
MULTICORE PROGRAMMING

Harnessing Disorder

Lecture 5

Trevor Brown

LAST TIME

• We proved that our lock-free stack is correct (linearizable)

• This time:

• Stack performance

• Difficulties in using ordered data structures

• Harnessing disorder

PERFORMANCE

Treiber stack

we just saw

Are stacks really suitable for

multicore programming?

One thread is best…

Other stacks

developed up to 2012

QUEUES

• Like stacks, but FIFO instead of LIFO

• Logical next step

• Concurrent modification of two pointers (head/tail) rather than just one (stack top)

• Not covering in detail (no implementation / proofs)

• They don’t scale

• Are they really useful? Mainly just for handing data from one thread to another…

WHY WOULD WE WANT CONCURRENT
STACKS OR QUEUES?

• Suppose we have a fast concurrent queue

• Do we care?

• Why use a queue over something with no ordering guarantees?

• Less ordering would allow more concurrency (and better performance)

• Must need the order!

• Can we actually use the ordering a concurrent queue provides to do anything useful?

EXAMPLE: BREADTH-FIRST SEARCH (BFS)

• Graph traversal algorithm that depends on FIFO ordered queue

• BFS(startingNode, visitFunction)

• q = new Queue

• q.enqueue(startingNode)

• while q is not empty

• curr = q.dequeue()

• visitFunction(curr)

• for each neighbor n of curr

• if n has not been visited and is not in q

• q.enqueue(n)

Fun fact: replacing the queue with a stack

yields depth-first search (DFS)

ConcurrentQueue

Refactor as operation: dequeueAndProcess.

Threads execute this concurrently

until q is empty.

DOES QUEUE ORDERING TRANSLATE INTO
TRAVERSAL ORDERING?

Time

thread p

thread q

dequeueAndProcess

dequeueAndProcess

Dequeue node u

Dequeue node v
What the queue gives us:

u was enqueued before v

Enqueue v’s

neighbours

Enqueue u’s

neighbours

In the sequential

algorithm, u’s

neighbours are

enqueued first!

Can get inversions in

the enqueue order!

Not a BFS!

Sleeping here can lead

to huge inversions!

Even with strictly

ordered data structures,

the thread scheduler

creates disorder!

CAN WE FIX THE BFS ALGORITHM?

• Consider a BFS starting from a used to compute distances from a

• Thread p:

• Dequeue a

• Enqueue neighbor b @ dist 1

• Sleep before enqueuing d @ dist 1

• Thread q:

• Dequeue b

• Enqueue d @ dist 2

• Must somehow fix d’s distance to get a correct result!

a

c

b

d

e

f

1

0 2

ALGORITHMIC IDEA

• Allow out of order processing of queue elements

• Instead of visiting each node once, visit repeatedly

• On each visit, iteratively improve distance

• Starting to sound sort of like Dijkstra’s algorithm…

• If the distance to a node is not improved, don’t enqueue the node

• (No need to update its neighbours,

because it won’t change the distance to them)

• With these changes, we can tolerate the inversions created by the thread scheduler

that interfere with the FIFO processing of nodes

A TRADEOFF ARISES

• Original BFS only visits each node once

• Now, we may visit a node many times

• However, we may also gain parallelism

• The question: how much do we win vs lose?

• Win: parallel node processing

• Lose: wasted work revisiting nodes

• For example: big win in trees

• (1 path to each leaf = no need to fix bad distances)

a

b c d e

f g h i

…

…

DIJKSTRA’S ALGORITHM IS SIMILAR

• Dijkstra’s algorithm already incrementally improves distances

• Like BFS, but with a priority queue that sorts by distance

• Instead of dequeue, it uses dequeueMin

• Each node is only visited once

• Because of the strict priority queue ordering

• Without the strict priority ordering, nodes may need to be visited multiple times

• Similar tradeoff → can win by relaxing the ordering

ROLE OF ORDERING

• Strict FIFO queues do not make it easy to implement concurrent BFS

• Concurrent BFS does not need to rely on FIFO (Dijkstra’s similar)

• How much should we order our data?

• Strict orders kill concurrency

• Random orders may perform poorly

• Data structures with relaxed ordering

• Relaxed stacks, relaxed queues, relaxed priority queues

• Typically provide bounds on how out-of-order things can get

Meta-point: concurrency is

diametrically opposed to ordering.

Ordering → synchronization → waiting.

HARNESSING DISORDER

Concurrent relaxed queues

RELAXED QUEUE OBJECT

• Operations:

• Enqueue(e)

• Adds element e to the back of the queue

• Dequeue()

• Removes some element from the queue and returns it

• Meaningless without a quality guarantee

• For example: “dequeue returns one of the k oldest keys in the queue”

• (Otherwise it offers no ordering guarantees)

MULTI-QUEUE [ABKLN2018]:
A CONCURRENT RELAXED QUEUE

• Pick your favourite sequential or concurrent priority queue implementation X

• We will use X as an algorithmic building block

• If X is sequential, we protect it with a lock

• Idea:

• Let N be the number of threads in the system

• Assume threads have access to a consistent clock (wall time)

• Create N separate priority queues of type X (called subqueues)

• Threads will randomly pick subqueues to work on (in a particular way)

• Prove dequeue operations return something “close” to the oldest key

PRIORITY QUEUE OBJECT

• Stores keys and associated priorities

• Operations:

• Enqueue(e, pr)

• Adds e to the priority queue with priority pr

• DequeueMin()

• Removes the highest priority element and returns it

MULTI-QUEUE

• DequeueMin()

• Pick two uniform random subqueues qi and qj

• Dequeue from whichever of qi and qj has the

older top element

f,40 b,37 k,41

…
j,32

q0 q1 q2 qN

• Enqueue(e)

• Pick a uniform random subqueue q

• t = Read(current wall time)

• Enqueue e in q with priority t

WHAT DOES THIS GUARANTEE?

• Consider a multi-queue containing S elements

• We say the oldest element has rank 1 (most desirable),

and the newest element has rank S (least desirable)

• Dequeue returns an element:

• with rank O(N log N) with high probability, where N = #threads

• Rank is tied to number of threads --- independent of queue size!

• Very “close” to FIFO for large queues

• More accurate as queue gets larger

HOW DOES IT PERFORM?

• Leading Strict FIFO queues (up to 2016)

• No real scaling

http://concurrencyfreaks.blogspot.com/2016/11/

faaarrayqueue-mpmc-lock-free-queue-part.html

• MultiQueue

RECAP

• Challenges of actually using stacks/queues and other ordered data structures

• Strictly ordered data structures such as queues

• limited concurrency

• algorithms such as BFS cannot easily harness this strict ordering

• Relaxed data structures

• somewhat ordered --- allow some inversions in the strict ordering (better scalability)

• applications that can handle the inversions can benefit from this scalability

• example of relaxed BFS / Dijkstra’s

• tradeoff between greater scalability and repeated work (node adjustments)

• Discussion of NUMA effects (L3 invalidations/misses when running on different sockets)

• lscpu to see CPU topology ; taskset –c 0-7,16-23 and numactl –N 0 to pin threads

