFORM?

• Same timed experiment

• Why is the scaling so poor?

• No shared data, right?

• Answer: cache coherence

HOW CACHE COHERENCE WORKS

w1 w2 64 byte (8 word) cache line

Thread 1’s cache Thread 2’s cache

w3 w4 w5 w6 w7 w8

Thread 1 reads w2

w1 w2 w3 w4 w5 w6 w7 w8 S

Thread 2 reads w7

w1 w2 w3 w4 w5 w6 w7 w8 S

Thread 2 writes w7

X

Cache line invalidated and evicted!

MEMORY LAYOUT OF SUB COUNTERS

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] c[8] c[9] c[10] c[11] c[12] c[13] c[14] c[15] …

one cache line one cache line

Incrementing one of these will

invalidate all of them

(causing huge contention)

This is called

false sharing

SOLUTION: PADDING

• Add empty space to each sub counter

• To make it cache line sized

c[0] c[1] …

one cache line one cache line

PADDED SHARDED COUNTER

Identical to naïve

sharded counter

This is where the

magic happens

v v padding …

padded_vint data[0]

~= cache line

paddingdata

padded_vint data[1]

~= cache line

HOW DOES THIS PERFORM?

• Same experiment,

but comparing naïve sharding

with a padded counter

• Pretty good scaling

• 18x vs optimal 24x

• 49x vs optimal 190x

18x single-threaded

49x single-threaded

SPEED VS SIMPLICITY

• But… reading is hard!

• Solving this will add complexity

• Simplicity is valuable!

• Do we need a complex solution?

• Sometimes… but not always…

CONSIDERING USE CASES:
A FAA-COUNTER MIGHT BE GOOD ENOUGH

• FAA-based counter does not truly scale

• But, its absolute throughput might be high enough for your application

• Real applications do more than just

increment a single counter

• Avoid unnecessary optimization

• Figure out if it’s a bottleneck first

33 million

increments/sec!

A WORD OF WARNING: PADDING CAN HURT

0

50

100

150

200

250

300

0 4 8 12 16 20 24 28 32 36 40 44 48

concurrent threads

Original Node padding REMOVED

o
p

e
ra

ti
o

n
s
 p

e
r

m
ic

ro
se

c
o

n
d

• Union-find data structure

• Each 8b node was padded to 64b

• Removing padding → 5x faster!

• Why?

• Many nodes, uniformly accessed

→ contention is rare

→ false sharing is rare

→ padding can’t help much

• Padding wastes space

→ 1/8th as many nodes in cache!

WHEN TO PAD?

• When the number of objects being padded is O(# threads) for a small constant

• AND threads frequently write to these objects

• Try and see if it helps…

Important principle!

SUMMARY

• Cache coherence, shared and exclusive modes, cache invalidations, contention

• Sharding (partitioning data to reduce contention)

• False sharing and padding (principle: when to pad)

• Locks, fetch-and-add

• Implementing linearizable counters

• Lock-based counter

• Fetch-and-add counter

• Sharded counter

• Padded sharded counter

	Slide 1: Multicore programming
	Slide 2: Recall: what it means for an execution to be linearizable
	Slide 3: Recall: what it means for an Object to be linearizable
	Slide 4: Recall: this execution of the naïve counter
	Slide 5: Implementing a linearizable counter
	Slide 6: A Lock / mutex
	Slide 7: Lock-based counter
	Slide 8: Can this problem happen now?
	Slide 9: Where do we linearize each operation?
	Slide 10: Output after adding a lock
	Slide 11: Performance comparison
	Slide 12: Fetch and add (FAA)
	Slide 13: Easy FAA-based counter
	Slide 14: How does this perform in practice?
	Slide 15: Problem: too much contention
	Slide 16: Naïve Sharded counter
	Slide 17: How does this perform?
	Slide 18: How cache coherence works
	Slide 19: Memory layout of sub counters
	Slide 20: Solution: padding
	Slide 21: Padded Sharded counter
	Slide 22: How does this perform?
	Slide 23: Speed vs simplicity
	Slide 24: Considering use cases: a FAA-counter might be good enough
	Slide 25: A word of warning: padding can hurt
	Slide 26: When to pad?
	Slide 27: Summary

