MULTICORE PROGRAMMING

Harnessing Disorder

Lecture 5

Trevor Brown

LAST TIME

* We proved that our lock-free stack is correct (linearizable)

e This time:
» Stack performance
 Difficulties in using ordered data structures

* Harnessing disorder

Are stacks really suitable for
multicore programming?
One thread is best...

o
Q
(7]
S
Q
(=8
(7]
c
o
)
[y}
Y
Q
o
o
v
c
2
£
S
-
=
[« 8
L
=]
=
o
Y
=
=]

PERFORMANCE

CC-Stack —¥— DSM-Stack
—&— SimStack FC-Stack
CLH-Stack —0— Lock-Free

12 16 20
of threads

Other stacks
developed up to 2012

Treiber stack
we just saw

QUEUES

» Like stacks, but FIFO instead of LIFO

* Logical next step

* Concurrent modification of two pointers (head/tail) rather than just one (stack top)

* Not covering in detail (no implementation / proofs)
* They don’t scale

* Are they really useful? Mainly just for handing data from one thread to another...

WHY WOULD WE WANT CONCURRENT
STACKS OR QUEUES?

* Suppose we have a fast concurrent queue
* Do we care?

« Why use a queue over something with no ordering guarantees?
* Less ordering would allow more concurrency (and better performance)
* Must need the order!

* Can we actually use the ordering a concurrent queue provides to do anything useful?

EXAMPLE: BREADTH-FIRST SEARCH (BFS)

* Graph traversal algorithm that depends on FIFO ordered queue

* BFS(startingNode, visitFunction)
* g=new Qx ConcurrentQueue
* g.enqueue(startingNode)

* while g is not empty

* curr = g.dequeue()

* visitFunction(curr)

w®

pidegiicuein

EE n "um 1

* for each neighbor n of curr

 if n has not been visited and is not in q

* _g.enqueue(n)

DOES QUEUE ORDERING TRANSLATE INTO
TRAVERSAL ORDERING?

In the sequential
algorithm, u’s
neighbours are
enqueued first!

Enqueue u’s
neighbours

Dequeue node u

Can get inversions in
the enqueue order!
Not a BFS!

thread p

thread g Sleeping here can lead

to huge inversions!

Even with strictly
Enqueue v’s ordered data structures,
neighbours the thread scheduler

creates disorder!

Dequeue node v

What the queue gives us:
u was enqueued before v

CAN WE FIX THE BFS ALGORITHM?

Consider a BFS starting from a used to compute distances from a

Thread p: 1
 Dequeue a
* Enqueue neighbor b @ dist 1
» Sleep before enqueuing d @ dist 1

Thread q:
 Dequeue b
* Enqueue d @ dist 2

Must somehow fix d’s distance to get a correct result!

ALGORITHMIC IDEA

Allow out of order processing of queue elements
Instead of visiting each node once, visit repeatedly

On each visit, iteratively improve distance

« Starting to sound sort of like Dijkstra’s algorithm...

If the distance to a node is not improved, don’t enqueue the node
* (No need to update its neighbours,
because it won’t change the distance to them)

With these changes, we can tolerate the inversions created by the thread scheduler
that interfere with the FIFO processing of nodes

A TRADEOFF ARISES

Original BFS only visits each node once
Now, we may visit a node many times
However, we may also gain parallelism

The question: how much do we win vs lose?

* Win: parallel node processing

* Lose: wasted work revisiting nodes G ° °

For example: big win in trees

* (1 path to each leaf = no need to fix bad distances)

DIJKSTRA’S ALGORITHM IS SIMILAR

Dijkstra’s algorithm already incrementally improves distances
Like BFS, but with a priority queue that sorts by distance
Instead of dequeue, it uses dequeueMin

Each node is only visited once

* Because of the strict priority queue ordering
Without the strict priority ordering, nodes may need to be visited multiple times

Similar tradeoff - can win by relaxing the ordering

ROLE OF ORDERING

Strict FIFO queues do not make it easy to implement concurrent BFS
Concurrent BFS does not need to rely on FIFO (Dijkstra’s similar)

How much should we order our data?
Meta-point: concurrency is

diametrically opposed to ordering.
* Random orders may perform poorly Ordering - synchronization - waiting.

» Strict orders kill concurrency

Data structures with relaxed ordering
* Relaxed stacks, relaxed queues, relaxed priority queues

» Typically provide bounds on how out-of-order things can get

HARNESSING DISORDER

Concurrent relaxed queues

RELAXED QUEUE OBJECT

* Operations:
* Enqueue(e)
 Adds element e to the back of the queue

* Dequeue()

 Removes some element from the queue and returns it

 Meaningless without a quality guarantee

* For example: “dequeue returns one of the k oldest keys in the queue”

* (Otherwise it offers no ordering guarantees)

MULTI-QUEUE [ABKLN2018]:
A CONCURRENT RELAXED QUEUE

* Pick your favourite sequential or concurrent priority queue implementation X

 We will use X as an algorithmic building block

» If X is sequential, we protect it with a lock

e Idea:

* Let N be the number of threads in the system

Assume threads have access to a consistent clock (wall time)

Create N separate priority queues of type X (called subqueues)

Threads will randomly pick subqueues to work on (in a particular way)

Prove dequeue operations return something “close” to the oldest key

PRIORITY QUEUE OBJECT

* Stores keys and associated priorities

* Operations:
 Enqueue(e, pr)
» Adds e to the priority queue with priority pr

* DequeueMin()

 Removes the highest priority element and returns it

MULTI-QUEUE

* Enqueue(e) « DequeueMin()

* Pick a uniform random subqueue q Pick two uniform random subqueues ¢i and qj

* t = Read(current wall time) Dequeue from whichever of qi and qj has the

* Enqueue e in q with priority t older top element

AAA A

WHAT DOES THIS GUARANTEE?

Consider a multi-queue containing S elements

We say the oldest element has rank 1 (most desirable),
and the newest element has rank S (least desirable)

Dequeue returns an element:
« with rank O(N log N) with high probability, where N = #threads

Rank is tied to number of threads --- independent of queue size!
* Very “close” to FIFO for large queues

* More accurate as queue gets larger

HOW DOES IT PERFORM?

* Leading Strict FIFO queues (up to 2016)

* No real scaling e MultiQueue

Burst of dequeues

—d— Michael-Scott
LCRO
ARy ; 11.6x single

LazylndexArray _ threaded |

number of threads

e
=
"]
Lo
a
[+
[F5]
Q€
-
[=p
it}

e

E
o
a

0
=
3
=

Mumber of threads

RECAP

Challenges of actually using stacks/queues and other oxdered data structures

Strictly ordered data structures such as queues
* limited concurrency

 algorithms such as BFS cannot easily harness this strict ordering

Relaxed data structures
* somewhat ordered --- allow some inversions in the strict ordering (better scalability)
» applications that can handle the inversions can benefit from this scalability
* example of relaxed BFS / Dijkstra’s
» tradeoff between greater scalability and repeated work (node adjustments)
Discussion of NUMA effects (L3 invalidations/misses when running on different sockets)

* lscputo see CPU topology ; taskset -c 0-7,16-23 and numactl —-N O to pin threads

