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ANNOUNCEMENTS

• A2 should be released shortly, with a fairly short deadline

• If a non-trivial fraction of the class needs more time, we can extend this

• (But, we can only do this a couple of times, and A4 will likely need this)



LAST TIME

• We described a stack

• We argued that it offers lock-free progress

• We did not prove linearizability…

• Let’s do that now!

• This is the main proof in this course (AC/HS crosslisting)

• Hopefully explanation is helpful for A2!



TYPICAL STRATEGY FOR LIN. PROOFS

1. Choose linearization points (LPs) for all operations

• A linearization point is usually a read, write or CAS (a step)

• Note: can pick different linearization points for,

e.g., different push()es, or different pop()s

2. Prove: for each concurrent execution E,

the chosen LPs induce an equivalent linearized (sequential) execution L

• Recall: equivalent means

all operations in L return the same values as their corresponding operations in E



OTHER (IMPORTANT) PROOF POSSIBILITIES

In some algorithms, it is not possible to choose an explicit step

where an operation should be linearized

• In such algorithms, we prove:

• for each concurrent execution E,

there exist LPs that induce an equivalent linearized execution L

• These LPs are usually configurations (i.e., points in time) rather than steps

• In practice, even if we cannot explicitly choose a line of code (step) as an LP,

we can often argue there exists some time during O

when the value O returned would have been the correct thing to return

• (And we can thus linearize at that time)

• Advice: try explicit LPs first, and fall back to this if you can’t find LPs that “work out”



CHOOSING LINEARIZATION POINTS FOR OUR STACK

• Creativity is needed! Iterative process.

• My own thought process…

• Consider operations that update the stack

• A push, or a pop that does not return EMPTY

• Heuristic question for updates: can you 

identify a step that makes it possible for other 

threads to “see” the effects of this operation?

• Hypothesize a fixed linearization point 𝑳𝑷

• Consider operations that query the stack

(A pop that returns EMPTY)

• Heuristic question for queries: can you 

identify a critical step at which the pop 

becomes aware of another operation’s effects?

• Either (a) hypothesize a fixed 𝑳𝑷
or (b) argue that one must exist

node * n = new node(key);

while (true) {

node * curr = top;

n->next = curr;

if (CAS(&top, curr, n)) return;

}

void stack::push(int key)

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

return curr->key;

}

}

int stack::pop()



• Brainstorm a 2-thread concurrent execution E

(you make it up, goal is to create opportunities to expose bugs)

• Pick two concurrent operations O and O’, and

consider different possible thread schedules/interleavings of their steps

• Can you find an execution wherein either operation returns an incorrect value?

• (If there is any execution where it returns an incorrect value, then chosen LPs are wrong!)

SANITY CHECKING YOUR HYPOTHESIZED LPS

Time

thread p

thread q

Push(17)

Pop

PopPush(5)

Popcreativity Interactions between more than 

two threads / operations are also 

interesting. But this is a good start.



• Let’s try to see how sanity checks can catch an 

incorrect LP: the return statement in push

• Creativity: brainstorm a sample execution E,

with concurrent operations O and O’

(one of which should be a push, to test our LP)

• It helps to pay special attention to LPs, and steps 

that change the return values of other operations.

• What value should Pop() return in this execution,

to be consistent with the stack ADT?

• Creativity: consider different thread schedules…

• Eventually, we might try scheduling the successful 

CAS of O before the start of O’

• What will O’ actually return? (See code)

• O’ will return 5 instead of EMPTY.

• This disagrees with the ADT! So LP is wrong!

Time

thread p

thread q O: Push(5)E

O’: Pop

Successful 

CAS
𝑳𝑷

node * n = new node(key);

while (true) {

node * curr = top;

n->next = curr;

if (CAS(&top, curr, n)) return;

}

void stack::push(int key)

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

return curr->key;

} }

int stack::pop()



• Let’s see another example of an incorrect LP:

the last read of top in push

• Heuristic question:

can anyone else *see* our push yet?

• Obtain sample execution via *creativity*

• What value should Pop() return in this 

execution, to be consistent with the stack ADT?

• O’ must be linearized between its own start and 

end, so it must be after O. So, it must return 5!

• After some *creativity* we try scheduling

the LP of O before O’

and the successful CAS of O after O’

• What will O’ actually return?

• O’ will return EMPTY instead of 5.

• This disagrees with the ADT! So LP is wrong!

Time

thread p

thread q O: Push(5)E

O’: Pop

Successful 

CAS
𝑳𝑷

node * n = new node(key);

while (true) {

node * curr = top;

n->next = curr;

if (CAS(&top, curr, n)) return;

}

void stack::push(int key)

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

return curr->key;

} }

int stack::pop()



Correct LP: a successful CAS in push

• Heuristic questions:

• can anyone else see our push before the CAS?

• how about after?

• Creativity: try out various executions…

• Execution E1:

• What value should Pop() return in this execution, to 

be consistent with the stack ADT?

• What will O’ actually return?

• O’ will return 5, as it should.

• Execution E2:

• What should/will O’ return?

• EMPTY, as it should.

• No amount of examples will

reveal a bug…

Time

thread p

thread q O: Push(5)E1

O’: Pop

𝑳𝑷

node * n = new node(key);

while (true) {

node * curr = top;

n->next = curr;

if (CAS(&top, curr, n)) return;

}

void stack::push(int key)

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

return curr->key;

} }

int stack::pop()

IS a successful 

CAS
Time

thread p

thread q O: Push(5)E2

O’: Pop

𝑳𝑷



Let’s choose an LP for pop

• How about a successful CAS?

• Can only linearize there if there *is* one…

• If Pop returns EMPTY, there is no such CAS 

to linearize at!

• (Similarly if a pop crashes before 

performing such a CAS)

• We linearize pop operations that

change the stack

differently from pop operations that only

query the stack

node * n = new node(key);

while (true) {

node * curr = top;

n->next = curr;

if (CAS(&top, curr, n)) return;

}

void stack::push(int key)

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

return curr->key;

} }

int stack::pop()



Case 1: pop performs a successful CAS

• Heuristic question for updates:

Which step makes the effect of this pop 

visible to other threads?

• Answer: the successful CAS

• Before the CAS, the value is not yet 

popped---other threads can still see it.

• After the CAS, they cannot.

• So we linearize at the successful CAS

node * n = new node(key);

while (true) {

node * curr = top;

n->next = curr;

if (CAS(&top, curr, n)) return;

}

void stack::push(int key)

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

return curr->key;

} }

int stack::pop()



Case 2: pop returns EMPTY

• Heuristic question for queries

• Can you identify a critical step S where the pop 

becomes aware of the effects of other update 

operations?

• Probing questions for identifying S

• Can we change the return value of the pop by 

scheduling a new update operation just before S?

• Are update operations after S essentially ignored by 

the pop?

• Answer: the last read of top

• Suppose the stack is empty when we read top

• Then we will return EMPTY (ignoring any updates 

that occur after we read top).

• If an update operation changes top just before we 

read it, we will no longer return EMPTY

• So, we linearize at the last read of top

node * n = new node(key);

while (true) {

node * curr = top;

n->next = curr;

if (CAS(&top, curr, n)) return;

}

void stack::push(int key)

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

return curr->key;

} }

int stack::pop()

Note: we have given linearization points 

for pop()s that perform a successful CAS, 

or return EMPTY.

What about pop()s that crash

(without performing a successful CAS)?Exercise: show that it is wrong to choose 

the last read of top as the LP in Case 1.



SUMMARIZING SO FAR

• Plausible linearization points

• Push: the successful CAS

• Pop:

• The successful CAS if there is one

• Otherwise, the last read of top

• That argument was not a linearizability

proof! It was a heuristic for choosing LPs.

• Need to prove: with this choice of LPs,

every stack execution is linearizable.

• How do we prove this?

node * n = new node(key);

while (true) {

node * curr = top;

n->next = curr;

if (CAS(&top, curr, n)) return;

}

void stack::push(int key)

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

return curr->key;

}

}

int stack::pop()



PROOF MECHANICS

• Let E be any concurrent execution

• Let L be the linearized execution induced by the LPs in E

• In the example, the steps of L are the invocations and responses of: Push(17), Push(52), Pop, Pop, Pop

• Let O1, O2, …, Ok be the operations in order of their LPs

• Let 𝑉1, 𝑉2, … , 𝑉𝑘 be their return values in L, as defined by the sequential ADT

• In the example: NIL, NIL, 52, 17, EMPTY.     (values derived directly the definition of a stack)

• Let 𝑉1
𝐸 , 𝑉2

𝐸 , … , 𝑉𝑘
𝐸 be the corresponding return values in E (must match 𝑉𝒊 to get linearizability)

Time

thread p

thread q

Push(17)

Pop → 52

Pop → 17Push(52)For example, execution E might 

be something like this (but you,

as the theorem prover,

would not know what E looks like)

LP: last CAS LP: last CAS

Pop → EMPTY

LP: last CAS

LP: last CAS

LP: last 

READ of top

O1 O2

O3

O4

O5

= 𝑽𝟒
𝑬

= 𝑽𝟑
𝑬

E represents every possible execution. 

This example just illustrates one.

= 𝑽𝟓
𝑬

NIL = 𝑽𝟐
𝑬NIL = 𝑽𝟏

𝑬



PROOF MECHANICS

• Since E is any execution, everything you prove about E is actually proved for all executions.

• Ultimate goal is to prove 𝑽𝒊
𝑬 = 𝑽𝒊 for all 𝒊 (creativity needed here)

• Usually proved by induction over the sequence of steps (reads/writes/CASs) in E

• What information can you use to prove this?

• E is just “any” execution… don’t know anything specific about it

• Can only use facts that hold for every execution of the stack (and hence for E)

• Sometimes some other theoretical machinery is used to help the proof
More on this next…



USEFUL THEORETICAL MACHINERY

• Formal proofs often include a lemma establishing equivalence

between a physical state (PHYS) and an abstract state (ABS)

• ABS is defined (somehow) by the sequential ADT

• PHYS is defined (somehow) by the contents of memory

• Defining ABS for our stack:

• ABS is a sequence of keys 𝑘1, 𝑘2, … , 𝑘𝑚

• Push(k) adds k at the start of the sequence, shifting other keys to the right

• Pop() removes the first key, shifting other keys to the left

• Defining PHYS for our stack:

• PHYS is a sequence of keys defined by the sequence of nodes

obtained by starting at top and following next pointers

So if 𝐀𝐁𝐒 = 𝑑, 𝑓, 𝑎 before Push(k),

then 𝐀𝐁𝐒 = 𝑘, 𝑑, 𝑓, 𝑎 after Push(k)

So if 𝐀𝐁𝐒 = 𝑑, 𝑓, 𝑎 before Pop(),

then 𝐀𝐁𝐒 = 𝑓, 𝑎 after Pop()

a

next

f

next

d

next

top

Example: 𝐏𝐇𝐘𝐒 = 𝑑, 𝑓, 𝑎

This lemma can help a lot 

in relating 𝑉𝑖 to 𝑉𝑖
𝐸



STACK LINEARIZABILITY PROOF:
STARTING WITH A POWERFUL INVARIANT

• Lemma: ABS = PHYS at all times in E

• Base case: initially ABS=PHYS=empty sequence

• Proof by induction over the sequence of all steps 

𝒔𝟏, 𝒔𝟐, … , 𝒔𝒌 (taken by all threads) in E:

• Let 𝐀𝐁𝐒𝒊 denote ABS after 𝑠1, … , 𝑠𝑖 (& same for PHYS𝑖)

• IH: suppose 𝐀𝐁𝐒𝑖−1 = 𝐏𝐇𝐘𝐒𝑖−1

• We prove 𝐀𝐁𝐒𝑖 = 𝐏𝐇𝐘𝐒𝑖

• What steps can change ABS or PHYS?

• PHYS only changes at a successful CAS

• ABS only changes at LPs of ops that change the 

stack

• These happen to be the steps that change PHYS!

• So WLOG assume 𝑠𝑖 is a successful CAS.

node * n = new node(key);

while (true) {

node * curr = top;

n->next = curr;

if (CAS(&top, curr, n)) return;

}

void stack::push(int key)

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

return curr->key;

}

}

int stack::pop()

Two cases arise…



PROVING THE LEMMA: CASE 1
• IH: suppose 𝐀𝐁𝐒𝑖−1 = 𝐏𝐇𝐘𝐒𝑖−1

• We prove 𝐀𝐁𝐒𝑖 = 𝐏𝐇𝐘𝐒𝑖

• Case 1: 𝑠𝑖 is a successful CAS in Push(k)

• How does 𝑠𝑖 change ABS?

• 𝐀𝐁𝐒𝑖 = 𝐤,𝐀𝐁𝐒𝑖−𝟏 (k becomes the first key)

• How does 𝑠𝑖 change PHYS?

• It changes top from curr to n

• Just before 𝑠𝑖, top points to curr, the start of

a chain of nodes that contain keys 𝐏𝐇𝐘𝐒𝑖−1

• After 𝑠𝑖, top points to n, which points to curr

• So, 𝐏𝐇𝐘𝐒𝑖 = 𝐤,𝐏𝐇𝐘𝐒𝒊−𝟏

• By IH, we have 𝐏𝐇𝐘𝐒𝑖 = 𝐤,𝐀𝐁𝐒𝑖−1, which is 𝐀𝐁𝐒𝑖

a

next

f

next

d

next

top

k

next

𝐏𝐇𝐘𝐒𝒊−𝟏 = 𝐝, 𝐟, 𝐚

𝐏𝐇𝐘𝐒𝒊 = 𝐤, 𝐝, 𝐟, 𝐚

𝑠𝑖 does this

= 𝐤, 𝐏𝐇𝐘𝐒𝒊−𝟏

Example

n

curr



PROVING THE LEMMA: CASE 2
• IH: suppose 𝐀𝐁𝐒𝑖−1 = 𝐏𝐇𝐘𝐒𝑖−1

• We prove 𝐀𝐁𝐒𝑖 = 𝐏𝐇𝐘𝐒𝑖

• Case 2: 𝑠𝑖 is a successful CAS in Pop()

• How does 𝑠𝑖 change ABS?

• 𝐀𝐁𝐒𝑖 = 𝐫𝐞𝐦𝐨𝐯𝐞𝐅𝐢𝐫𝐬𝐭(𝐀𝐁𝐒𝑖−𝟏)

• How does 𝑠𝑖 change PHYS?

• It changes top from curr to next

• Just before 𝑠𝑖, top points to curr, the start of

a chain of nodes that contain 𝐏𝐇𝐘𝐒𝑖−1

• After 𝑠𝑖, top points to next, the start of a chain

of nodes that contain 𝐫𝐞𝐦𝐨𝐯𝐞𝐅𝐢𝐫𝐬𝐭(𝐏𝐇𝐘𝐒𝑖−1)

• So, 𝐏𝐇𝐘𝐒𝑖 = 𝐫𝐞𝐦𝐨𝐯𝐞𝐅𝐢𝐫𝐬𝐭(𝐏𝐇𝐘𝐒𝒊−𝟏)

• By IH, 𝐏𝐇𝐘𝐒𝑖 = 𝐫𝐞𝐦𝐨𝐯𝐞𝐅𝐢𝐫𝐬𝐭(𝐀𝐁𝐒𝑖−𝟏), which is 𝐀𝐁𝐒𝑖

a

next

f

next

d

next

top

Example

𝐏𝐇𝐘𝐒𝒊−𝟏 = 𝐝, 𝐟, 𝐚

next

curr

𝑠𝑖 does this

𝐏𝐇𝐘𝐒𝒊 = 𝐟, 𝐚

= 𝐫𝐞𝐦𝐨𝐯𝐞𝐅𝐢𝐫𝐬𝐭(𝐏𝐇𝐘𝐒𝒊−𝟏)

This proves the Lemma:

At all times, 𝐀𝐁𝐒 = 𝐏𝐇𝐘𝐒.

How does this help us?



WHAT EXACTLY DID WE JUST PROVE?

• We have proved ABS = PHYS at all times.

• Intuition: this means the contents of memory (PHYS) contains the “correct” answer (ABS)

• This does NOT mean our operations actually find and return the correct answer

• For example, if we changed the code for Pop to always return EMPTY,

we could still prove ABS = PHYS at all times.

• But, whenever the stack is non-empty, our return values would be completely incorrect!

• We are NOT done!

• We still need to prove that the return values of operations actually correspond to PHYS somehow!

• Then, our invariant PHYS = ABS will establish that our return values are correct.



PROVING RETURN VALUES 
ARE CORRECT

• Lemma: every (non-crashed) Pop operation O returns

the first key that was in PHYS at the time O was linearized.

• Case 1: Suppose O returns EMPTY.

• Then O is linearized at its last READ of top, which returned NULL, so PHYS was empty at O’s LP.

• Case 2: Suppose O returns curr->key. Then O is linearized at its successful CAS.

• Since this CAS succeeds, top pointed to curr at O’s LP.

• Thus, when O was linearized, the first key of PHYS was precisely curr->key, which O returns.

• Corollary: every Pop returns the first key that was in ABS when that Pop was linearized

• Theorem: every operation in E returns the same value as it would in L.

• Push has no return value.

• By the Corollary, every Pop in E returns the first key in ABS, which is exactly what it returns in L.

• This proves the stack is linearizable.

while (true) {

node * curr = top;

if (curr == NULL) return EMPTY;

node * next = curr->next;

if (CAS(&top, curr, next)) {

return curr->key;

} }

int stack::pop()
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