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LAST TIME

• Stack performance

• Difficulties in using ordered data structures

• Harnessing disorder: relaxed (multi-)queue

• This time:

• Unordered Set data structures (similar to dictionaries / maps)



ORDERED SET OBJECT

• Operations

• Search(key):

• return true if key is in the set, and false otherwise

• Insert(key):

• if key is not in the set, add it and return true, otherwise return false

• Delete(key):

• if key is in the set, delete it and return true, otherwise return false

• Successor(key):

• returns the smallest key in the set that is larger than key

• can use to iterate over the set contents

Requires strict ordering –

intuitively limits concurrency



UNORDERED SET OBJECT

• Same as ordered set, but no Successor operation

• Just: Search, Insert and Delete

Eliminates ordering constraints –

possibly better concurrency



WHEN SHOULD WE USE EACH?

• Use an ordered set (search tree, skip list) if you really need the 

Successor operation

• Ordered traversals that are concurrent with updates to the set

• Operations that update predecessors/successors of keys

• Certain types of spatial / geometric algorithms

• Use an unordered set (hash table, hash trie) otherwise

• Much better performance if you don’t need order

• Also much easier to shard & distribute



BUILDING A CONCURRENT HASH TABLE

• Some things to think about

• Supporting deletions or insert-only?

• Using locking or lock-free techniques?

• Using chaining or probing?

• Insert-only hash table object with a fixed capacity:

• Contains(key): returns true if key is present, and false otherwise.

• Insert(key): If key is present, return false,

else if table contains capacity keys, return FULL,

else insert key and return true.



SIMPLEST HASH TABLE POSSIBLE:
LOCKING, INSERT-ONLY, PROBING, FIXED CAPACITY

• Shared array: data[]

• Each element is a bucket

• bucket has fields:

• key (the key inserted there), m (a mutex to protect that bucket)

• Simplest possible locking protocol:

• Must lock a bucket before any access (read or write) to its key

Insert(7)

hashes to 2
7

Insert(3)

hashes to 5

3

Insert(9)

hashes to 2

9



IMPLEMENTATION AND LP SKETCH

1   int h = hash(key);

2   for (int i=0;i<capacity;++i) {

3     int index = (h+i) % capacity;

4    data[index].m.lock();

5     int found = data[index].key;

6     if (found == key) {

7 data[index].m.unlock();

8     return false;

9     } else if (found == NULL) {

10    data[index].key = key;

11 data[index].m.unlock();

12    return true;

13    }

14 data[index].m.unlock();

15  }

16  return FULL;

int insert(int key) Intuitive sketch of

how we choose LPs

• Important lemmas

• The key in a bucket changes only once,

from NULL to non-NULL

• If we probe a sequence of buckets at times

t1 < t2 < … < tn, and see non-NULL keys,

then we would see the same keys if we were to 

do all probing atomically at time tn or later

What do I mean by:

“if we were to do all 

probing atomically?”



WHAT DO I MEAN BY:
“IF WE WERE TO DO ALL PROBING ATOMICALLY?”

Time

thread p

thread q

Contains(17)

Insert(23)

Contains(23)Insert(52)

Insert(52)

We are not making a formal 

argument. Just building 

intuition about why the 

chosen LPs are plausible.

We are imagining some 

concurrent execution E

E

To try to find linearization 

bugs caused by our choice 

of LPs, I am imagining a 

similar execution E’ where

some insert happens

atomically at its LP.

E’

Time

thread p

thread q

Contains(17) Contains(23)Insert(52)

Insert(52)

Insert(23)



IMPLEMENTATION AND LP SKETCH

1   int h = hash(key);

2   for (int i=0;i<capacity;++i) {

3     int index = (h+i) % capacity;

4    data[index].m.lock();

5     int found = data[index].key;

6     if (found == key) {

7 data[index].m.unlock();

8     return false;

9     } else if (found == NULL) {

10    data[index].key = key;

11 data[index].m.unlock();

12    return true;

13    }

14 data[index].m.unlock();

15  }

16  return FULL;

int insert(int key) Intuitive sketch of

how we choose LPs

• Important lemmas

• The key in a bucket changes only once,

from NULL to non-NULL

• If we probe a sequence of buckets at times

t1 < t2 < … < tn, and see non-NULL keys,

then we would see the same keys if we were to 

do all probing atomically at time tn or later

• Linearization points (LPs)

• Return@8: last read of data[index].key

• Return@12: write to data[index].key

• Return@16: last read of data[index].key



LP CHOICE INTUITION/SKETCH

1   int h = hash(key);

2   for (int i=0;i<capacity;++i) {

3     int index = (h+i) % capacity;

4     data[index].m.lock();

5     int found = data[index].key;

6     if (found == key) {

7       data[index].m.unlock();

8       return false;

9     } else if (found == NULL) {

10      data[index].key = key;

11      data[index].m.unlock();

12      return true;

13    }

14    data[index].m.unlock();

15  }

16  return FULL;

int insert(int key) • Case Return@16

(LP: last read of data[index].key)

• Easy case

• We returned at 16 after seeing

data[index].key != NULL for every index

• Non-NULL buckets don’t change

• So, when we do the last read of data[index] .key,

all buckets are full!

• So, our insert would return FULL

if performed atomically at the LP



LP CHOICE INTUITION/SKETCH

1   int h = hash(key);

2   for (int i=0;i<capacity;++i) {

3     int index = (h+i) % capacity;

4     data[index].m.lock();

5     int found = data[index].key;

6     if (found == key) {

7       data[index].m.unlock();

8       return false;

9     } else if (found == NULL) {

10      data[index].key = key;

11      data[index].m.unlock();

12      return true;

13    }

14    data[index].m.unlock();

15  }

16  return FULL;

int insert(int key) • Case Return@8 (LP: last read of data[index].key)

• Suppose we return@8 in the kth loop iteration

• In the first k-1 iterations, we see

data[index].key != NULL and data[index].key != key

• Claim: if our insert(key) ran atomically at the LP,

it would perform k iterations, and see the same values 

as it sees in the concurrent execution

• In its kth iteration, the linearized insert(key) reads 

data[index] at the same time as the concurrent

insert(key), so it sees data[index].key == key

• So, it returns false

Insert(key)

time

Iteration 0 reads 

data[index]
…

!= NULL, != key,

& does not change!

Iteration k-1 reads 

data[index]

!= NULL, != key,

& does not change!

LP: Iteration k 

reads data[index]

The values read in 

previous iterations 

are unchanged!



LP CHOICE INTUITION/SKETCH

1   int h = hash(key);

2   for (int i=0;i<capacity;++i) {

3     int index = (h+i) % capacity;

4     data[index].m.lock();

5     int found = data[index].key;

6     if (found == key) {

7       data[index].m.unlock();

8       return false;

9     } else if (found == NULL) {

10      data[index].key = key;

11      data[index].m.unlock();

12      return true;

13    }

14    data[index].m.unlock();

15  }

16  return FULL;

int insert(int key) • Case Return@12 (LP: write to data[index].key)

• Argument is similar to the previous case:

• Suppose we return@12 in the kth iteration

• In the first k-1 iterations, we see

data[index].key != NULL and data[index].key != key

• Claim: if our insert(key) ran atomically at the LP,

it would perform k iterations, and see the same 

values as it sees in the concurrent execution

• In its kth iteration, the linearized insert(key) reads 

data[index].key at the same time as the concurrent

insert(key), so it sees data[index].key == NULL

• So, it returns true



IMPLEMENTING CONTAINS

1   int h = hash(key);

2   for (int i=0;i<capacity;++i) {

3     int index = (h+i) % capacity;

4    data[index].m.lock();

5     int found = data[index].key;

6     if (found == key) {

7 data[index].m.unlock();

8     return true;

9     } else if (found == NULL) {

10      data[index].m.unlock();

11      return false;

12    }

13    data[index].m.unlock();

14  }

15  return false;

int contains(int key) • Quite similar to insertion

• Still lock before accessing buckets

• Even though we are not changing 

anything… Why?

• Ex: is this necessary?

• Linearization points?

• Always last read of data[index].key



WHAT ABOUT DELETION?

• For example, in our lock-based, fixed size, probing hash table:
Insert(7)

hashes to 2

7

Insert(3)

hashes to 5

3

Insert(9)

hashes to 2

9

Delete(7)

hashes to 2

Delete(9)

hashes to 2

Incorrect!



A WORKAROUND: TOMBSTONES

• Introduce a special key value called a TOMBSTONE

• To delete a key

• Instead of setting key = NULL, set it to TOMBSTONE

• TOMBSTONE essentially acts like a regular key

(that never matches a key you are trying to find/insert/delete)

• Insertions must still probe past it to find NULL

• Deletions must still probe past it to find the desired key



HOW TOMBSTONES FIX OUR PROBLEM

Insert(7)

hashes to 2

7

Insert(3)

hashes to 5

3

Insert(9)

hashes to 2

9

Delete(7)

hashes to 2

Delete(9)

hashes to 2



DELETE WITH TOMBSTONES

1   int h = hash(key);

2   for (int i=0;i<capacity;++i) {

3     int index = (h+i) % capacity;

4 data[index].m.lock();

5    int found = data[index].key;

6    if (found == NULL) {

7 data[index].m.unlock();

8    return false;

9    } else if (found == key) {

10   data[index].key = TOMBSTONE;

11 data[index].m.unlock();

12   return true;

13   }

14 data[index].m.unlock();

15  }

16  return false;

bool erase(int key) • Insert and contains are mostly unchanged

• They already skip past keys that

do not match the argument key

• TOMBSTONE acts like such a key

• Linearization points?

• return@8: last read of data[index].key

• return@12: write to data[index].key

• return@16: last read of data[index].key



DOWNSIDES OF TOMBSTONES?

• TOMBSTONEs are never cleaned up

• Cleaning them up seems hard

• Cannot remove a TOMBSTONE until there are no keys in the table

that probed past the TOMBSTONE when they were inserted

• Thought: if we do table expansion, there’s no need to copy over TOMBSTONEs…

39

Probes when 9 was inserted



A LOCK-FREE ALTERNATIVE

Not necessarily much faster… but good to know about.



LOCK-FREE INSERTION

• Instead of:

• Locking data[index], then

• if it is NULL, writing to data[index].key

• Use CAS to atomically change data[index] 

from NULL to key

• If we fail, someone else inserted there

• If it’s our value, we return false

(because the value is now already present)

• Otherwise, we go to the next cell and retry

1   int h = hash(key);

2   for (int i=0;i<capacity;++i) {

3     int index = (h+i) % capacity;

4     int found = data[index];

5     if (found == key) {

7         return false;

8     } else if (found == NULL) {

9       if (CAS(&data[index], NULL, key)) {

10        return true;

11      } else if (data[index] == key) {

12        return false;

13      }

14    }

15  }

16  return FULL;

int insert(int key)

Linearization points?



LOCK-FREE CONTAINS

bool contains(int key)

1   int h = hash(key);

2   for (int i=0;i<capacity;++i) {

3     int index = (h+i) % capacity;

4     int found = data[index];

5     if (found == NULL) {

6       return false;

7     } else if (found == key) {

8       return true;

9     }

10  }

11  return false;

• Quite similar to insertion

• Linearization points?

• Always last read of data[index]



LOCK-FREE DELETION

bool erase(int key)

1   int h = hash(key);

2   for (int i=0;i<capacity;++i) {

3     int index = (h+i) % capacity;

4     int found = data[index];

5     if (found == NULL) {

6       return false;

7     } else if (found == key) {

8       return CAS(&data[index], key, TOMBSTONE);

9     }

10  }

11  return false;

If CAS succeeds,

we deleted key

If CAS fails,

another thread 

concurrently deleted key

(return false,

since we did not delete it)

Linearization points?



RECAP

• Ordered vs unordered sets

• Lock-based, fixed size, probing, insert-only hash tables

• Deletion via tombstones

• A lock-free implementation


