
MULTICORE PROGRAMMING

Linked Data Structures

Lecture 9

Trevor Brown



RECALL: LOCK-BASED SINGLY-LINKED LISTS

• Ordered set implemented with singly-linked list

• Hand-over-hand locking discipline:

• must lock a node before accessing it

• Can only acquire a lock on a node:

• if it is the list head, or

if you already hold a lock on the previous node

• Delete(15)

• Insert(17)

7head 15 20118 23

7head 15 20118 23

17

Locking causes many cache 

invalidations, even for searches!

Should avoid locking while 

searching/traversing the list!



LOCK-FREE SINGLY-LINKED LISTS:
ATTEMPTING TO USE CAS

• Ordered set implemented with singly-linked list

• Delete(15)

• Traverse list, then CAS .next from         to

• Insert(17)

• Traverse list, create node        , then CAS      .next from         to

7head 15 20

17

7 15

7

20

17 20 17

One approach is to design a 

completely lock-free list…



THE PROBLEM

• What if the operations are concurrent?

• Delete(15): pause just before CAS      .next from         to

• Insert(17): traverse list, create node        ,

then CAS .next from         to 

• Delete(15): resume and CAS      .next from   to

7head 15 20

17

Erroneously 

deleted 17!

7 15 20

17

15 20 17

7 15 20



SOLUTION: MARKING [HARRIS2001]

• Idea: prevent changes to nodes that will be deleted

• Before deleting a node, mark its next pointer

• How does this fix the Insert(17), Delete(15) example?

• Delete(15) marks          before using CAS to delete it

• Insert(17) cannot modify         .next because it is marked

7head 15 20

17

15

15

Okay. We can do lists!

Note: you can also do fast lock-based lists 

that avoid locking while searching…

Whenever a thread encounters a mark, it tries 

to help the deletion

Even if the thread doing the deletion 

crashed, we still guarantee progress…

By doing a CAS to unlink the marked node…



WHAT ABOUT REMOVING SEVERAL NODES?

• Ex1: atomically deleting

consecutive nodes in a list…

• Delete(15 AND 20)

• Mark 15, then mark 20?

• What can go wrong…

• Crash between these steps?

• Some change that makes it

incorrect to mark 20?

• Ex2: performing tree rotations

by replacing nodes…

A

B C

D

A

B C

D

7head 15 20 27



OR CHANGING TWO POINTERS AT ONCE?

• Doubly-linked list

• Insert(17)

• If the two pointer changes are not atomic… (i.e., if they are done: left then right)

• Insertions and deletions could happen between them!

• Example:

• Insert(17) does 15.next := 17

• But before 20.pred := 17, a thread does Insert(18)

• Then Insert(17) finishes

• Result:

• List structure is corrupted…

• 18 is visible when searching left-to-right but not vice versa

• 17 is visible when searching right-to-left but not vice versa

7 15 20

17

7 15 20

17

18



succpred

EASY LOCK-BASED DOUBLY-LINKED LIST

• Doubly-linked list

• Insert(17)

• Simple locking discipline

• Hand-over-hand locking

• Never access anything without locking it first

• Correct, but at what cost?

• To respect the locking discipline, we have to lock while searching!

• Can we avoid locking during search?

7 15 20

17

Deadlock possible if 

we search from both 

sides… for now, 

imagine we search 

only left-to-right…



CAN WE SEARCH A DOUBLY-LINKED LIST 
WITHOUT LOCKING NODES?

• Insert(k):

• Search without locking

until we reach nodes pred & succ

where pred.key < k <= succ.key

• If we found k, return false

• Lock pred, lock succ

• If pred.next != succ, unlock all & retry

• Create new node n

(containing k, pointing to pred & succ)

• pred.next = n

• succ.prev = n

• Unlock all

succpred

7 15 20

17

Insert(17)

• Contains(k):

• curr = head

• Loop

• If curr == NULL or curr.key > k then return false

• If curr.key == k then return true

• curr = curr.next

Where should we linearize contains?

Let’s see why this is true…

No single line of code works…

Where should we linearize insert?

At what point does 

Insert affect the return 

value of Contains?



• Contains(k):

• curr = head

• Loop

• If curr == NULL or curr.key > k then return false

• If curr.key == k then return true

• curr = curr.next

IT’S HARD TO LINEARIZE CONTAINS… EXAMPLE 1
• Insert(k):

• Search without locking

until we reach nodes pred & succ

where pred.key < k <= succ.key

• If we found k, return false

• Lock pred, lock succ

• If pred.next != succ,

unlock all & retry

• Create new node n

• pred.next = n

• succ.prev = n

• Unlock all

7 15 20

17

Consider a concurrent Contains(17) and Insert(17) in this list

Insert(17)

Contains(17)
Contains(17) is linearized now!

What should it return?

False!

suppose LP is here

Returns TRUE, 

contradicting

the ADT!



• Contains(k):

• curr = head

• Loop

• If curr == NULL or curr.key > k then return false

• If curr.key == k then return true

• curr = curr.next

IT’S HARD TO LINEARIZE CONTAINS… EXAMPLE 2
• Insert(k):

• Search without locking

until we reach nodes pred & succ

where pred.key < k <= succ.key

• If we found k, return false

• Lock pred, lock succ

• If pred.next != succ,

unlock all & retry

• Create new node n

• pred.next = n

• succ.prev = n

• Unlock all

7 15 20

17

Consider a concurrent Contains(17) and Insert(17) in this list

Insert(17)

Contains(17)
Contains(17) is linearized now!

What should it return?

True!

Returns TRUE… 

seems OK

Suppose LP is last

execution of this line



• Contains(k):

• curr = head

• Loop

• If curr == NULL or curr.key > k then return false

• If curr.key == k then return true

• curr = curr.next

WHAT IF WE ALLOW KEY DELETION ALSO?
• Insert(k):

• Search without locking

until we reach nodes pred & succ

where pred.key < k <= succ.key

• If we found k, return false

• Lock pred, lock succ

• If pred.next != succ,

unlock all & retry

• Create new node n

• pred.next = n

• succ.prev = n

• Unlock all

7 15

Consider a concurrent Contains(17), Delete(15) and Delete(17) in this list

Insert(17)

Contains(17)

Contains(17) is linearized now!

What should it return?
False!

Returns True! 

Contradicts

the ADT!!

17 20

Suppose LP is last

execution of this line

Delete(15)

Delete(17)

Is there a time in this execution where we 

could linearize a return value of true?

Idea: prove a suitable LP exists for 

every operation in every execution



INTUITION BEHIND LINEARIZATION ARGUMENT

• If Insert/Delete changes the data structure (returns true), LP is the write to pred.next

• This is when Contains becomes aware of the change…

• Otherwise, Insert/Delete returns false (and we prove there exists some correct LP)

• Case 1: consider any Insert operation O that returns false

• Must prove: ∃ a time during O when key was in the data structure (can linearize then)

• Since we return false, we do find the key we are searching for in node u (but it might be deleted!)

• Key idea: even if u is deleted, it must be in the list at some time t during O (or we couldn’t reach it)

• Assume u is never in the list at any time during O

• Either u was inserted after O (can’t find it), or deleted before O and never reinserted (can’t find it)…

• Contradiction in either case, so assumption must be wrong… So a valid LP exists.

This is only an 

intuitive argument!

Also need to argue in cases where we do not

find the key! (Harder!) And for Delete…

To be theoretically rigorous here, you typically first prove basic list invariants, then prove inductively that 

that each node you find during a traversal was in the list at some time during the traversal…



WHAT IF WE HAVE
DIFFERENT TYPES OF SEARCHES?

• Could imagine an application that wants a doubly linked list so:

• Some threads can search left-to-right (containsLR)

• Some threads can search right-to-left (containsRL)

• Can we linearize such an algorithm?


