
MULTICORE PROGRAMMING

Concurrent Hash Tables

Lecture 7

Trevor Brown

ANNOUNCEMENTS

• A3 due soon

• A4 to be released just after

• Two week assignment

• Topic is hash tables (similar to last class & today, but less fancy expansion)

LAST TIME

• Ordered vs unordered sets

• Lock-based, fixed size, probing, insert-only hash tables

• Deletion via tombstones

• A lock-free implementation

• This time:

• Probing vs chaining

• Hash function quality

• Hash table expansion

CHAINING: AN ALTERNATIVE TO PROBING

• Array of concurrent linked lists

• (Any concurrent linked list works)

• Can use sequential + coarse grained locks

7

Insert(7)

hashes to 2

Insert(3)

hashes to 5

Insert(9)

hashes to 2

3

9

Advantages? Disadvantages?

Reduced need for table expansion

Deletion is easy (handled by the list)

Lists add overhead (vs ~one CAS)

Cache misses!

BAD HASH FUNCTIONS

https://softwareengineering.

stackexchange.com/questio

ns/49550/which-hashing-

algorithm-is-best-for-

uniqueness-and-speed

Hashing numeric

strings with:

SDBM

Likely represents many keys

that hash to the same bucket,

causing excessive probing
Idea: insert keys into

a probing hash table,

and visualize the array

(row-by-row) as PNG;

white = empty bucket,

color = key in a bucket

BAD HASH FUNCTIONS

Hashing numeric

strings with:

DBJ2A

BAD HASH FUNCTIONS

Hashing numeric

strings with:

FNV1

BETTER HASH FUNCTIONS

Hashing numeric

strings with:

FNV1-A

Compare with a

bad function…Weird anomaly…

generated numbers

often alternate:

odd-even-odd-even !

GOOD HASH FUNCTIONS

Hashing numeric

strings with:

Murmur2

Newer version of

this exists:

Murmur3…

Can go further:

cryptographic hash functions

(but they are slow!)

EFFICIENTLY EXPANDING A HASH TABLE
CONCURRENT HASH TABLES: FAST AND GENERAL(?)! [MSD2016]

• Issues to solve

• When to expand?

• Too much probing? Estimate of number of keys in the table vs capacity?

• Which threads will perform the expansion?

• Enslaving user threads that access the table? Custom thread pool?

• How to expand?

• Block updates when expansion is happening? Always allow updates?

• Hard to always allow updates

• “we are fine with small amounts of (b)locking,

as long as it improves overall performance” (a healthy attitude)

Teaching something

close to this…

HIGH LEVEL IDEA

• When estimated number of keys > 50% of table capacity,

expand to ~4x estimated number of keys & migrate contents into the new table

• Naïve idea: global lock on table, copy with one thread --- inefficient!

• Partition old table into chunks (default size 4096)

• Numbered 0, 1, 2, …, floor(capacity / 4096)

• Threads use fetch & add to “claim” chunks to migrate

• Migrate a chunk to the new table by performing insert() on each key

4

WHAT IF EXPANSION IS CONCURRENT
WITH UPDATES?

6 4 23Old table

New table 6 23

Thread 1 Thread 2

chunksClaimed 01 Thread 1: F&A to claim a chunk

Thread 2: F&A to claim a chunk

2

Thread 1: see bucket 0 is empty

Thread 1: copy bucket 1 (val 6)

Thread 3: insert 9 at index 0
9

Threads 1&2: finish expansion

Lost key 9!
Must prevent updates to cells

we’ve already migrated!

Insert(6)

Imagine this is

4096 slots…

SOLUTION: MARKING

• Steal a bit from each key field

• Use it to store a mark

• Invariant: a bucket with a marked key cannot be modified

• In expansion, mark each bucket before migrating it

• currKey = bucket->key

• CAS(bucket->key, currKey, currKey | MARKED_MASK)

• In insert/delete, before performing CAS(bucket->key, currKey, newKey),

must verify that currKey is not marked (otherwise, help with expansion)

7 7
X

unmarked marked

HOW MARKING HELPS

6 4 23Old table

New table 6

Thread 1 Thread 2

chunksClaimed 01 Thread 1: F&A to claim a chunk

Thread 2: F&A to claim a chunk

2

Thread 1: mark bucket 0

Thread 1: mark & copy bucket 1

Thread 3: try insert(9) @ idx0X X

CAS(&bucket[0]->key, <NULL, unmarked>, <9, unmarked>)

CAS FAILS!

Thread 3: help expansion (if there

are any unclaimed chunks)

After expansion, retry insert(9)

DETECTING TABLE > 50% FULL

• Using the approximate counter

• Recall: how large can the error be in the approximate counter?

• 𝐸𝑟𝑟𝑜𝑟 = 𝑐 ⋅ 𝑛𝑢𝑚𝑇ℎ𝑟𝑒𝑎𝑑𝑠2

• Insignificant for large tables (for c=1, 100 threads, error is 10000: 1% of 1M keys)

• Could be a problem when the table is small…

• What happens if error ~= table capacity?

• Won’t realize table is full until many more operations are done!

• Suggestions to fix this?

• Modify approximate counter to add a slow “accurateGet()” operation

• If we do “too much” probing in an operation (i.e., we are already paying a high cost),

run accurateGet() to check if we should expand

1 char padding0[64];

2 atomic<int> * data;

3 atomic<int> * old;

4 int capacity;

5 int oldCapacity;

6 counter * approxSize;

7 atomic<int> chunksClaimed;

8 atomic<bool> expandingNow;

9 char padding1[64];

struct table

ROUGH IMPLEMENTATION SKETCH

1 char padding0[64];

2 atomic<uint64_t> * data;

3 int capacity;

4 char padding1[64];

/* code for operations ... */

struct hashmap

Without expansion

1 char padding0[64];

2 atomic<table *> currentTable;

3 char padding1[64];

/* code for operations ... */

struct hashmap

With expansion

data

Each slot is an

atomic<int>

Data is a pointer

(to the start of an array)

Can cause some

false sharing?

old stays around

so expansion can

be done…

Atomic pointer to

current table struct

old stays around

so expansion can

be done…

Erratum: changing

this in next lecture

IMPLEMENTATION SKETCH

table * t = currentTable;

int h = hash(key);

for (int i=0; i < t->capacity; ++i) {

if (expandAsNeeded(t, i)) return insert(key);

int index = (h+i) % t->capacity;

int found = t->data[index];

if (found & MARKED_MASK) return insert(key);

else if (found == key) return false;

else if (found == NULL) {

if (CAS(&t->data[index], NULL, key)) return true;

else {

found = t->data[index];

if (found & MARKED_MASK) return insert(key);

else if (found == key) return false;

} } }

assert(false);

int hashmap::insert(int key)

Found evidence of expansion…

restart to help / get into the new table

Could fail CAS because

another thread

marked or inserted

Check if we need to expand, and start expansion as

necessary, or help ongoing expansion. If we start or

help expansion, retry our insert (in the new table)

More details on next slide…

• Check if t->expandingNow

• If so, call helpExpansion(t) to try to help the ongoing expansion

• (helpExpansion(t): repeatedly until all chunks in t are claimed: FAA(t->chunksClaimed, 1),

and if return value was a valid chunk, migrate its contents from t->old to t->new via insert())

• Else, check t->counter->get() to see if we should expand

• If we should expand, call startExpansion(t)

• (startExpansion(t): create new table struct with larger data[] and CAS it into currentTable;

if CAS fails, another thread started expansion, and we will help it upon retrying our insert)

• Else, check probing to see if it’s “excessive” (i.e., check if i is “very large” – heuristic!)

• If probing is “excessive,” check t->counter->getAccurate() to see if we should expand

• If we should expand, call startExpansion(t)

Sketch of expandAsNeeded(t, i)
Clarifying and expanding this

description in the next lecture!

