
MULTICORE PROGRAMMING

Hash Table Expansion, Linked Data Structures

Lecture 8

Trevor Brown

LAST TIME

• Probing vs chaining

• Hash function quality

• Started hash table expansion

• This time:

• Finishing hash table expansion

• Starting linked data structures

HASH TABLE EXPANSION

Clarifying and finishing up after last time

1 char padding0[64];

2 atomic<int> * data;

3 atomic<int> * old;

4 int capacity;

5 int oldCapacity;

6 counter * approxSize;

7 atomic<int> chunksClaimed;

8 atomic<int> chunksDone;

9 char padding1[64];

struct table

RECALL: ROUGH IMPLEMENTATION SKETCH

1 char padding0[64];

2 atomic<table *> currentTable;

3 char padding1[64];

/* code for operations ... */

struct hashmap

old stays around

so expansion can

be done…

Atomic pointer to

current table struct

old stays around

so expansion can

be done…

Erratum: changed

since last lecture!

Initial table struct:

old = NULL

oldCapacity = 0

chunksClaimed = 0

chunksDone = 0

Note total number of chunks in old is 0, so

chunksDone = 0 means expansion is “done.”

Result of createNewTableStruct(t):

old = t->data

oldCapacity = t->capacity

chunksClaimed = 0

chunksDone = 0

RECALL: CODE FROM LAST TIME

table * t = currentTable;

int h = hash(key);

for (int i=0; i < t->capacity; ++i) {

if (expandAsNeeded(t, i)) return insert(key);

int index = (h+i) % t->capacity;

int found = t->data[index];

if (found & MARKED_MASK) return insert(key);

else if (found == key) return false;

else if (found == NULL) {

if (CAS(&t->data[index], NULL, key)) return true;

else {

found = t->data[index];

if (found & MARKED_MASK) return insert(key);

else if (found == key) return false;

} } }

assert(false);

int hashmap::insert(int key)

Found evidence of expansion…

restart to help / get into the new table

Check if we need to expand, and start expansion as

necessary, or help ongoing expansion. If we start or

help expansion, retry our insert (in the new table)

Clarifying the last lecture

Wait until expansion is

finished before returning!

Important! Last time I made a

mistake... Actually cannot let

threads insert into the new table

until after expansion is done!
What about this?

Note: for initial table

struct, this is a no-op

MAKING MIGRATION MORE EFFICIENT

• Typical index function to get a bucket index from a key:

• index = hash(key) % capacity

• If capacity doubles, indexes of keys are scrambled

• Hash 23 in array of size 12: bucket 11 → in array of size 24: bucket 23

• Hash 13 in array of size 12: bucket 1 → in array of size 24: bucket 13

• Scaled index function

• index = floor(hash(key) / largestHashPossible * capacity)

• If capacity doubles, indexes of keys are doubled

• In array of size 12: bucket 11 → in array of size 24: bucket 22

• In array of size 12: bucket 1 → in array of size 24: bucket 2

• With predictable indexes, can expand more efficiently!

IDEA

7 6 4 23Old table

4New table

One thread can copy

without synchronization

7 6 23

MORE COMPLEX DATA STRUCTURES

WHAT ELSE IS WORTH UNDERSTANDING?

• We’ve seen hash tables…

• What about node based data structures?

• (That aren’t just a single pointer like stacks, or two pointers like queues)

• Singly-linked lists, doubly-linked lists, skip-lists, trees, tries, hash tries, …

• New challenges:

• Nodes get deleted when threads might be trying to work on them

• Operations may require atomic changes to multiple nodes

LOCK-BASED SINGLY-LINKED LISTS

• Ordered set implemented with singly-linked list

• Hand-over-hand locking discipline:

• must lock a node before accessing it

• Can only acquire a lock on a node:

• if it is the list head, or

if you already hold a lock on the previous node

• Delete(15)

• Insert(17)

7head 15 20118 23

7head 15 20118 23

17

Is this a good approach?

Locking causes many cache

invalidations, even for searches!

Should avoid locking while

searching/traversing the list!

