MULTICORE PROGRAMMING

Proving Linearizability

Lecture 4

Trevor Brown



ANNOUNCEMENTS

» A2 should be released shortly, with a fairly short deadline
» If a non-trivial fraction of the class needs more time, we can extend this

* (But,we can only do this a couple of times, and A4 will likely need this)



LAST TIME

« We described a stack

 We argued that it offers lock-free progress

* We did not prove linearizability...
* Let’s do that now!
» This is the main proof in this course (AC/HS crosslisting)

* Hopefully explanation is helpful for A2!



TYPICAL STRATEGY FOR LIN. PROOFS

Choose linearization points (LPs) for all operations
* A linearization point is usually a read, write or CAS (a step)
* Note: can pick different linearization points for,

e.qg., different push()es, or different pop()s

Prove: for each concurrent execution E,
the chosen LPs induce an equivalent linearized (sequential) execution L

* Recall: equivalent means
all operations in L return the same values as their corresponding operations in E



OTHER (IMPORTANT) PROOF POSSIBILITIES

In some algorithmes, it is not possible to choose an explicit step

where an operation should be linearized

* In such algorithms, we prove:

* for each concurrent execution E,
there exist LPs that induce an equivalent linearized execution L

* These LPs are usually configurations (i.e., points in time) rather than steps

* In practice, even if we cannot explicitly choose a line of code (step) as an LP,
we can often argue there exists some time during O
when the value O returned would have been the correct thing to return

* (And we can thus linearize at that time)

» Advice: try explicit LPs first, and fall back to this if you can’t find LPs that “work out”



CHOOSING LINEARIZATION POINTS FOR OUR STACK

Creativity is needed! Iterative process.

My own thought process...

Consider operations that update the stack
* A push, or a pop that does not return EMPTY

* Heuristic question for updates: can you
identify a step that makes it possible for other
threads to “see” the effects of this operation?

Consider operations that query the stack

(A pop that returns EMPTY)

* Heuristic question for queries: can you

identify a critical step at which the pop

becomes aware of another operation’s effects?

* Either (a)
or (b) argue that one must exist

vold stack::push(int key)

node * n = new node (key) ;
while (true) {
node * curr = top;
n->next = curr;
1if (CAS(&top, curr, n)) return;

}

int stack::pop/()

while (true) {

node * curr = top;
if (curr == NULL) return EMPTY;
node * next = curr->next;

if (CAS(&top, curr, next)) {
return curr->key;

}



SANITY CHECKING YOUR HYPOTHESIZED LPs

* Brainstorm a 2-thread concurrent execution E
(you make it up, goal is to create opportunities to expose bugs)

thread p __Pop
thread g m m

» Time

* Pick two concurrent operations O and O’, and
consider different possible thread schedules/interleavings of their steps

* Can you find an execution wherein either operation returns an incorrect value?

* (If there is any execution where it returns an incorrect value, then chosen LPs are wrong!)



Let’s try to see how sanity checks can catch an
incorrect LP: the return statement in push

Creativity: brainstorm a sample execution E,
with concurrent operations O and O’
(one of which should be a push, to test our LP)

It helps to pay special attention to LiPs, and steps
that change the return values of other operations.

What value should Pop() return in this execution,
to be consistent with the stack ADT?

Creativity: consider different thread schedules...

* Eventually, we might try scheduling the successful
CAS of O before the start of O’

What will O’ actually return? (See code)
O’ will return 5 instead of EMPTY.

This disagrees with the ADT! So LLP is wrong!

void stack::push (int key)

node * n = new node (key);
while (true) {
node * curr = top;
n->next = curr;
if (CAS(&top, curr, n))| return;

}

int stack::pop /()
while (true) {

node * curr = top;
if (curr == NULL) return EMPTY;
node * next = curr->next;

1f (CAS(&top, curr, next)) {
return curr->key;

bl

thread p

k oo
thread g

/.

Time




Let’s see another example of an incorrect LP:

the last read of top in push

Heuristic question:
can anyone else *see* our push yet?

Obtain sample execution via *creativity*

What value should Pop() return in this
execution, to be consistent with the stack ADT?

* O’must be linearized between its own start and
end, so it must be after O. So, it must return 5!

After some *creativity* we try scheduling
the LP of O before O’
and the successful CAS of O after O’

What will O’ actually return?
O’ will return EMPTY instead of 5.

This disagrees with the ADT! So LP is wrong!

void stack::push (int key)

node * n = new node (key);
while (true) {
node * curr =| top;
n->next = curr;
if (CAS(&top, curr, n)) return;

}

int stack::pop /()
while (true) {

node * curr = top;
if (curr == NULL) return EMPTY;
node * next = curr->next;

1f (CAS(&top, curr, next)) {
return curr->key;

bl

thread p

= o
thread g




Correct LP: a successful CAS in push

* Heuristic questions:

* can anyone else see our push before the CAS?

e how about after?

Execution E1:

 What value should Pop() return in this execution, to

be consistent with the stack ADT?

« What will O’ actually return?

 O’will return 5, as it should.

Execution E2:
e What should/will O’ return?
« EMPTY, as it should.

* No amount of examples will
reveal a bug...

Creativity: try out various executions...

El

void stack::push (int key)

node * n = new node (key);
while (true) {
node * curr = top;
n->next = curr;
if (CAS(&top, curr, n)|) return;
}
int stack::pop /()
while (true) {
node * curr = top;
if (curr == NULL) return EMPTY;
node * next = curr->next;
1f (CAS(&top, curr, next)) {
return curr->key;
b}
thread p
e IO
/- >
Time
thread p

E2 oo
thread q

Time



Let’s choose an LiP for pop

« How about a successful CAS?

* Can only linearize there if there *is* one...

* If Pop returns EMPTY, there is no such CAS
to linearize at!

* (Similarly if a pop crashes before
performing such a CAS)

* We linearize pop operations that
change the stack
differently from pop operations that only

query the stack

void stack::push (int key)

node * n = new node (key);
while (true) {
node * curr = top;
n->next = curr;
1f (CAS(&top, curr, n)) return;

}

int stack: :pop ()
while (true) {

node * curr = top;
if (curr == NULL) return EMPTY;
node * next = curr->next;

1f (CAS(&top, curr, next)) {
return curr->key;

bl



Case l: pop performs a successful CAS

 Heuristic question for updates:
Which step makes the effect of this pop
visible to other threads?

« Answer: the successful CAS

* Before the CAS, the value is not yet
popped---other threads can still see it.

» After the CAS, they cannot.

e So we linearize at the successful CAS

void stack::push (int key)

node * n = new node (key);
while (true) {
node * curr = top;
n->next = curr;
1f (CAS(&top, curr, n)) return;

}

int stack::pop /()
while (true) {

node * curr = top;
if (curr == NULL) return EMPTY;
node_* next = curr—>next;

1f [CAS(&top, curr, next))| {
return curr->key;

bl




void stack::push (int key)

Case 2: pop returns EMPTY R
G AR 8 h while (true) {
* Heuristic question for queries node * curr = top;
* Can you identify a critical step S where the pop n--next = curr;
becomes aware of the effects of other update LE (CES (s, elER; m)) BOEuEn;

}
int stack::pop /()

operations?

* Probing questions for identifying S T T————

* Can we change the return value of the pop by node * curr =|top;
scheduling a new update operation just before S? if (curr == NULL) return EMPTY;
« Are update operations after S essentially ignored by node * next = curr->next;
the pop? if (CAS(&top, curr, next)) {
return curr->key;
« Answer: the last read of top b

* Suppose the stack is empty when we read top

* Then we will return EMPTY (ignoring any updates
that occur after we read top).

» If an update operation changes top just before we
read it, we will no longer return EMPTY

* So, we linearize at the last read of top




SUMMARIZING SO FAR

Plausible linearization points void stack::push(int key)

node * n = new node (key) ;
e Push: the successful CAS while (true) {
node * curr = top;
. 2
POp. n->next = curr;
* The successful CAS if there is one if (CAS(&top, curr, n)) return;

}
* Otherwise, the last read of top

3 . B, I k.-
That argument was not a linearizability int stack::pop()

TR ; while (true) {
proof! It was a heuristic for choosing LPs.

node * curr = top;
- R 5 i1f (curr == NULL) return EMPTY;
Need to prove: with this choice of LPs, node * next = curr-snext;
every stack execution is linearizable. if (CAS(&top, curr, next)) {

return curr->key;
How do we prove this? }



PROOF MECHANICS
* Let E be any concurrent execution
Q Qe O, LP: last
et A READ of top

NIl o NIE = Ve

thread g

Let L be the linearized execution induced by the LPs in E

e In the example, the steps of L are the invocations and responses of: Push(17), Push(52), Pop, Pop, Pop

Let O,,0,, ..., O, be the operations in order of their LPs

Let Vi, 15, ..., Vi, be their return values in L, as defined by the sequential ADT
* In the example: NIL, NIL, 52, 17, EMPTY. (values derived directly the definition of a stack)

Let VE,VE, ...,V be the corresponding return values in E (must match V; to get linearizability)



PROOF MECHANICS

* Since E is any execution, everything you prove about E is actually proved for all executions.

+ Ultimate goal is to prove V¥ = V; for all i (creativity needed here)

» Usually proved by induction over the sequence of steps (reads/writes/CASs) in E

 What information can you use to prove this?

* Eisjust“any” execution... don’t know anything specific about it

» Can only use facts that hold for every execution of the stack (and hence for E)

+ Sometimes some other theoretical machinery is used to help the proof ,
More on this next...




USEFUL THEORETICAL MACHINERY

Formal proofs often include a lemma establishing equivalence This lemma can help a lot
between a physical state (PHYS) and an abstract state (ABS) in relating V; to V*

ABS is defined (somehow) by the sequential ADT
PHYS is defined (somehow) by the contents of memory

Defining ABS for our stack: So if ABS = d, f, a before Push(k),
then ABS =k, d, f, a after Push(k)

« ABS is a sequence of keys k4, ky, ..., ki,

* Push(k) adds k at the start of the sequence, shifting other keys to the right

* Pop() removes the first key, shifting other keys to the left

So if ABS = d, f, a before Pop(),
then ABS = f, a after Pop()

 PHYS is a sequence of keys defined by the sequence of nodes

Defining PHYS for our stack:

obtained by starting at top and following next pointers Example: PHYS = d, f, a

pa— __I o




STACK LINEARIZABILITY PROOF:
STARTING WITH A POWERFUL INVARIANT

Lemma: ABS = PHYS at all times in E void stack::push (int key)
Base case: initially ABS=PHYS=empty sequence node * n = new node (key);
while (true) {
Proof by induction over the sequence of all steps node * curr = top;
S1,S2, ---, Sk (taken by all threads) in E: n->next = curr:
Let ABS; denote ABS after sy, ..., s; (& same for PHYS;) } 1f (CAS(&top, curr, n)) return;
IH: suppose ABS;_; = PHYS,;_;
We prove ABS; = PHYS; int stack::pop ()
hil t

What steps can change ABS or PHYS? e (*rue) {_ )

node curr = top;
PHYS only changes at a successful CAS if (curr == NULL) return EMPTY;

node * next = curr->next;

ABS only changes at LPs of ops that change the

if (CAS(&top, curr, next)) {
stack

return curr->key;
* These happen to be the steps that change PHYS! }

S0 WLOG assume s; is a successful CAS.




PROVING THE LEMMA: CASE 1

IH: suppose ABS;_; = PHYS,_; w
n
We prove ABS; = PHYS;
P 1 : Example - <

Case 1: 5, is a successful CAS in Push(k) —— ’

How does s; change ABS? curr l -

ABS; = kK, ABS;_; (kbecomes the first key)
How does s; change PHYS?

—PHYS; = k,d, f,a
It changes top from curr ton

= k, PHYS;_,
Just before s;, top points to curr, the start of —PHYS;_; =d,f,a

a chain of nodes that contain keys PHYS;_;

After s;, top points to n, which points to curr

So, PHYS; = k, PHYS;_;

By IH, we have PHYS,; = k, ABS,_,, which is ABS;



PROVING THE LEMMA: CASE 2

IH: suppose ABS;_; = PHYS,;_;
We prove ABS; = PHYS;

Case 2: s; is a successful CAS in Pop()
How does s; change ABS?
ABS; = removeFirst(ABS;_;)

How does s; change PHYS?

It changes top from curr to next

Just before s;, top points to curr, the start of
a chain of nodes that contain PHYS,;_;

After s;, top points to next, the start of a chain
of nodes that contain removeFirst(PHYS;_;)

So, PHYS,; = removeFirst(PHYS;_;)
By IH, PHYS; = removeFirst(ABS;_;), which is ABS;

Example

top

curxr l

This proves the Lemma:

At all times, ABS = PHYS.
How does this help us?

P‘PHYSi_l = d, f,a

= PHYS; =f,a
= remaveFirst(PHYS;_,)




WHAT EXACTLY DID WE JUST PROVE?

We have proved ABS = PHYS at all times.

Intuition: this means the contents of memory (PHYS) contains the “correct” answer (ABS)

This does NOT mean our operations actually find and return the correct answer

» For example, if we changed the code for Pop to always return EMPTY,
we could still prove ABS = PHYS at all times.

* But, whenever the stack is non-empty, our return values would be completely incorrect!

We are NOT done!

« We still need to prove that the return values of operations actually correspond to PHYS somehow!

e Then, our invariant PHYS = ABS will establish that our return values are correct.



PROVING RETURN VALUES int stack: :pop ()

while (true) {

ARE CORRECT node * curr = top;
if (curr == NULL) return EMPTY;

Lemma: every (non-crashed) Pop operation O returns node * next = curr->next;
if (CAS(&top, curr, next)) {

return curr->key;

bl

the first key that was in PHYS at the time O was linearized.

Case 1: Suppose O returns EMPTY.
 Then O is linearized at its last READ of top, which returned NULL, so PHYS was empty at O’s LP.

Case 2: Suppose O returns curr->key. Then O is linearized at its successful CAS.
« Since this CAS succeeds, top pointed to curr at O’s LP.

* Thus, when O was linearized, the first key of PHYS was precisely curr->key, which O returns.
Corollary: every Pop returns the first key that was in ABS when that Pop was linearized

Theorem: every operation in E returns the same value as it would in L.
* Push has no return value.
* By the Corollary, every Pop in E returns the first key in ABS, which is exactly what it returns in L.

* This proves the stack is linearizable.




	Slide 1: Multicore programming
	Slide 2: Announcements
	Slide 3: Last time
	Slide 4: Typical strategy for Lin. Proofs
	Slide 5: Other (important) proof possibilities
	Slide 6: Choosing Linearization points for our Stack
	Slide 7: Sanity checking your hypothesized LPs
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Summarizing so far
	Slide 15: Proof Mechanics
	Slide 16: Proof Mechanics
	Slide 17: Useful theoretical machinery
	Slide 18: Stack Linearizability proof: Starting with A powerful Invariant
	Slide 19: Proving the lemma: Case 1
	Slide 20: Proving the lemma: Case 2
	Slide 21: What exactly did we just prove?
	Slide 22: Proving return values are correct

