MULTICORE PROGRAMMING

Hash Table Expansion, Linked Data Structures

Lecture 8

Trevor Brown

LAST TIME

* Probing vs chaining
* Hash function quality

» Started hash table expansion

* This time:
* Finishing hash table expansion

 Starting linked data structures

HASH TABLE EXPANSION

Clarifying and finishing up after last time

RECALL: ROUGH IMPLEMENTATION SKETCH

Initial table struct:
old = NULL
oldCapacity = 0
chunksClaimed =0

Atomic pointer to

struct hashmap current table struct

1 char padding0[64];
2 atomic<table *> currentTable;
3 char paddingl[64];

chunksDone =0

Note total number of chunks in old is 0, so

struct table chunksDone = 0 means expansion is “done.”

old stays around

char padding0[64]; SO expansion can

atomic<int> * data; be done... Result of createNewTableStruct(t):
atomic<int> * old; old = t->data

T CApEesEY: oldCapacity = t->capacity

int oldCapacity; chunksClaimed =0

counter * approxSize;

| chunksDone =0
atomic<int> chunksClaimed;
atomic<int> chunksDone; since last lecture!

char paddingl([64];

W O J oy U1l i W DN

RECALL: CODE FROM LAST TIME

int hashmap::insert (int key)
table * t = currentTable;
int h = hash (key);
for (int 1=0; 1 < t->capacity; ++1i) {

1f (expandAsNeeded(t, 1)) return insert (key)

int index = (ht+i) % t->capacity;

int found = t->data[index];

1f (found & MARKED MASK) return insert (key);

else if (found == key) return false;

else 1f (found == NULL) {
if (CAS(&t->data[index], NULL, key)) return true;
else {

found = t->data[index];
1f (found & MARKED MASK) return insert (key);
else if (found == key) return false;

Forod

assert (false) ;

W o =J & N ol W M

S T N R N T S B N B S e e N = e e =
I Y O T T == I U= T= < R (R S » BT~ UU R 0% B =

bool hashmap: :expandAsNeeded (t, 1)
if (t->approxSize->get () > t->capacity/?) or :

(1 > 10 and t->approxSize->getAccurate() > t->capacity/2?) {
startExpansion(t) ;
return true;

} Note: for initial table
return false; struct, this is a no-op

void hashmap: :helpExpansion (t)
int totalOldChunks = ceil (t->oldCapacity / 4096) ;
while (t—->chunksClaimed < totalOldChunks) {

int myChunk = FAA (&t->chunksClaimed, 1);

Important! Last time [made a
mistake... Actually cannot let

if (myChunk < totalOldChunks) | thii?ﬁi;’f:rezzcln;;:il:)iIilsetvivo:lek:le
| ket B (e Ly ClaRlILe) What about this? - :
FAA (&t->chunksDone, 1) ; '

b

wait until (t—->chunksDone == totalOldChunks) Wait until expansion is

finished before returning!

void hashmap::startExpansion (t)
if (currentTable == t) {
t new = createNewTableStruct (t);
1f not CAS(¤tTable, t, t new) delete t new;
}

helpExpansion (currentTable) ;

MAKING MIGRATION MORE EFFICIENT

« Typical index function to get a bucket index from a key:

* index = hash(key) % capacity

» If capacity doubles, indexes of keys are scxambled
« Hash 23 in array of size 12: bucket 11 > in array of size 24: bucket 23
* Hash 13 in array of size 12: bucket 1 > in array of size 24: bucket 13

e Scaled index function

* index = floor(hash(key) / largestHashPossible * capacity)

 If capacity doubles, indexes of keys are doubled
* In array of size 12: bucket 11 > in array of size 24: bucket 22

* In array of size 12: bucket 1 = in array of size 24: bucket 2

* With predictable indexes, can expand more efficiently!

IDEA

Old table

One thread can copy

without synchronization

New table 7 6

MORE COMPLEX DATA STRUCTURES

WHAT ELSE IS WORTH UNDERSTANDING?

We’ve seen hash tables...

What about node based data structures?

* (That aren’t just a single pointer like stacks, or two pointers like queues)
Singly-linked lists, doubly-linked lists, skip-lists, trees, tries, hash tries, ...

New challenges:
* Nodes get deleted when threads might be trying to work on them

* Operations may require atomic changes to multiple nodes

LOCK-BASED SINGLY-LINKED LISTS

Is this a good approach?

Ordered set implemented with singly-linked list

Hand-over-hand locking discipline:

* must lock a node before accessing it

« Can only acquire a lock on a node: invalidations, even for searches!

o ifitis the list head, or

if you already hold a lock on the previous node

Delete(15)

head

Insert(17)

head

