
MULTICORE PROGRAMMING

(Dis)ordered data structures

Lecture 3

Trevor Brown



ANNOUNCEMENTS

• Reminder: A1 due soon

• A2 to be released soon!



MODELING PERFORMANCE
ON A REAL SYSTEM

• Processor caches largely determine performance

• Last-level cache is most important

• (Memory is 10-100x slower)

• Cache lines accessed by only one thread

• Cheap to access (even exclusive mode creates no contention)

• Read-only cache lines accessed by many threads

• Cheap to access (shared mode allows concurrency)

• Cache lines accessed by many threads and often modified

• Expensive to access (exclusive mode blocks other threads)

• Possibly susceptible to false sharing



RECALL: PADDED SHARDED
COUNTER PERFORMANCE

• Timed experiment

comparing naïve sharding

with a padded counter

• Pretty good scaling

Can we make 

this even faster?



ENTERING THE DANGER ZONE

To learn about instruction reordering and weak memory models…



Because this is 

atomic<int>…

This is a FAA

instruction!

But each thread only modifies its 

own sub counter!

So, FAA is not needed for 

increments to be atomic relative 

to other increments!
(We aren’t worrying about get 

operations for now…)



ATTEMPT 1: BREAK ++ INTO LOAD & STORE

Result: 10x slowdown! Why?

No FAA (“lock xadd”), but there is an 

mfence added by the compiler…

What is this?

Guesses re: change 

in performance?



• When you write code, are the lines of code executed in the order you write them?

• Compiler can reorder your code!

(as long as doing so wouldn’t break sequential code)

• Processor can also reorder your code 

• On modern Intel and AMD, the only permitted reordering is taking

a read that is after a write, and moving it so it is now before the write

• This is called “read before write” reordering (and it helps hide cache miss latency)

• Both compiler and processor reordering are prevented by using C++ atomics as shown

INSTRUCTION REORDERING

Not a concern if you always lock objects before accessing them –

locks are specifically designed prevent reordering!

(In this case, no need to use atomic types for fields protected by locks!)

Before atomics, we used explicit 

mfence instructions to prevent this 
(__sync_synchronize in GCC)



ATTEMPT 1: BREAK ++ INTO LOAD & STORE

Result: 10x slowdown! Why?

mfence is added by the compiler to 

guarantee sequential consistency

This prevents the CPU from reordering 

instructions, but is very costly

Note: FAA also functions like an mfence on x86/64

(Conjecture: CPU “combines” FAAs, unlike mfences)

Can we remove the mfence? Is it correct to do so?



ATTEMPT 2: EXPLICITLY ALLOW REORDERING

10

Unreasonably deep insight: we don’t actually 

care about instructions being reordered here

Use atomic::load() and 

atomic::store() with argument 

memory_order_relaxed

This tells the compiler we don’t need 

or want an mfence there



GOING 

Takeaways: (1) fetch&add is much faster than a write followed by an mfence.

(2) mfence is so slow that it’s almost certainly faster to use an atomic exchange 

instruction (also called XCHG or SWAP) on x86/64 instead of a write+mfence.



HOW *COULD* YOU USE C++ ATOMICS

• atomic<int> x offers functions:

• int r = x.load(memory_order)

• x.store(new_value, memory_order)

• memory_order has default value of memory_order_seq_cst

• If all accesses to shared variables use this, you get

sequential consistency (as if there is no reordering)

• Other possible arguments:

• memory_order_acquire and memory_order_release (used together)

• If a thread p “acquires” data that another thread q “released”,

then p also sees the effects of anything else q did before releasing the data (difficult…)

• memory_order_consume (poorly defined, probably deprecated, ignore!)

• memory_order_relaxed (all reordering allowed!)



HOW *SHOULD* YOU USE C++ ATOMICS?

• Prevent all reordering by using the default memory_order_seq_cst

• C++14 specification 29.3, note 8:

• “memory_order_seq_cst ensures sequential consistency only for a 

program that is free of data races and uses exclusively

memory_order_seq_cst operations. Any use of weaker ordering 

will invalidate this guarantee unless extreme care is used.”

• When the spec. says “extreme care,” you should be terrified





ANOTHER APPROACH: APPROXIMATE OBJECTS

• Sometimes approximate results are enough for some applications!

• Example: if a counter is used to decide when to expand a hash table

(just to improve performance --- no impact on hash table’s correctness)

• Could imagine an approximate counter ADT

• Parameterized by an error constant c

• Abstract state is an integer, initially zero

• Operations

• Increment: increases the abstract state by 1

• ExactGet: returns the abstract state

• Get: returns a value that is within ±cn of the abstract state,

where n is the number of threads that access the counter

Just in case you want an 

exact answer

For typical use



AN APPROXIMATE COUNTER IMPLEMENTATION

• Global data: atomic<int64_t> globalCount

• Per-thread data: int64_t localCount

• Increment:

• increments the thread’s own private localCount

• after the thread has done c ⋅ 𝑛 increments,

it does Fetch&Add(&globalCount, localCount)

then sets its private localCount to 0

• How far off can globalCount be from the true value?

• 𝐸𝑟𝑟𝑜𝑟 = 𝑐 ⋅ 𝑛2

• Insignificant once counter value is large

• (For c=10, 100 threads, error is 100k.

After just 10M increments, this is 1% error)

Reduces contention on size

vs F&A every time

How fast is this approach?

You’ll see in A2!



NEXT TOPIC

(Dis)ordered data structures



STACK OBJECT

• Operations

• Push(key)

• Pushes a key onto the stack

• Pop()

• Returns the last key pushed onto the stack, if the stack is not empty

• Otherwise, returns null



NAÏVE STACK IN C++

struct node {

const int key;

atomic<node *> next;

node(int _key, node * _next)

: key(_key), next(_next) {}

};

struct stack {

atomic<node *> top;

stack() : top(NULL) {}

void push(int key);

int pop();

};

Data types

void stack::push(int key) {

node * n = new node(key, top);

top = n;

}

int stack::pop() {

node * n = top;

if (n == NULL) return EMPTY;

top = n->next;

return n->key;

}

Operations

Pop() leaks memory… 

more on this later…



EXAMPLE EXECUTION

• Push(17)

• Read top

• Create node

• Change top

• Push(52)

• Push(24)

• Pop()

• Read top and see node(24)

• Change top to node(52) and return 24

top

17

next

52

next

24

next



WHAT CAN GO WRONG?

top

17

next

52

next

24

next

Time

thread p

thread q

Push(17)

Push(52)

Push(24)

Read top,

see node(17)

Read top,

see node(17)

Create 

node

Create 

node

Change 

top

Change 

top

This item is lost!



ANOTHER EXAMPLE

top

17

next

52

next

Time

thread p

thread q

Push(17)

Pop()

Pop()

Read top,

see node(52)

Change top 

to node(17)

Return 

52

Push(52)

Read top->next, 

see node(17)

Read top,

see node(52)

Change top 

to node(17)

Return 

52

Read top->next, 

see node(17)



WHAT’S THE PROBLEM HERE?

• Algorithmic step 1: read the value(s) that determine what we will write

• Algorithmic step 2: perform the Write

• Anything that happens in between is ignored / overwritten!

• Reads and writes are not enough



A MORE POWERFUL PRIMITIVE

• Compare-and-swap (CAS)

• Atomic instruction implemented in most modern architectures

(even mobile/embedded)

• Idea: a write that succeeds only if a location contains an “expected” value exp

• Semantics

CAS(addr, exp, new)

if (*addr == exp) {

*addr = new;

return true;

}

return false;

Implemented atomically

in hardware



CAS-BASED STACK [TREIBER86]

node * n = new node(key);

while (true) {

node * curr = top;

n->next = curr;

if (CAS(&top, curr, n)) return;

}

void stack::push(int key)

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

return curr->key;

}

}

int stack::pop()

Change top from curr to n Change top from curr to curr->next



HOW DOES THIS AVOID ERRORS?

top

17

next

52

next

24

next

Time

thread p

thread q

Push(17)

Push(52)

Push(24)

currp = Read(top)

currq = Read(top)
nq = new 

node(52)

np = new 

node(24)

CAS(&top, currq, nq)

CAS(&top, currp, np) - fails

nq

np

currp

currq

Thread p will reread 

top and try again



WHAT ABOUT FREEING MEMORY?

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

free(curr);

auto retval = curr->key;

return retval;

}

}

int stack::pop()

We disconnected a node from the stack!

Why not call free() on it?

We are not locking before accessing nodes…

Multiple threads might be accessing curr!



PROBLEMS FREEING MEMORY

top

17

next

52

next

Time

thread p

thread q

Push(17)

Pop()

Pop()Push(52)

nextp = Read(currp->next), 

Accessing freed memory!

CAS(&top, currq, nextq)nextq =

Read(currq->next)
free(currq)

next

currp = Read(top)

currp

currq = Read(top)

currq

nextq



USING FREE CORRECTLY

• Must delay free(curr) until it is safe!

• When is it safe?

• When no other thread has a pointer to curr

• There are memory reclamation algorithms designed to solve this

• Hazard pointers, epoch-based reclamation, garbage collection (Java, C#)

• Usually provide a delayedFree operation

(plus some other operations)

• We won’t worry about memory reclamation for now…

Will see how to use such an 

algorithm in an assignment



WHAT DOES THE STACK GUARANTEE?

• Correctness (safety): Linearizable

• Every concurrent execution is equivalent to some valid execution of a sequential stack

• (as long as we don’t screw up memory reclamation)



WHAT DOES THE STACK GUARANTEE?

• Progress (liveness): Lock-free

• Some thread will always make progress,

even if some threads can crash

• A crashed thread stops taking steps forever

• Crashed threads are indistinguishable from very slow threads

(because threads can be unboundedly slow)

• Allows some threads to starve

• But not all threads will starve

• Algorithms are usually designed so starvation is rare in practice



REASONING ABOUT PROGRESS

• What can prevent progress in the stack?

• Unbounded while loops

• When do we break out of a loop?

• When we do a successful CAS

• What can prevent a successful CAS?

• A concurrent successful CAS

by another thread p

node * n = new node(key);

while (true) {

node * curr = top;

n->next = curr;

if (CAS(&top, curr, n)) return;

}

void stack::push(int key)

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

return curr->key;

}

}

int stack::pop()



MECHANICS OF PROVING PROGRESS

• Proof by contradiction

• Assume threads keep taking steps forever, but progress stops

• After some time t, no operation terminates, so everyone is stuck in a while loop

• To continue in their while loops,

threads must continue to perform failed CASs forever after t

• Every failed CAS is concurrent with a successful CAS,

which is performed by an operation that will not perform any more loop iterations

• Eventually, no running operation will perform loop iterations → contradiction!



RECAP

• Finishing up last class

• Predicting performance on multicore machines revolves largely around the caches

• Instruction reordering

• C++ atomics: relaxed memory orders --- fast but dangerous

• Memory fences

• Important definition: lock-freedom

• Lock-free stack (implementation and progress proof sketch)


	Slide 1: Multicore programming
	Slide 2: Announcements
	Slide 3: modeling performance on a real system
	Slide 4: Recall: Padded sharded counter performance
	Slide 5: Entering the Danger Zone
	Slide 6
	Slide 7: Attempt 1: Break ++ into load & store
	Slide 8
	Slide 9: Attempt 1: Break ++ into load & store
	Slide 10: Attempt 2: Explicitly allow reordering
	Slide 11: Going 
	Slide 12: How *could* you use C++ Atomics
	Slide 13: How *should* you use C++ atomics?
	Slide 14
	Slide 15: Another approach: approximate objects
	Slide 16: An approximate counter implementation
	Slide 17: Next topic
	Slide 18: Stack object
	Slide 19: Naïve stack in C++
	Slide 20: Example execution
	Slide 21: What can go wrong?
	Slide 22: Another example
	Slide 23: What’s the problem here?
	Slide 24: A more powerful primitive
	Slide 25: CAS-based stack [Treiber86]
	Slide 26: How does this avoid errors?
	Slide 27: What about freeing memory?
	Slide 28: Problems freeing memory
	Slide 29: Using free correctly
	Slide 30: What does the stack guarantee?
	Slide 31: What does the stack guarantee?
	Slide 32: Reasoning about progress
	Slide 33: Mechanics of proving progress
	Slide 34: Recap

