MULTICORE PROGRAMMING

Proving Linearizability

Lecture 4

Trevor Brown

ANNOUNCEMENTS

- A2 should be released shortly, with a fairly short deadline
 - If a non-trivial fraction of the class needs more time, we can extend this
 - (But, we can only do this a couple of times, and A4 will likely need this)

LAST TIME

- We described a <u>stack</u>
- We argued that it offers <u>lock-free</u> progress
- We did not prove linearizability...
 - Let's do that now!
 - This is the main proof in this course (AC/HS crosslisting)
 - Hopefully explanation is helpful for A2!

TYPICAL STRATEGY FOR LIN. PROOFS

- 1. Choose linearization points (LPs) for all operations
 - A linearization point is usually a read, write or CAS (a step)
 - Note: can pick **different** linearization points for, e.g., **different push()es**, or different **pop()s**
- Prove: for each concurrent execution E, the chosen LPs induce an equivalent linearized (sequential) execution L
 - Recall: equivalent means

all operations in L return the same values as their corresponding operations in E

OTHER (IMPORTANT) PROOF POSSIBILITIES

In some algorithms, it is **<u>not possible</u>** to choose an **explicit step** where an operation should be linearized

- In such algorithms, we prove:
 - for each concurrent execution E,
 <u>there exist</u> LPs that induce an equivalent linearized execution L
 - These LPs are usually configurations (i.e., points in time) rather than steps

- In practice, even if we cannot explicitly choose a line of code (step) as an LP, we can often argue there exists some time during O when the value O returned would have been the correct thing to return
 - (And we can thus linearize at that time)
- Advice: try explicit LPs first, and fall back to this if you can't find LPs that "work out"

CHOOSING LINEARIZATION POINTS FOR OUR STACK

- Creativity is needed! Iterative process.
- My own thought process...
- Consider operations that update the stack
 - A push, or a pop that does **<u>not</u>** return EMPTY
 - Heuristic question for updates: can you identify a step that makes it possible for <u>other</u> <u>threads</u> to "see" the effects of this operation?
 - Hypothesize a fixed linearization point LP
- Consider operations that query the stack (A pop that returns EMPTY)
 - Heuristic question for queries: can you identify a critical step at which the pop becomes aware of another operation's effects?
 - Either (a) **hypothesize a fixed** *LP* or (b) argue that one must exist

```
void stack::push(int key)
node * n = new node(key);
while (true) {
   node * curr = top;
   n->next = curr;
```

```
if (CAS(&top, curr, n)) return;
```

```
int stack::pop()
while (true) {
   node * curr = top;
   if (curr == NULL) return EMPTY;
   node * next = curr->next;
   if (CAS(&top, curr, next)) {
      return curr->key;
   }
}
```

SANITY CHECKING YOUR HYPOTHESIZED LPs

 Brainstorm a 2-thread concurrent execution E (you make it up, goal is to create opportunities to expose bugs)

Interactions between more than two threads / operations are also interesting. But this is a good start.

- Pick two concurrent operations O and O', and
 - consider different possible thread schedules/interleavings of their steps
 - Can you find an execution wherein either operation returns an incorrect value?
 - (If there is any execution where it returns an incorrect value, then chosen LPs are wrong!)

- Let's try to see how sanity checks can catch an incorrect LP: the return statement in push
- Creativity: brainstorm a sample execution E, with concurrent operations O and O' (one of which should be a push, to test our LP)
 - It helps to pay special attention to LPs, and steps that change the return values of other operations.
- What value <u>should</u> Pop() return in this execution, to be consistent with the stack ADT?
- Creativity: consider different thread schedules...
 - Eventually, we might try scheduling the successful CAS of O before the start of O'
- What will O' actually return? (See code)
- O' will return 5 instead of EMPTY.
- This disagrees with the ADT! <u>So LP is wrong!</u>

```
void stack::push(int key)
node * n = new node(key);
while (true) {
   node * curr = top;
   n->next = curr;
   if (CAS(&top, curr, n)) return;
```

int stack::pop()

```
while (true) {
  node * curr = top;
  if (curr == NULL) return EMPTY;
  node * next = curr->next;
  if (CAS(&top, curr, next)) {
    return curr->key;
  }
}
```


- Let's see another example of an <u>incorrect LP</u>: the last read of top in push
- Heuristic question: can anyone else *see* our push yet?
- Obtain sample execution via *creativity*
- What value <u>should</u> Pop() return in this execution, to be consistent with the stack ADT?
 - O' must be linearized between its own start and end, so it must be after O. So, it <u>must</u> return 5!
- After some *creativity* we try scheduling the LP of O before O' and the successful CAS of O after O'
- What will O' actually return?
- O' will return EMPTY instead of 5.
- This disagrees with the ADT! <u>So LP is wrong!</u>

int stack::pop() while (true) { node * curr = top; if (curr == NULL) return EMPTY; node * next = curr->next; if (CAS(&top, curr, next)) { return curr->key; } }

Correct LP: a successful CAS in push

• Heuristic questions:

- can anyone else <u>see</u> our push <u>before</u> the CAS?
- how about <u>after</u>?
- Creativity: try out various executions...

• Execution El:

- What value <u>should</u> Pop() return in this execution, to be consistent with the stack ADT?
- What will O' actually return?
- O' will return 5, as it should.
- Execution E2:
 - What should/will O' return?
 - EMPTY, as it should.
- No amount of examples will reveal a bug...

int stack::pop()

```
while (true) {
  node * curr = top;
  if (curr == NULL) return EMPTY;
  node * next = curr->next;
  if (CAS(&top, curr, next)) {
    return curr->key;
}
```


Let's choose an LP for pop

- How about a successful CAS?
 - Can only linearize there <u>if</u> there *<u>is</u>* one...
 - If Pop returns EMPTY, there is no such CAS to linearize at!
 - (Similarly if a pop *crashes* before performing such a CAS)
- We linearize pop operations that change the stack <u>differently</u> from pop operations that only query the stack

```
void stack::push(int key)
node * n = new node(key);
while (true) {
   node * curr = top;
   n->next = curr;
   if (CAS(&top, curr, n)) return;
```

int stack::pop()

```
while (true) {
  node * curr = top;
  if (curr == NULL) return EMPTY;
  node * next = curr->next;
  if (CAS(&top, curr, next)) {
    return curr->key;
  }
}
```

Case 1: pop performs a successful CAS

- Heuristic question for updates: Which step makes the effect of this pop visible to other threads?
- Answer: the successful CAS
 - Before the CAS, the value is not yet popped---other threads can still see it.
 - After the CAS, they cannot.

So we linearize at the successful CAS

```
void stack::push(int key)
node * n = new node(key);
while (true) {
   node * curr = top;
   n->next = curr;
   if (CAS(&top, curr, n)) return;
```

int stack::pop() while (true) { node * curr = top; if (curr == NULL) return EMPTY; node * next = curr->next; if (CAS(&top, curr, next)) { return curr->key; } }

Case 2: pop returns EMPTY

- Heuristic question for queries
 - Can you identify a critical step S where the pop becomes aware of the effects of other update operations?
 - Probing questions for identifying S
 - Can we change the return value of the pop by scheduling a new update operation **just before S**?
 - Are update operations **after S** essentially ignored by the pop?
- Answer: the last read of top
 - Suppose the stack is empty when we read top
 - Then we will return EMPTY (ignoring any updates that occur after we read top).
 - If an **update** operation changes top just before we read it, we will no longer return EMPTY
- So, we linearize at the last read of top

Exercise: show that it is **wrong** to choose the **last read of top** as the LP in **Case 1**.

```
void stack::push(int key)
node * n = new node(key);
while (true) {
   node * curr = top;
   n->next = curr;
   if (CAS(&top, curr, n)) return;
```

int stack::pop()

Note: we have given linearization points for pop()s that perform a successful CAS, or return EMPTY.

What about pop()s that <u>crash</u> (without performing a successful CAS)?

SUMMARIZING SO FAR

• **Plausible** linearization points

- Push: the successful CAS
- Pop:
 - The successful CAS if there is one
 - Otherwise, the last read of top
- That argument was <u>not</u> a linearizability proof! It was a heuristic for <u>choosing LPs</u>.
- Need to prove: with this choice of LPs, every stack execution is linearizable.
- How do we prove this?

```
void stack::push(int key)
node * n = new node(key);
while (true) {
   node * curr = top;
   n->next = curr;
   if (CAS(&top, curr, n)) return;
```

```
int stack::pop()
while (true) {
   node * curr = top;
   if (curr == NULL) return EMPTY;
   node * next = curr->next;
   if (CAS(&top, curr, next)) {
      return curr->key;
   }
}
```

PROOF MECHANICS

• Let E be <u>any</u> concurrent execution

For example, execution E might be something like this (but you, as the theorem prover, would not know what E looks like)

E represents <u>every</u> possible execution. This example just illustrates <u>one</u>.

- In the example, the steps of L are the invocations and responses of: Push(17), Push(52), Pop, Pop, Pop
- Let $O_1, O_2, ..., O_k$ be the operations in order of their LPs
- Let V_1, V_2, \dots, V_k be their return values in L, as defined by the sequential ADT
 - In the example: NIL, NIL, 52, 17, EMPTY. (values derived directly the <u>definition</u> of a stack)
- Let V_1^E , V_2^E , ..., V_k^E be the corresponding return values in E (must match V_i to get linearizability)

PROOF MECHANICS

- Since E is any execution, everything you prove about E is actually proved for all executions.
- Ultimate goal is to prove $V_i^E = V_i$ for all *i* (creativity needed here)
 - Usually proved by induction over the sequence of steps (reads/writes/CASs) in E
- What information can you use to prove this?
 - E is just "any" execution... don't know anything specific about it
 - Can only use facts that hold for every execution of the stack (and hence for E)
 - Sometimes some **other theoretical machinery** is used to help the proof

More on this next...

USEFUL THEORETICAL MACHINERY

So if ABS = d, f, a before Push(k),

then ABS = k, d, f, a after Push(k)

- Formal proofs often include a lemma establishing equivalence between a <u>physical state</u> (PHYS) and an <u>abstract state</u> (ABS)
- **ABS** is defined (somehow) by the **sequential ADT**
- **PHYS** is defined (somehow) by the **contents of memory**
- Defining ABS for our stack:
 - **ABS** is a <u>sequence of keys</u> k_1, k_2, \dots, k_m
 - Push(k) adds k at the start of the sequence, shifting other keys to the right

So if ABS = d, f, a before Pop(),

then ABS = f, a after Pop()

- Pop() removes the <u>first</u> key, **shifting** other keys to the left
- Defining PHYS for our stack:
 - **PHYS** is a <u>sequence of keys</u> **defined by** the sequence of nodes obtained by starting at **top** and **following next pointers**

Example: PHYS = d, f, a

This lemma can help a lot in relating V_i to V_i^E

STACK LINEARIZABILITY PROOF: STARTING WITH A POWERFUL INVARIANT

• Lemma: ABS = PHYS at all times in E

- Base case: initially ABS=PHYS=empty sequence
- Proof by induction over the sequence of all steps $s_1, s_2, ..., s_k$ (taken by all threads) in E:
- Let ABS_i denote ABS after s_1, \dots, s_i (& same for $PHYS_i$)
- IH: suppose $ABS_{i-1} = PHYS_{i-1}$
- We prove $ABS_i = PHYS_i$
- What steps can change ABS or PHYS?
- PHYS only changes at a successful CAS
- ABS only changes at LPs of ops that change the stack
 - These **happen to be** the steps that change PHYS!
- So WLOG assume s_i is a successful CAS.

```
void stack::push(int key)
```

```
node * n = new node(key);
while (true) {
  node * curr = top;
  n->next = curr;
  if (CAS(&top, curr, n)) return;
```

```
int stack::pop()
while (true) {
   node * curr = top;
   if (curr == NULL) return EMPTY;
   node * next = curr->next;
   if (CAS(&top, curr, next)) {
     return curr->key;
```

Two cases arise...

PROVING THE LEMMA: CASE 1

- IH: suppose $ABS_{i-1} = PHYS_{i-1}$
- We prove $ABS_i = PHYS_i$
- **<u>Case 1</u>**: s_i is a successful CAS in Push(k)
- How does s_i change ABS?
- $ABS_i = k, ABS_{i-1}$ (k becomes the first key)
- How does s_i change PHYS?
 - It changes top from curr to n
- Just before s_i , top points to curr, the start of a chain of nodes that contain keys $PHYS_{i-1}$
- After s_i , top points to n, which points to curr
- So, $PHYS_i = k$, $PHYS_{i-1}$
- By IH, we have $PHYS_i = k$, ABS_{i-1} , which is ABS_i

PROVING THE LEMMA: CASE 2

- IH: suppose $ABS_{i-1} = PHYS_{i-1}$
- We prove $ABS_i = PHYS_i$
- **<u>Case 2</u>**: s_i is a successful CAS in Pop()
- How does *s_i* change ABS?
- $ABS_i = removeFirst(ABS_{i-1})$
- How does s_i change PHYS?
 - It changes top from curr to next
- Just before s_i, top points to curr, the start of a chain of nodes that contain PHYS_{i-1}
- After s_i, top points to next, the start of a chain of nodes that contain removeFirst(PHYS_{i-1})
- So, $PHYS_i = removeFirst(PHYS_{i-1})$
- By IH, $PHYS_i = removeFirst(ABS_{i-1})$, which is ABS_i

WHAT EXACTLY DID WE JUST PROVE?

- We have proved ABS = PHYS at all times.
- Intuition: this means the contents of memory (PHYS) <u>contains</u> the "correct" answer (ABS)
- This does <u>NOT</u> mean our operations actually <u>find and return</u> the correct answer
 - For example, if we changed the code for Pop to always return EMPTY, we could still prove ABS = PHYS at all times.
 - But, whenever the stack is non-empty, our return values would be completely incorrect!
- We are NOT done!
 - We still need to prove that the return values of operations actually correspond to PHYS somehow!
 - **Then**, our invariant PHYS = ABS will establish that our return values are **correct**.

PROVING RETURN VALUES ARE CORRECT

- Lemma: every (non-crashed) Pop operation O returns the first key that was in PHYS at the time O was linearized.
- Case 1: Suppose O returns EMPTY.

- int stack::pop()
 while (true) {
 node * curr = top;
 if (curr == NULL) return EMPTY;
 node * next = curr->next;
 if (CAS(&top, curr, next)) {
 return curr->key;
 }
 }
- Then O is linearized at its last READ of top, which returned NULL, so **PHYS was empty** at O's LP.
- Case 2: Suppose O returns curr->key. Then O is linearized at its successful CAS.
 - Since this CAS succeeds, top pointed to curr at O's LP.
 - Thus, when O was linearized, the first key of PHYS was precisely curr->key, which O returns.
- Corollary: every Pop returns the first key that was in ABS when that Pop was linearized
- Theorem: every operation in E returns the same value as it would in L.
 - Push has no return value.
 - By the Corollary, every Pop in E returns the first key in ABS, which is exactly what it returns in L.
 - This proves the stack is <u>linearizable</u>.