MULTICORE PROGRAMMING

Implementing a counter: what could go wrong?

Lecture 2

Trevor Brown

RECALL: WHAT IT MEANS FOR
AN EXECUTION TO BE LINEARIZABLE

* Must be possible to choose linearization points during each operation

such that all operations return the same values that they would
if they were executed instantly at their linearization points

0

Time

thread g

thread r

* Non-linearizable if it is not possible to pick such linearization points

RECALL: WHAT IT MEANS FOR
AN OBJECT TO BE LINEARIZABLE

* For every possible execution E of the object

* F must be a linearizable execution

* An object is non-linearizable

* if any execution of the object is non-linearizable

* (i.e., the object can possibly behave “badly”)

RECALL: THIS EXECUTION OF THE
NAIVE COUNTER

thread p thread g thread r
Read(c) 2 0O
Read(c) 2 0
Write(c, 1)
Return O
Read(c) 2> 1
Write(c, 2)
~ Return 1
Any changes between 5‘?6}?((’) g 2
this Read and Write are rite(c, 3)
. Return 2
overwritten!
Write(c, 1
. (c,1)
B \ 4
)

IMPLEMENTING A LINEARIZABLE COUNTER

 Intuition: increment must atomically Read and Write (“at the same time”)
* Otherwise a thread can always Write a “stale” value
(overwriting “fresh” values)
* Need stronger tools!

* How about using a lock?

A LOCK / MUTEX

* Guards an object: allows only one thread at a time to access it

* Operations
* Acquire / lock

* Blocks until the calling thread has acquired the lock (then returns)

* (Thread is then allowed to access the object)
Java: synchronized

 Release / unlock C: pthread_spin_lock

C++: std::mutex

* Releases the lock so other threads can acquire it

* (Thread is no longer allowed to access the object)

(@)

W

W
o0 =]

W

e

W

o

(@9)

e

Un

U1

+_\

Ul
DN

U
D

n

>

class counter?2 {

private: LOCK-BASED COUNTER

std: :mutex m;

int v;
public:
counter2 () { v = 0; }

int increment (int threadID) {
m.lock () ;
auto ret = v++;

This is really a read
followed by a write...

m.unlock () : How does this help’P

return ret;

Both read and write are done

int get() { while holding the lock

m.lock () ;

auto ret = v;

m.unlock () ;

return ret;

CAN THIS PROBLEM HAPPEN NOW?

thread p thread q

m g~ Read©>0 [

Read(c) 2 0 q: do m.lock()

Write(c, 1)

Return O Blocks until p’s

m.unlock()
BN oo |
ROMEALY Will now
Read & Return 1!

OWIIL],«

(@)

w W

J

B W W
O (@8]

—~
C)

S

),_\

-~

e
N

[S

~

= (9]

(S W

e
oY Ul

—~
C)

(@) Un -

),_\

DN

o1 U1 U

I [\\ (,_\!

class counter?2 {

St WHERE DO WE LINEARIZE
std: :mutex m; EACH OPERATION?

int v;

bl Intuition behind why these linearization points work:
public:

to all threads, operations appear to happen instantly at these lines

counter?2 ()
int increment (int threadID) {

m.lock () ;) o (So, anything that happens

Linearize 1pcrement at the WRITE while the counter is locked
auto ret = v++ (really, any time when the lock is held is effectively atomic)
m.unlock () ; would work)

return ret;

}
int get() f (... because, from the perspective of other threads,
’ the counter cannot be accessed while it is locked)
m.lock () ;
auto ret = v;
m.unlock () ; Linearize get at the READ of v
return ret;
}

OUTPUT AFTER ADDING A LOCK

Same as the previous B Naive B Lock
‘“accuracy experiment”

(Y
o

* Comparing final counter value

of naive and lock-based

Output is now correct!

(Of course, this experiment is

not a correctness proof)

What about performance?

1 2 4 8
number of threads

Final counter value (billions)
o

16

PERFORMANCE COMPARISON

3 ¥ : Machine with 4 physical processors
% Slmple timed experiment (each with 24 cores + hyperthreading)

* Each data point = average of 5 trials 4
— Naive —e—Lock
wn
* In each trial, for 3 seconds, G 37
R
* threads repeatedly perform Increment, <o -
* and we measure increments/second § '2
S~
A ; -
 What is the overhead of locking? e 15 .
Q . .
. : e 1 Hyperthreading Second physical
10x slower with 1 thread S . So——— processor added
[J 1 u ;
450x slower with 190 threads £ 5 | |
* Is there a better tool than locking? 0 48 96 144 192

number of threads

FETCH AND ADD (FAA)

 Instruction implemented modern Intel and AMD systems:

e Jock xadd

 FAA(addr, val) does the following atomically (all at once)
* old = Read(addr)
* temp = old + val
* Write(addr, temp)

e Return old

577
58
59
60
61
62
63
64
65
66
67
68

EASY FAA-BASED COUNTER

class counter3 {

pr]

vate:

atomic<int> v;

public:

counter3 () : v(atomic<int>(0)) ({}

int increment (int threadID) {
return v++;

int get () { Because v is atomic<int>,

return v;

this is really a FAA!

mov DWORD PTR [rsp-4], ©
mov , 1
lock xadd DWORD PTR [-4],

ret

HOW DOES THIS PERFORM IN PRACTICE?

e Same timed experiment

* Excluding Naive from the graph
(to zoom in on Lock and FAA)

 Compared to Lock
« FAA is up to 5.4x faster

 Compared to Naive (incorrect)

 FAA is up to 83x slower
* (much better than Lock’s 450x)

0.25

©
N

o
(Y
on

©
=

0.05

increments/sec (billions)

o

—o—Lock —o—FAA
——..— ._
. 4 . i j
48 96 144 192

number of threads

PROBLEM: TOO MUCH CONTENTION

* Accessing a single counter creates a contention bottleneck

« What if we shard (partition) the counter into multiple sub counters
* Increment: pick one sub counter and increment it
 What about Get?
» Counter value is distributed over the sub counters
* Trade-off
» Single counter - slow Increment, fast Get

» Sharded counter - fast Increment, slower/more complex Get?

 We are going to ignore these complications and only think about increment...

73| | class counterd {
74| private:

15
16
17
18
19
80
81
82
83
84
85
86
87
88
89
90

atomic<int> data[MAX THREADS]; * Eachthread uses its own sub counter

public: * No data sharing, should scale perfectly

counterd () {

for (int threadID=0; threadID<MAX THREADS; ++threadID)

new (&data[threadID]) atomic<int>(0);

}
int increment (int threadID) {

return data[threadID]++; // atomic
}
int get() {

int sum = 0;

for (int threadID=0; threadID<MAX THREADS; ++threadID)
sum += data[threadID];
return sum;

NAIVE SHARDED COUNTER

HOW DOES THIS PERFORM?

* Same timed experiment

 Why is the scaling so poor?
* No shared data, right?

« Answer: cache coherence

0.25

=
= =
U)

increments/sec (billions)
o
i

—o—Lock —e—FAA —e—Sharded

48 96 144

number of threads

192

HOW CACHE COHERENCE WORKS

Thread 1’s cache Thread 2’s cache

W, W, W3 W, Wy Wg; W; Wg

Thread 1 reads w, Thread 2 reads wy

Cache line invalidated and evicted! Thread 2 writes w,

64 byte (8 word) cache line

MEMORY LAYOUT OF SUB COUNTERS

P 0 0 D S -
\ A)
| |

one cache line one cache line

This 1s called
false sharing

Incrementing one of these will
invalidate all of them
(causing huge contention)

SOLUTION: PADDING

 Add empty space to each sub counter

* To make it cache line sized

| |

one cache line one cache line

93| class counterd { Msmnn COUNTER

94| private:
95 struct padded vint {
96 atomic<int> v; sevpp— -~
. . . . is is where the
97 char padding[64-sizeof (atomic<int>)]; magic happens
98 }:
Sie padded vint data[MAX THREADS];
100| | public:
101 counter5() {...4 lines }
105 int increment (int threadID) {. Id:ntcilcaclll to nat’:ive
108 int get() {...6 lines } e
114] }; i :
datal01-V datal0) paddine datafl) jpaddind
data padding padding nnn
\ A J
T gy
padded_vint data[0] padded_vint data[1]

~= cache line ~= cache line

HOW DOES THIS PERFORM?

12 Naive —e—Lock ——FAA
. 9 —e—Sharded —e—Padded
Same experiment, E 10 /|
but comparing naive sharding E o)
with a padded counter o /
: L 6 7
* Pretty good scaling n /
c 4
« 18x vs optimal 24x E /T | | |
* 49x vs optimal 190x g 2
£ 0
0 48 96 144 192

number of threads

SPEED VS SIMPLICITY

12 Naive —e—Lock ——FAA
* But... reading is hard! —e—Sharded —e—Padded
10
» Solving this will add complexity /
8 e

* Simplicity is valuable!

6 //
4 /
2 = \7/%

0 438 96 144 192

number of threads

Do we need a complex solution?

* Sometimes... but not always...

increments/sec (billions)

CONSIDERING USE CASES:
A FAA-COUNTER MIGHT BE GOOD ENOUGH

« FAA-based counter does not truly scale

* But, its absolute throughput might be high enough for your application

* Real applications do more than just
increment a single counter

» Avoid unnecessary optimization

* Figure out if it’s a bottleneck first

0.25

:
l—l
o

increments/sec (billions)
—
[

—o—Lock -o—FAA

—

\

Ne==:

1

0

48 96 144 192
number of threads

A WORD OF WARNING: PADDING CAN HURT

* Union-find data structure

 Each 8b node was padded to 64b
 Removing padding - 5x faster!
* Why?

 Many nodes, uniformly accessed
—> contention is rare
—> false sharing is rare
- padding can’t help much

* Padding wastes space
- 1/8™ as many nodes in cache!

O
o
o
(&)
Q
n
(o]
P

=
=
—
o
Q,
n
o
o

=
©
O
Q

300

«#*Original =#=Node padding REMOVED

250

200

150

100

50

O 2

O 4 8 12 16 20 24 28 32 36 40 44 48

concurrent threads

Important principle!

WHEN TO PAD?

« When the number of objects being padded is O(# threads) for a small constant

 AND threads frequently write to these objects

* Try and see if it helps...

SUMMARY

Cache coherence, shared and exclusive modes, cache invalidations, contention

Sharding (partitioning data to reduce contention)
False sharing and padding (principle: when to pad)
Locks, fetch-and-add

Implementing linearizable counters
* Lock-based counter
* Fetch-and-add counter
« Sharded counter

e Padded sharded counter

	Slide 1: Multicore programming
	Slide 2: Recall: what it means for an execution to be linearizable
	Slide 3: Recall: what it means for an Object to be linearizable
	Slide 4: Recall: this execution of the naïve counter
	Slide 5: Implementing a linearizable counter
	Slide 6: A Lock / mutex
	Slide 7: Lock-based counter
	Slide 8: Can this problem happen now?
	Slide 9: Where do we linearize each operation?
	Slide 10: Output after adding a lock
	Slide 11: Performance comparison
	Slide 12: Fetch and add (FAA)
	Slide 13: Easy FAA-based counter
	Slide 14: How does this perform in practice?
	Slide 15: Problem: too much contention
	Slide 16: Naïve Sharded counter
	Slide 17: How does this perform?
	Slide 18: How cache coherence works
	Slide 19: Memory layout of sub counters
	Slide 20: Solution: padding
	Slide 21: Padded Sharded counter
	Slide 22: How does this perform?
	Slide 23: Speed vs simplicity
	Slide 24: Considering use cases: a FAA-counter might be good enough
	Slide 25: A word of warning: padding can hurt
	Slide 26: When to pad?
	Slide 27: Summary

