
A Template for Implementing Fast Lock-free Trees Using HTM
Trevor Brown
Technion, Israel
me@tbrown.pro

ABSTRACT
Algorithms that use hardware transactional memory (HTM) must
provide a software-only fallback path to guarantee progress. The
design of the fallback path can have a profound impact on per-
formance. If the fallback path is allowed to run concurrently with
hardware transactions, then hardware transactions must be instru-
mented, adding significant overhead. Otherwise, hardware trans-
actions must wait for any processes on the fallback path, causing
concurrency bottlenecks, or move to the fallback path. We intro-
duce an approach that combines the best of both worlds. The key
idea is to use three execution paths: an HTM fast path, an HTM
middle path, and a software fallback path, such that the middle
path can run concurrently with each of the other two. The fast path
and fallback path do not run concurrently, so the fast path incurs
no instrumentation overhead. Furthermore, fast path transactions
can move to the middle path instead of waiting or moving to the
software path. We demonstrate our approach by producing an ac-
celerated version of the tree update template of Brown et al., which
can be used to implement fast lock-free data structures based on
down-trees. We used the accelerated template to implement two
lock-free trees: a binary search tree (BST), and an (a,b)-tree (a gen-
eralization of a B-tree). Experiments show that, with 72 concurrent
processes, our accelerated (a,b)-tree performs between 4.0x and
4.2x as many operations per second as an implementation obtained
using the original tree update template.

1 INTRODUCTION
Concurrent data structures are crucial building blocks in multi-
threaded software. There are many concurrent data structures im-
plemented using locks, but locks can be inefficient, and are not
fault tolerant (since a process that crashes while holding a lock
can prevent all other processes from making progress). Thus, it is
often preferable to use hardware synchronization primitives like
compare-and-swap (CAS) instead of locks. This enables the develop-
ment of lock-free (or non-blocking) data structures, which guarantee
that at least one process will always continue to make progress,
even if some processes crash. However, it is notoriously difficult
to implement lock-free data structures from CAS, and this has
inhibited the development of advanced lock-free data structures.

One way of simplifying this task is to use a higher level synchro-
nization primitive that can atomically access multiple locations.
For example, consider a k-word compare-and-swap (k-CAS), which
atomically: reads k locations, checks if they contain k expected
This work was performed while Trevor Brown was a student at the University of
Toronto. Funding was provided by the Natural Sciences and Engineering Research
Council of Canada. I would also like thank my supervisor Faith Ellen for her helpful
comments on this work, and to Oracle Labs for providing access to the 72-thread Intel
machine used in my experiments.
CONF ’YY, Month DD, 20YY, City, Country
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

values, and, if so, writes k new values. k-CAS is highly expressive,
and it can be used in a straightforward way to implement any
atomic operation. Moreover, it can be implemented from CAS and
registers [18]. However, since k-CAS is so expressive, it is difficult
to implement efficiently.

Brown et al. [7] developed a set of new primitives called LLX
and SCX that are less expressive than k-CAS, but can still be used
in a natural way to implement many advanced data structures.
These primitives can be implemented much more efficiently than
k-CAS. At a high level, LLX returns a snapshot of a node in a data
structure, and after performing LLXs on one or more nodes, one
can perform an SCX to atomically: change a field of one of these
nodes, and finalize a subset of them, only if none of these nodes
have changed since the process performed LLXs on them. Finalizing
a node prevents any further changes to it, which is useful to stop
processes from erroneously modifying deleted parts of the data
structure. In a subsequent paper, Brown et al. used LLX and SCX to
design a tree update template that can be followed to produce lock-
free implementations of down-trees (trees in which all nodes except
the root have in-degree one) with any kinds of update operations [8].
They demonstrated the use of the template by implementing a
chromatic tree, which is an advanced variant of a red-black tree (a
type of balanced binary search tree) that offers better scalability. The
template has also been used to implement many other advanced
data structures, including lists, relaxed AVL trees, relaxed (a,b)-
trees, relaxed b-slack trees and weak AVL trees [6, 8, 19]. Some of
these data structures are highly efficient, and would be well suited
for inclusion in data structure libraries.

In this work, we study how the new hardware transactional mem-
ory (HTM) capabilities found in recent processors (e.g., by Intel and
IBM) can be used to produce significantly faster implementations of
the tree update template. By accelerating the tree update template,
we also provide a way to accelerate all of the data structures that
have been implemented with it. Since library data structures are
reused many times, even minor performance improvements confer
a large benefit.

HTM allows a programmer to run blocks of code in transac-
tions, which either commit and take effect atomically, or abort and
have no effect on shared memory. Although transactional memory
was originally intended to simplify concurrent programming, re-
searchers have since realized that HTM can also be used effectively
to improve the performance of existing concurrent code [23, 24, 30]:
Hardware transactions typically have very little overhead, so they
can often be used to replace other, more expensive synchronization
mechanisms. For example, instead of performing a sequence of
CAS primitives, it may be faster to perform reads, if-statements and
writes inside a transaction. Note that this represents a non-standard
use of HTM: we are not interested in its ease of use, but, rather, in
its ability to reduce synchronization costs.

ar
X

iv
:1

70
8.

04
83

8v
1

 [
cs

.D
C

]
 1

6
A

ug
 2

01
7

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Although hardware transactions are fast, it is surprisingly dif-
ficult to obtain the full performance benefit of HTM. Here, we
consider Intel’s HTM, which is a best-effort implementation. This
means it offers no guarantee that transactions will ever commit.
Even in a single threaded system, a transaction can repeatedly abort
because of internal buffer overflows, page faults, interrupts, and
many other events. So, to guarantee progress, any code that uses
HTM must also provide a software fallback path to be executed
if a transaction fails. The design of the fallback path profoundly
impacts the performance of HTM-based algorithms.
Allowing concurrency between two paths. Consider an oper-
ation O that is implemented using the tree update template. One
natural way to use HTM to accelerate O is to use the original oper-
ation as a fallback path, and then obtain an HTM-based fast path
by wrapping O in a transaction, and performing optimizations to
improve performance [23]. We call this the 2-path concurrent al-
gorithm (2-path con). Since the fast path is just an optimized version
of the fallback path, transactions on the fast path and fallback path
can safely run concurrently. If a transaction aborts, it can either
be retried on the fast path, or be executed on the fallback path.
Unfortunately, supporting concurrency between the fast path and
fallback path can add significant overhead on the fast path.

The first source of overhead is instrumentation on the fast path
that manipulates the meta-data used by the fallback path to syn-
chronize processes. For example, lock-free algorithms often create
a descriptor for each update operation (so that processes can deter-
mine how to help one another make progress), and store pointers
to these descriptors in Data-records, where they act as locks. The
fast path must also manipulate these descriptors and pointers so
that the fallback path can detect changes made by the fast path.

The second source of overhead comes from constraints imposed
by algorithmic assumptions made on the fallback path. The tree
update template implementation in [8] assumes that only child
pointers can change, and all other fields of nodes, such as keys and
values, are never changed. Changes to these other immutable fields
must be made by replacing a node with a new copy that reflects the
desired change. Because of this assumption on the fallback path,
transactions on the fast path cannot directly change any field of a
node other than its child pointers. This is because the fallback path
has no mechanism to detect such a change (and may, for example,
erroneously delete a node that is concurrently being modified by
the fast path). Thus, just like the fallback path, the fast path must
replace a node with a new copy to change its immutable fields,
which can be much less efficient than changing its fields directly.
Disallowing concurrency between twopaths.To avoid the over-
heads described above, concurrency is often disallowed between the
fast path and fallback path. The simplest example of this approach is
a technique called transactional lock elision (TLE) [27, 28]. TLE
is used to implement an operation by wrapping its sequential code
in a transaction, and falling back to acquire a global lock after a
certain number of transactional attempts. At the beginning of each
transaction, a process reads the state of the global lock and aborts
the transaction if the lock is held (to prevent inconsistencies that
might arise because the fallback path is not atomic). Once a process
begins executing on the fallback path, all concurrent transactions

abort, and processes wait until the fallback path is empty before
retrying their transactions.

If transactions never abort, then TLE represents the best perfor-
mance we can hope to achieve, because the fallback path introduces
almost no overhead and synchronization is performed entirely by
hardware. Note, however, that TLE is not lock-free. Additionally, in
workloads where operations periodically run on the fallback path,
performance can be very poor.

As a toy example, consider a TLE implementation of a binary
search tree, with a workload consisting of insertions, deletions and
range queries. A range query returns all of the keys in a range [lo,hi).
Range queries access many memory locations, and cause frequent
transactional aborts due to internal processor buffer overflows
(capacity limits). Thus, range queries periodically run on the fallback
path, where they can lead to numerous performance problems. Since
the fallback path is sequential, range queries (or any other long-
running operations) cause a severe concurrency bottleneck, because
they prevent transactions from running on the fast path while they
slowly complete, serially.

One way to mitigate this bottleneck is to replace the sequen-
tial fallback path in TLE with a lock-free algorithm, and replace
the global lock with a fetch-and-increment object F that counts
how many operations are running on the fallback path. Instead of
aborting if the lock is held, transactions on the fast path abort if
F is non-zero. We call this the 2-path non-concurrent algorithm
(2-path con). In this algorithm, if transactions on the fast path retry
only a few times before moving to the fallback path, or do not wait
between retries for the fallback path to become empty, then the
lemming effect [15] can occur. (The lemming effect occurs when
processes on the fast path rapidly fail and move to the fallback
path, simply because other processes are on the fallback path.) This
can cause the algorithm to run only as fast as the (much slower)
fallback path. However, if transactions avoid the lemming effect
by retrying many times before moving to the fallback path, and
waiting between retries for the fallback path to become empty, then
processes can spend most of their time waiting. The performance
problems discussed up to this point are summarized in Figure 1.
The problem with two paths. In this paper, we study two differ-
ent types of workloads: light workloads, in which transactions
rarely run on the fallback path, and heavy workloads, in which
transactions more frequently run on the fallback path. In light work-
loads, algorithms that allow concurrency between paths perform
very poorly (due to high overhead) in comparison to algorithms that
disallow concurrency. However, in heavy workloads, algorithms
that disallow concurrency perform very poorly (since transactions
on the fallback path prevent transactions from running on the fast
path) in comparison to algorithms that allow concurrency between
paths. Consequently, all two path algorithms have workloads that
yield poor performance. Our experiments confirm this, showing
surprisingly poor performance for two path algorithms in many
cases.
Using three paths.We introduce a technique that simultaneously
achieves high performance for both light and heavy workloads by
using three paths: an HTM fast path, an HTM middle path and
a non-transactional fallback path. (See the right half of Figure 1.)
Each operation begins on the fast path, and moves to the middle

Figure 1: (Left) Performance problems affecting two-path algorithms. (Right) Using three execution paths.

path after it retries F times. An operation on the middle path moves
to the fallback path after retryingM times on the middle path. The
fast path does not manipulate any synchronization meta-data used
by the fallback path, so operations on the fast path and fallback
path cannot run concurrently. Thus, whenever an operation is on
the fallback path, all operations on the fast path move to the middle
path. The middle path manipulates the synchronization meta-data
used by the fallback path, so operations on the middle path and
fallback path can run concurrently. Operations on the middle path
can also run concurrently with operations on the fast path (since
conflicts are resolved by the HTM system). We call this the 3-path
algorithm (3-path).

We briefly discuss why this approach avoids the performance
problems described above. Since transactions on the fast path do
not run concurrently with transactions on the fallback path, transac-
tions on the fast path run with no instrumentation overhead. When
a transaction is on the fallback path, transactions can freely execute
on the middle path, without waiting. The lemming effect does not
occur, since transactions do not have to move to the fallback path
simply because a transaction is on the fallback path. Furthermore,
we enable a high degree of concurrency, because the fast and middle
paths can run concurrently, and the middle and fallback paths can
run concurrently.

We performed experiments to evaluate our new template algo-
rithms by comparing them with the original template algorithm. In
order to compare the different template algorithms, we used each
algorithm to implement two data structures: a binary search tree
(BST) and a relaxed (a,b)-tree. We then ran microbenchmarks to
compare the performance (operations per second) of the different
implementations in both light and heavy workloads. The results
show that our new template algorithms offer significant perfor-
mance improvements. For example, on an Intel system with 72
concurrent processes, our best implementation of the relaxed (a,b)-
tree outperformed the implementation using the original template
algorithm by an average of 410% over all workloads.

Contributions
• We present four accelerated implementations of the tree

update template of Brown et al. that explore the design
space for HTM-based implementations: 2-path con, TLE,
2-path con, and 3-path.

• We highlight the importance of studying both light and
heavy workloads in the HTM setting. Each serves a distinct
role in evaluating algorithms: light workloads demonstrate

the potential of HTM to improve performance by reducing
overhead, and heavy workloads capture the performance
impact of interactions between different execution paths.

• We demonstrate the effectiveness of our approach by ac-
celerating two different lock-free data structures: an unbal-
anced BST, and a relaxed (a,b)-tree. Experimental results
show a significant performance advantage for our acceler-
ated implementations.

The remainder of the paper is structured as follows. The model is
introduced in Section 2. Section 3 describes LLX and SCX, and the
tree update template. We describe an HTM-based implementation
of LLX and SCX in Section 4. In Section 5, we describe our four
accelerated template implementations, and argue correctness and
progress. In Section 6, we describe two data structures that we use
in our experiments. Experimental results are presented in Section 7.
Section 8 describes an optimization to two of our accelerated tem-
plate implementations. In Section 9, we describe a way to reclaim
memory more efficiently for 3-path algorithms. In Section 10, we de-
scribe how our approach could be used to accelerate data structures
that use the read-copy-update (RCU) or k-compare-and-swap prim-
itives. Related work is surveyed in Section 11. Finally, we conclude
in Section 12.

2 MODEL
We consider an asynchronous shared memory system with n pro-
cesses, and Intel’s implementation of HTM. Arbitrary blocks of
code can be executed as transactions, which either commit (and
appear to take place instantaneously) or abort (and have no effect
on the contents of shared memory). A transaction is started by in-
voking txBegin, is committed by invoking txEnd, and can be aborted
by invoking txAbort. Intel’s implementation of HTM is best-effort,
which means that the system can force transactions to abort at any
time, and no transactions are ever guaranteed to commit. Each time
a transaction aborts, the hardware provides a reason why the abort
occurred. Two reasons are of particular interest. Conflict aborts
occur when two processes contend on the same cache-line. Since
a cache-line contains multiple machine words, conflict aborts can
occur even if two processes never contend on the same memory
location. Capacity aborts occur when a transaction exhausts some
shared resource within the HTM system. Intuitively, this occurs
when a transaction accesses too many memory locations. (In reality,
capacity aborts also occur for a variety of complex reasons that
make it difficult to predict when they will occur.)

3 BACKGROUND
The LLX and SCX primitives. The load-link extended (LLX) and
store-conditional extended (SCX) primitives are multi-word gener-
alizations of the well-known load-link (LL) and store-conditional
(SC), and they have been implemented from single-word CAS [7].
LLX and SCX operate on Data-records, each of which consists of
a fixed number of mutable fields (which can change), and a fixed
number of immutable fields (which cannot).

LLX(r) attempts to take a snapshot of the mutable fields of a
Data-record r . If it is concurrent with an SCX involving r , it may
return Fail, instead. Individual fields of a Data-record can also
be read directly. An SCX(V , R, f ld, new) takes as its arguments a
sequenceV of Data-records, a subsequence R ofV , a pointer f ld to
a mutable field of one Data-record in V , and a new value new for
that field. The SCX tries to atomically store the value new in the
field that f ld points to and finalize each Data-record in R. Once a
Data-record is finalized, its mutable fields cannot be changed by
any subsequent SCX, and any LLX of the Data-record will return
Finalized instead of a snapshot.

Before a process p invokes SCX, it must perform an LLX(r) on
each Data-record r in V . For each r ∈ V , the last LLX(r) performed
by p prior to the SCX is said to be linked to the SCX, and this
linked LLX must return a snapshot of r (not Fail or Finalized).
An SCX(V ,R, f ld,new) by a process modifies the data structure
and returns True (in which case we say it succeeds) only if no
Data-record r in V has changed since its linked LLX(r); otherwise
the SCX fails and returns False. Although LLX and SCX can fail,
their failures are limited in such a way that they can be used to
build data structures with lock-free progress. See [7] for a more
formal specification.

Observe that SCX can only change a single value in aData-record
(and finalize a sequence of Data-records) atomically. Thus, to im-
plement an operation that changes multiple fields, one must create
new Data-records that contain the desired changes, and use SCX
to change one pointer to replace the old Data-records.

Pseudocode for the original, CAS-based implementation of LLX
and SCX appears in Figure 2. Each invocation S of SCXO (V , R, f ld,
new) starts by creating an SCX-record D, which contains all of the
information necessary to perform S , and then invokes Help(D)
to perform it. The SCX-record also contains a state field, which
initially contains the value InProgress. When S finishes, the state
field of D will contain either Committed or Aborted depending on
whether the S succeeded.

S synchronizes with other invocations of SCXO by taking a
special kind of lock on each Data-record in V . These locks grant
exclusive access to an operation, rather than to a process. Henceforth,
we use the term freezing (resp., unfreezing), instead of locking (resp.,
unlocking), to differentiate this kind of locking from typical mutual
exclusion. A Data-record u is frozen for S if u .info points to D, and
either D.state = Committed and u .marked = true (in which case
we say u is finalized), or D.state = InProgress.

So, S freezes a Data-record u by using CAS to store a pointer
to D in u .info (at the freezing CAS step in Figure 2). Suppose S
successfully freezes all Data-records in its V sequence. Then, S
prepares to finalize each Data-record u ∈ R by setting a marked bit
in u (at the mark step in Figure 2). Finally, S changes f ld to new ,

and atomically releases all locks by setting D.state to Committed
(at the commit step in Figure 2). Observe that setting D.state to
Committed has the effect of atomically finalizing all Data-records
in R and unfreezing all Data-records in V \ R.

Now, suppose S was prevented from freezing some Data-record
u because another invocation S ′ of SCXO had already frozen u (i.e.,
the freezing CAS step by S failed, and it saw r .info , scxPtr at the
following line). Then, S aborts by setting the D.state to Aborted
(at the abort step in Figure 2). This has the effect of atomically
unfreezing any Data-records S had frozen. Note that, before the
process that performed S can perform another invocation of SCXO
with u in itsV -sequence, it must perform LLX(u). If u is still frozen
for S ′ when this LLX(u) is performed, then the LLX will use the
information stored in the SCX-record at u to help S ′ complete and
unfreeze u. (SCX-records also contain another field allFrozen that
is used to coordinate any processes helping the SCX, ensuring that
they do not make conflicting changes to the state field.)

The correctness argument is subtle, and we leave the details
to [7], but one crucial algorithmic property is relevant to our work:

P1: Between any two changes to (the user-defined fields of)
a Data-record u, a pointer to a new SCX-record (that has
never before been contained in u .info) is stored in u .info.

This property is used to determine whether a Data-record has
changed between the last LLXO on it and a subsequent invoca-
tion of SCXO . Consider an invocation S of SCXO (V ,R, f ld,new)
by a process p. Let u be any Data-record in V , and L be the last
invocation of LLXO (u) by p. L reads u .info and sees some value ptr .
S subsequently performs a freezing CAS step to change u .info from
ptr to point to its SCX-record, freezingu. If this CAS succeeds, then
S infers that u has not changed between the read of u .info in the
LLX and the freezing CAS step.
Progress properties. Specifying a progress guarantee for LLX and
SCX operations is subtle, because if processes repeatedly perform
LLX on Data-records that have been finalized, or repeatedly per-
form failed LLXs, then they may never be able to invoke SCX. In
particular, it is not sufficient to simply prove that LLXs return snap-
shots infinitely often, since all of the LLXs in a sequence must
return snapshots before a process can invoke SCX. To simplify the
progress guarantee for LLX and SCX, we make a definition. An
SCX-Update algorithm is one that performs LLXs on a sequenceV
of Data-records and invokes SCX(V ,R, f ld,new) if they all return
snapshots. The progress guarantee in [7] is then stated as follows.

PROG: Suppose that (a) there is always some non-finalized
Data-record reachable by following pointers from an
entry point, (b) for each Data-record r , each process per-
forms finitely many invocations of LLX(r) that return
Finalized, and (c) processes perform infinitely many
executions of SCX-Update algorithms. Then, infinitely
many invocations of SCX succeed.

The tree update template. The tree update template implements
lock-free updates that atomically replace an old connected subgraph
R of a down-tree by a new connected subgraph N (as shown in
Figure 3). Such an update can implement any change to the tree,
such as an insertion into a BST or a rotation in a balanced tree. The
old subgraph includes all nodes with a field to be modified. The
new subgraph may have pointers to nodes in the old tree. Since

type SCX-record
V ▷ sequence of Data-records
R ▷ subsequence of V to be finalized
f ld ▷ pointer to a field of a Data-record in V
new ▷ value to be written into the field f ld
old ▷ value previously read from the field f ld
state ▷ one of {InProgress, Committed, Aborted}
infoF ields ▷ sequence of pointers read from r .info for each r ∈ V
all F rozen ▷ Boolean

type Data-record
▷ User-defined fields
m1, . . . ,my ▷ mutable fields
i1, . . . , iz ▷ immutable fields
▷ Fields used by LLX/SCX algorithm
info ▷ pointer to an SCX-record
marked ▷ Boolean

1 LLXO (r) by process p
2 marked1 := r .marked
3 r info := r .info
4 state := r info.state
5 marked2 := r .marked
6 i f state = Aborted or (state = Committed and not marked2) then ▷ if r was not frozen at line 4
7 read r .m1, ..., r .my and record the values in local variablesm1, ...,my
8 i f r .info = r info then ▷ if r .info points to the same
9 store ⟨r, r info, ⟨m1, ...,my ⟩⟩ in p’s local table ▷ SCX-record as on line 3
10 return ⟨m1, ...,my ⟩

11 i f (r info.state = Committed or (r info.state = InProgress and Help(r info))) and marked1 then
12 return Finalized
13 e l se
14 i f r .info.state = InProgress then Help(r .info)
15 return Fail

16 SCXO (V , R, f ld, new) by process p
17 ▷ Preconditions: (1) for each r in V , p has performed an invocation Ir of LLX(r) linked to this SCX
18 (2) new is not the initial value of f ld
19 (3) for each r in V , no SCX(V ′, R′, f ld, new) was linearized before Ir was linearized
20 Let infoF ields be a pointer to a table in p’s private memory containing,
21 for each r in V , the value of r .info read by p’s last LLX(r)
22 Let old be the value for f ld returned by p’s last LLX(r)return Help(pointer to new SCX-record(V , R, f ld, new, old, InProgress, False, infoF ields)) //

23 Help(scxPtr)
24 ▷ Freeze all Data-records in scxPtr .V to protect their mutable fields from being changed by other SCXs
25 for each r i n scxPtr .V enumerated in order do
26 Let r info be the pointer indexed by r in scxPtr .infoF ields
27 i f not CAS(r .info, r info, scxPtr) then ▷ freezing CAS
28 i f r .info , scxPtr then
29 ▷ Could not freeze r because it is frozen for another SCX
30 i f scxPtr .all F rozen = True then ▷ frozen check step
31 ▷ the SCX has already completed successfully
32 return True
33 e l se
34 ▷ Atomically unfreeze all Data-records frozen for this SCX
35 scxPtr .state := Aborted ▷ abort step
36 return False

37 ▷ Finished freezing Data-records (Assert: state ∈ {InProgress, Committed})
38 scxPtr .all F rozen := True ▷ frozen step
39 for each r ∈ scxPtr .R do r .marked := True ▷ mark step
40 CAS(scxPtr .f ld, scxPtr .old, scxPtr .new) ▷ update CAS

41 ▷ Finalize all r in R , and unfreeze all r in V that are not in R
42 scxPtr .state := Committed ▷ commit step
43 return True

Figure 2: Data types and pseudocode for the original LLX and SCX algorithm.

every node in a down-tree has indegree one, the update can be
performed by changing a single child pointer of some node parent .
However, problems could arise if a concurrent operation changes
the part of the tree being updated. For example, nodes in the old
subgraph, or even parent , could be removed from the tree before
parent ’s child pointer is changed. The template takes care of the
process coordination required to prevent such problems.

Each tree node is represented by a Data-record with a fixed
number of child pointers as its mutable fields. Each child pointer
either points to a Data-record or contains Nil (denoted by ⊸ in
our figures). Any other data in the node is stored in immutable
fields. Thus, if an update must change some of this data, it makes a
new copy of the node with the updated data. There is a Data-record
entry which acts as the entry point to the data structure and is
never deleted.

NR

parent parent

R

Figure 3: Example of the tree update template.

At a high level, an update that follows the template proceeds in
two phases: the search phase and the update phase. In the search
phase, the update searches for a location where it should occur.
Then, in the update phase, the update performs LLXs on a connected
subgraph of nodes in the tree, including parent and the set R of
nodes to be removed from the tree. Next, it decides whether the
tree should be modified, and, if so, creates a new subgraph of nodes
and performs an SCX that atomically changes a child pointer, as
shown in Figure 3, and finalizes any nodes in R. See [8] for further
details.

4 HTM-BASED LLX AND SCX
In this section, we describe an HTM-based implementation of LLX
and SCX. This implementation is used by our first accelerated tem-
plate implementation, 2-path con, which is described in Section 5.

In the following, we use SCXO and LLXO to refer to the original
lock-free implementation of LLX and SCX. We give an implementa-
tion of SCX that uses an HTM-based fast path called SCXHTM , and
SCXO as its fallback path. Hardware transactions are instrumented
so they can run concurrently with processes executing SCXO . This
algorithm guarantees lock-freedom and achieves a high degree
of concurrency. Pseudocode appears in Figure 4. At a high level,
an SCXHTM by a process p starts a transaction, then attempts to
perform a highly optimized version of SCXO . Each time a transac-
tion executed by p aborts, control jumps to the onAbort label, at
the beginning of the SCX procedure. If a process explicitly aborts a
transaction at line 19, then SCX returns False at line 4. Each process
has a budget AttemptLimit that specifies how many times it will
attempt hardware transactions before it will fall back to executing
SCXO .

In SCXO , SCX-records are used (1) to facilitate helping, and
(2) to lock Data-records and detect changes to them. In particu-
lar, SCXO guarantees the following property. P1: between any
two changes to (the user-defined fields of) a Data-record u, a new
SCX-record pointer is stored in u .info. However, SCXHTM does
not create SCX-records. In a transactional setting, helping causes
unnecessary aborts, since executing a transaction that performs
the same work as a running transaction will cause at least one
(and probably both) to abort. Helping in transactions is also not
necessary to guarantee progress, since progress is guaranteed by
the fallback path. So, to preserve property P1, we give each process
p a tagged sequence number tseqp that contains the process name, a

sequence number, and a tag bit. The tag bit is the least significant
bit. On modern systems where pointers are word aligned, the least
significant bit in a pointer is always zero. Thus, the tag bit allows a
process to distinguish between a tagged sequence number and a
pointer. In SCXHTM , instead of having p create a new SCX-record
and store pointers to it in Data-records to lock them, p increments
its sequence number in tseqp and stores tseqp in Data-records. Since
no writes performed by a transactionT can be seen until it commits,
it never actually needs to hold any locks. Thus, every value of tseqp
stored in a Data-record represents an unlocked value, and writing
tseqp represents p locking and immediately unlocking a node.

After storing tseqp in each r ∈ V , SCXHTM finalizes each r ∈ R

by setting r .marked := True (mimicking the behaviour of SCXO).
Then, it stores new in the field pointed to by f ld , and commits.
Note that eliminating the creation of SCX-records on the fast path
also eliminates the need to reclaim any created SCX-records, which
further reduces overhead.

The SCXHTM algorithm also necessitates a small change to
LLXO , to handle tagged sequence numbers. An invocation of LLXO (r)
reads a pointer r info to an SCX-record, follows r info to read one
of its fields, and uses the value it reads to determine whether r
is locked. However, r info may now contains a tagged sequence
number, instead of a pointer to an SCX-record. So, in our modified
algorithm, which we call LLXHTM , before a process tries to follow
r info, it first checks whether r info is a tagged sequence number, and,
if so, behaves as if r is unlocked. The code for LLXHTM appears in
Figure 8.

4.1 Correctness and Progress
The high-level idea is to show that one can start with LLXO and
SCXO , and obtain our HTM-based implementation by applying a
sequence of transformations. Intuitively, these transformations pre-
serve the semantics of SCX and maintain backwards compatibility
with SCXO so that the transformed versions can be run concur-
rently with invocations of SCXO . More formally, for each execution
of a transformed algorithm, there is an execution of the original
algorithm in which: the same operations are performed, they are
linearized in the same order, and they return the same results. For
each transformation, we sketch the correctness and progress ar-
gument, since the transformations are simple and a formal proof
would be overly pedantic.
Adding transactions. For the first transformation, we replaced
the invocation ofHelp in SCXO with the body of theHelp function,
and wrapped the code in a transaction. Since the fast path simply
executes the fallback path algorithm in a transaction, the correct-
ness of the resulting algorithm is immediate from the correctness
of the original LLX and SCX algorithm.

We also observe that it is not necessary to commit a transaction
that sets the state of its SCX-record to Aborted and returns False.
The only effect that committing such a transaction would have on
shared memory is changing some of the info fields of Data-records
in its V sequence to point to its SCX-record. In SCXO , info fields
serve two purposes. First, they provide pointers to an SCX-record
while its SCX is in progress (so it can be helped). Second, they
act as locks that grant exclusive access to an SCXO , and allow an
invocation of SCXO to determine whether any user-defined fields

1 Private variable for process p : attemptsp, tagseqp

2 SCX(V , R, f ld, new) by process p
3 onAbort: ▷ jump here on transaction abort
4 i f we jumped here after an explicit abort then return False
5 i f attemptsp < AttemptLimit then
6 attemptsp := attemptsp + 1
7 r etval := SCXHTM (V , R, f ld, new) ▷ Fast
8 e l se
9 r etval := SCXO (V , R, f ld, new) ▷ Fallback

10 i f r etval then attemptsp := 0
11 return r etval

12 SCXHTM (V , R, f ld, new) by process p
13 Let infoF ields be a pointer to a table in p’s private memory containing,

for each r in V , the value of r .info read by p’s last LLX(r)
14 Let old be the value for f ld returned by p’s last LLX(r)

15 Begin hardware transaction
16 tagseqp := tagseqp + 2⌈logn⌉

17 for each r ∈ V do
18 Let r info be the pointer indexed by r in infoF ields
19 i f r .info , r info then Abort hardware transaction (explicitly)
20 for each r ∈ V do r .info := tagseqp
21 for each r ∈ R do r .marked := True
22 write new to the field pointed to by f ld
23 Commit hardware transaction
24 return True

Figure 4: Final HTM-based implementation of SCX.

1 SCX1(V , R, f ld, new) by process p
2 Let infoF ields be a pointer to a table in p’s private memory containing,
3 for each r in V , the value of r .info read by p’s last LLX(r)
4 Let old be the value for f ld returned by p’s last LLX(r)

5 Begin hardware transaction
6 scxPtr := pointer to new SCX-record(V , R, f ld, new, old, InProgress, False, infoF ields)
7 ▷ Freeze all Data-records in scxPtr .V to protect their mutable fields from being changed by other SCXs
8 for each r i n scxPtr .V enumerated in order do
9 Let r info be the pointer indexed by r in scxPtr .infoF ields
10 i f not CAS (r .info, r info, scxPtr) then ▷ freezing CAS
11 i f r .info , scxPtr then
12 ▷ Could not freeze r because it is frozen for another SCX
13 i f scxPtr .all F rozen = True then ▷ frozen check step
14 ▷ the SCX has already completed successfully
15 Commit hardware transaction
16 return True
17 e l se Abort hardware transaction (explicitly)

18 ▷ Finished freezing Data-records (Assert: state ∈ {InProgress, Committed})
19 scxPtr .all F rozen := True ▷ frozen step
20 for each r ∈ scxPtr .R do r .marked := True ▷ mark step
21 CAS(scxPtr .f ld, scxPtr .old, scxPtr .new) ▷ update CAS

22 ▷ Finalize all r in R , and unfreeze all r in V that are not in R
23 scxPtr .state := Committed ▷ commit step
24 Commit hardware transaction
25 return True

Figure 5: Transforming SCXO : after adding transactions.

of a Data-record r have changed since its linked LLX(r) (using
property P1). However, since the effects of a transaction are not
visible until it has already committed, a transaction no longer needs
help by the time it modified any info field. And, since an SCXO
that sets the state of its SCX-record to Aborted does not change
any user-defined field of a Data-record, these changes to info fields
are not needed to preserve property P1. The only consequence
of changing these info fields is that other invocations of SCXO
might needlessly fail and return False, as well. So, instead of setting
state = Aborted and committing, we explicitly abort the transaction
and return False. Figure 5 shows the result of this transformation:
SCX1. (Note that aborting transactions does not affect correctness—
only progress.)

Of course, we must provide a fallback code path in order to
guarantee progress. Figure 6 shows how SCX1 (the fast path) and

SCXO (the fallback path) are used together to implement lock-free
SCX. In order to decide when each code path should be executed,
we give each process p a private variable attemptsp that contains
the number of times p has attempted a hardware transaction since
it last performed an SCX1 or SCXO that succeeded (i.e., returned
True). The SCX procedure checks whether attemptsp is less than
a (positive) threshold AttemptLimit. If so, p increments attemptsp
and invokes SCX1 to execute a transaction on the fast path. If not,
p invokes SCXO (to guarantee progress). Whenever p returns True
from an invocation of SCX1 or SCXO , it resets its budget attemptsp
to zero, so it will execute on the fast path in its next SCX. Each time
a transaction executed by p aborts, control jumps to the onAbort
label, at the beginning of the SCX procedure. If a process explicitly
aborts a transaction it is executing (at line 17 in SCX1), then control

1 Private variable for process p : attemptsp

2 SCX(V , R, f ld, new) by process p
3 onAbort: ▷ jump here on transaction abort
4 i f we jumped here after an explicit abort in the code then return False
5 i f attemptsp < AttemptLimit then
6 attemptsp := attemptsp + 1
7 r etval := SCX1 (V , R, f ld, new) ▷ invoke HTM-based SCX
8 e l se
9 r etval := SCXO (V , R, f ld, new) ▷ fall back to original SCX

10 i f r etval then attemptsp := 0 ▷ reset p’s attempt counter before returning True
11 return r etval

Figure 6: How the HTM-based SCX1 is used to provide lock-free SCX.

jumps to the onAbort label, and the SCX returns False at the next
line.
Progress. It is proved in [7] that PROG is satisfied by LLXO and
SCXO . We argue that PROG is satisfied by the implementation of
LLX and SCX in Figure 6. To obtain a contradiction, suppose the
antecedent of PROG holds, but only finitely many invocations of
SCX return True. Then, after some time t , no invocation of SCX
returns True.

Case 1: Suppose processes take infinitely many steps in trans-
actions. By inspection of the code, each transaction is wait-free,
and SCX returns True immediately after a transaction commits.
Since no transaction commits after t , there must be infinitely many
aborts. However, each process can perform at most AttemptLimit
aborts since the last time it performed an invocation of SCX that
returned True. So, only finitely many aborts can occur after t—a
contradiction.

Case 2: Suppose processes take only finitely many steps in trans-
actions. Then, processes take only finitely many steps in SCX1. It
follows that, after some time t ′, no process takes a step in SCX1.
Therefore, in the suffix of the execution after t ′, processes only take
steps in SCXO and LLXO . However, since LLXO and SCXO satisfy
PROG, infinitely many invocations of SCX must succeed after t ′,
which is a contradiction.
Eliminating most accesses to fields of SCX-records created
on the fast path. In LLXO and SCXO , helping is needed to guar-
antee progress, because otherwise, an invocation of SCXO that
crashes while one or more Data-records are frozen for it could
cause every invocation of LLXO to return Fail (which, in turn,
could prevent processes from performing the necessary linked in-
vocations of LLXO to invoke SCXO). However, as we mentioned
above, since transactions are atomic, a process cannot see any of
their writes (including the contents of any SCX-record they cre-
ate and publish pointers to) until they have committed, at which
point they no longer need help. Thus, it is not necessary to help
transactions in SCX1.1

In fact, it is easy to see that processeswill not help any SCX-record
created by a transaction in SCX1. Observe that each transaction
in SCX1 sets the state of its SCX-record to Committed before com-
mitting. Consequently, if an invocation of LLXO reads r .info and
obtains a pointer r info to an SCX-record created by a transaction

1In fact, helping transactions would be actively harmful, since performing the same
modifications to shared memory as an in-flight transaction will cause it to abort. This
leads to very poor performance, in practice.

in SCX1, then r info has state Committed. Therefore, by inspection
of the code, LLXO will not invoke Help(r info).

Since LLXO never invokes Help(r info) for any r info created by
a transaction in SCX1, most fields of an SCX-record created by
a transaction are accessed only by the process that created the
SCX-record. The only field that is accessed by other processes is
the state field (which is accessed in LLXO). Therefore, it suffices
for a transaction in SCX1 to initialize only the state field of its
SCX-record. As we will see, any accesses to the other fields can
simply be eliminated or replaced with locally available information.

Using this knowledge, we transform SCX1 in Figure 5 into a new
procedure called SCX2 in Figure 7. First, instead of initializing the
entire SCX-record when we create a new SCX-record at line 6 in
SCX1, we initialize only the state field. We then change any steps
that read fields of the SCX-record (lines 8, 9, 13, 20 and 21 in SCX1)
to use locally available information, instead.

Next, we eliminate the frozen step at line 19 in SCX1, which
changes the allFrozen field of the SCX-record. Recall that allFrozen
is used by SCXO to prevent helpers frommaking conflicting changes
to the state field of its SCX-record. When a freezing CAS fails in an
invocation S of SCXO (at line 27 of Help in Figure 2), it indicates
that either S will fail due to contention, or another process had
already helped S to complete successfully. The allFrozen bit allows
a process to distinguish between these two cases. Specifically, it is
proved in [7] that a process will see allFrozen = True at line 27
of Help if and only if another process already helped S complete
and set allFrozen := True. However, since we have argued that
processes never help transactions (and, in fact, no other process
can even access the SCX-record until the transaction that created
it has committed), allFrozen is always False at the corresponding
step (line 13) in SCX1. This observation allows us to eliminate the
entire if branch at line 13 in SCX1.

Clearly, this transformation preserves PROG. Note that SCX2
(and each of the subsequent transformed variants) is used in the
same way as SCX1: Simply replace SCX1 in Figure 6 with SCX2.
Completely eliminating accesses to fields of SCX-records cre-
ated on the fast path. We now describe a transformation that
completely eliminates all accesses to the state fields of SCX-records
created by transactions in SCX2 (i.e., the last remaining accesses
by transactions to fields of SCX-records).

We transform SCX2 into a new procedure SCX3, which appears
in Figure 8. First, the commit step in SCX2 is eliminated. Whereas
in SCX2, we stored a pointer to the SCX-record in r .info for each
r ∈ V at line 11, we store a tagged pointer to the SCX-record at

1 Private variable for process p : attemptsp

2 SCX2(V , R, f ld, new) by process p
3 Let infoF ields be a pointer to a table in p’s private memory containing,
4 for each r in V , the value of r .info read by p’s last LLX(r)
5 Let old be the value for f ld returned by p’s last LLX(r)

6 Begin hardware transaction
7 scxPtr := pointer to new SCX-record (−, −, −, −, −, InProgress, −, −)
8 ▷ Freeze all Data-records in V to protect their mutable fields from being changed by other SCXs
9 for each r i n V enumerated in order do
10 Let r info be the pointer indexed by r in infoF ields
11 i f not CAS (r .info, r info, scxPtr) then ▷ freezing CAS
12 i f r .info , scxPtr then Abort hardware transaction (explicitly)

13 ▷ Finished freezing Data-records
14 for each r ∈ R do r .marked := True ▷ Finalize each r ∈ R ▷ mark step
15 CAS(f ld, old, new) ▷ update CAS
16 scxPtr .state := Committed ▷ commit step
17 Commit hardware transaction
18 return True

Figure 7: Transforming SCXO : after eliminating most accesses to fields of SCX-records created on the fast path.

1 Private variable for process p : attemptsp

2 LLXHTM (r) by process p ▷ Precondition: r , Nil.
3 marked1 := r .marked ▷ order of lines 2–5 matters
4 r info := r .info
5 ∗ state := (r info & 1) ? Committed : r info.state ▷ if rinfo is tagged, take state to be Committed
6 marked2 := r .marked
7 i f state = Aborted or (state = Committed and not marked2) then ▷ if r was not frozen at line 4
8 read r .m1, ..., r .my and record the values in local variablesm1, ...,my
9 i f r .info = r info then ▷ if r .info points to the same SCX-record as on line 3
10 store ⟨r, r info, ⟨m1, ...,my ⟩⟩ in p’s local table
11 return ⟨m1, ...,my ⟩

12 ∗ state2 := (r info & 1) ? Committed : r info.state ▷ if r info is tagged, take state2 to be Committed
13 ∗ i f (state2 = Committed or (state2 = InProgress and Help (r info))) and marked1 then
14 return Finalized
15 e l se
16 ∗ r info2 := r .info
17 ∗ state3 := (r info2 & 1) ? Committed : r info2 .state ▷ if r info2 is tagged, take state3 to be Committed
18 ∗ i f state3 = InProgress then Help (r info2)
19 return Fail

20 SCX3(V , R, f ld, new) by process p
21 Let infoF ields be a pointer to a table in p’s private memory containing,
22 for each r in V , the value of r .info read by p’s last LLX(r)
23 Let old be the value for f ld returned by p’s last LLX(r)

24 Begin hardware transaction
25 scxPtr := pointer to new SCX-record (−, −, −, −, −, −, −, −)
26 ▷ Freeze all Data-records in V to protect their mutable fields from being changed by other SCXs
27 for each r i n V enumerated in order do
28 Let r info be the pointer indexed by r in infoF ields
29 i f not CAS (r .info, r info, (scxPtr & 1)) then ▷ freezing CAS
30 i f r .info , (scxPtr & 1) then Abort hardware transaction (explicitly)

31 ▷ Finished freezing Data-records
32 for each r ∈ R do r .marked := True ▷ Finalize each r ∈ R ▷ mark step
33 CAS(f ld, old, new) ▷ update CAS
34 Commit hardware transaction
35 return True

Figure 8: Transforming SCXO : after completely eliminating accesses to fields of SCX-records created on the fast path.

line 29 in SCX3. A tagged pointer is simply a pointer that has its
least significant bit set to one. Note that, on modern systems where
pointers are word aligned, the least significant bit in a pointer to an
SCX-record will be zero. Thus, the least significant bit in a tagged
pointer allows processes to distinguish between a tagged pointer

(which is stored in r .info by a transaction) from a regular pointer
(which is stored in r .info by an invocation of SCXO). Line 30 in
SCX3 is also updated to check for a tagged pointer in r .info.

In order to deal with tagged pointers, we transform LLXO into
new procedure called LLXHTM , that is used instead of LLXO from

here on. Any time an invocation of LLXO would follow a pointer
that was read from an info field r .info, LLXHTM first checkswhether
the value r info read from the info field is a pointer or a tagged
pointer. If it is a pointer, then LLXHTM proceeds exactly as in
LLXO . However, if r info is a tagged pointer, then LLXHTM pro-
ceeds as if it had seen an SCX-record with state Committed (i.e.,
whose SCX has already returned True). We explain why this is
correct. If r info contains a tagged pointer, then it was written by
a transaction T that committed (since it changed shared memory)
at line 34 in SCX3, just before returning True. Observe that, in
SCX2, the state of the SCX-record is set to Committed just before
True is returned. In other words, if not for this transformation,
T would have set the state of its SCX-record to Committed. So,
clearly it is correct to treat r info as if it were an SCX-record with
state = Committed.

Since this transformation simply changes the representation of
an SCX-record D with state = Committed that is created by a
transaction (and does not change how the algorithm behaves when
it encounters D), it preserves PROG.
Eliminating the creation of SCX-records on the fast path. Since
transactions in SCX3 are not helped, we would like to eliminate the
creation of SCX-records in transactions, altogether. However, since
SCX-records are used as part of the freezing mechanism in SCXO
on the fallback path, we cannot simply eliminate the steps that
freeze Data-records, or else transactions on the fast path will not
synchronize with SCXO operations on the fallback path. Consider
an invocation S of SCXO by a process p that creates an SCX-record
D, and an invocation L of LLX(r) linked to S . When S uses CAS
to freeze r (by changing r .info from the value seen by L to D), it
interprets the success of the CAS to mean that r has not changed
since L (relying on property P1). If a transaction in SCX3 changes
r without changing r .info (to a new value that has never before
appeared in r .info), then it would violate P1, rendering this inter-
pretation invalid. Thus, transactions in SCX3(V ,R, f ld,new) must
change r .info to a new value, for each r ∈ V .

We transform SCX3 into a new procedure SCXr , which appears
in Figure 9. We now explain what a transaction T in an invocation
S of SCX4 by a process p does instead of creating an SCX-record
and using it to freeze Data-records. We give each process p a tagged
sequence number tseqp , which consists of three bit fields: a tag-
bit, a process name, and a sequence number. The tag-bit, which is
the least significant bit, is always one. This tag-bit distinguishes
tagged sequence numbers from pointers to SCX-records (similar to
tagged pointers, above). The process name field of tseqp contains
p. The sequence number is a non-negative integer that is initially
zero. Instead of creating a new SCX-record (at line 25 in SCX3), S
increments the sequence number field of tseqp . Then, instead of
storing a pointer to an SCX-record in r .info for each r ∈ V (at line 29
in SCX3), T stores tseqp . (Line 30 is also changed accordingly.) The
combination of the process name and sequence number bit fields
ensure that whenever T stores tseqp in an info field, it is storing a
value that has never previously been contained in that field.2

2Technically, with a finite word size it is possible for a sequence number to overflow
and wrap around, potentially causing P1 to be violated. On modern systems with a 64-
bit word size, we suggest representing a tagged sequence number using 1 tag-bit, 15 bits
for the process name (allowing up to 32,768 concurrent processes) and 48 bits for the
sequence number. In order for a sequence number to experience wraparound, a single

Observe that LLXHTM does not require any further modifica-
tion to work with tagged sequence numbers, since it distinguishes
between tagged sequence numbers and SCX-records using the tag-
bit (the exact same way it distinguished between tagged pointers
and pointers to SCX-records). Moreover, it remains correct to treat
tagged sequence numbers as if they are SCX-records with state
Committed (for the same reason it was correct to treat tagged point-
ers that way). Progress is preserved for the same reason as it was
in the previous transformation: we are simply changing the repre-
sentation of SCX-records with state = Committed that are created
by transactions.

Note that this transformation eliminates not only the creation of
SCX-records, but also the need to reclaim those SCX-records. Thus,
it can lead to significant performance improvements.
Simple optimizations. Since any code executed inside a trans-
action is atomic, we are free to replace atomic synchronization
primitives inside a transaction with sequential code, and reorder
the transaction’s steps in any way that does not change its se-
quential behaviour. We now describe how to transform SCX4 by
performing two simple optimizations.

For the first optimization, we replace each invocation of CAS(x ,
o,n) with sequential code: if x = 0 then x := n, result := True else
result := False. If the CAS is part of a condition for an if-statement,
then we execute this code just before the if-statement, and replace
the invocation of CAS with result . We then eliminate any dead
code that cannot be executed. Figure 10 shows the transformed
procedure, SCX5.

More concretely, in place of the CAS at line 11 in SCX4, we do
the following. First, we check whether r .info = r info. If so, we
set r .info := tseqp and continue to the next iteration of the loop.
Suppose not. If we were naively transforming the code, then the
next step would be to check whether r .info contains tseqp . However,
p is the only process that can write tseqp , and it only writes tseqp
just before continuing to the next iteration. Thus, r .info cannot
possibly contain tseqp in this case, which makes it unnecessary to
check whether r .info = tseqp . Therefore, we execute the else-case,
and explicitly abort the transaction. Observe that, if SCX5 is used
to replace SCX1 in Figure 6, then this explicit abort will cause SCX
to return False (right after it jumps to the onAbort label). In place
of the CAS at line 16 in SCX4, we can simply check whether f ld
contains old and, if so, write new into f ld .

In fact, it is not necessary to check whether f ld contains old ,
because the transaction will have aborted if f ld was changed after
old was read from it. We explain why. Let S be an invocation of
SCX5 (in Figure 10) by a process p, and let r be the Data-record that
contains f ld . Suppose S executes line 16 in SCX5, where it checks
whether f ld = old . Before invoking S , p performs an invocation L
of LLX(r) linked to S . Subsequently, p reads old while performing
S . After that, p freezes r while performing S . If r changes after
L, and before p executes line 11, then p will see r .info , r info
when it executes line 11 (by property P1, which has been preserved

process must then perform 248 operations. According to experimental measurements
for several common data structures on high performance systems, this would take
at least a decade of continuous updates. Moreover, if wraparound is still a concern,
one can replace the freezing CAS steps in SCXO with double-wide CAS instructions
(available on most modern systems) which atomically operate on 128-bits.

1 Private variable for process p : tseqp

2 SCX4(V , R, f ld, new) by process p
3 Let infoF ields be a pointer to a table in p’s private memory containing,
4 for each r in V , the value of r .info read by p’s last LLX(r)
5 Let old be the value for f ld returned by p’s last LLX(r)

6 Begin hardware transaction
7 tseqp := tseqp + 2⌈logn⌉ ▷ increment p’s tagged sequence number
8 ▷ Freeze all Data-records in V to protect their mutable fields from being changed by other SCXs
9 for each r i n V enumerated in order do
10 Let r info be the pointer indexed by r in infoF ields
11 i f not CAS (r .info, r info, tseqp) then ▷ freezing CAS
12 i f r .info , tseqp then Abort hardware transaction (explicitly)

13 ▷ Finished freezing Data-records
14 ▷ Finalize each r ∈ R , update f ld , and unfreeze all r ∈(V \ R)
15 for each r ∈ R do r .marked := True ▷ mark step
16 CAS(f ld, old, new) ▷ update CAS
17 Commit hardware transaction
18 return True

Figure 9: Transforming SCXO : after eliminating SCX-record creation on the fast path.

1 Private variable for process p : tseqp

2 SCX5(V , R, f ld, new) by process p
3 Let infoF ields be a pointer to a table in p’s private memory containing,
4 for each r in V , the value of r .info read by p’s last LLX(r)
5 Let old be the value for f ld returned by p’s last LLX(r)

6 Begin hardware transaction
7 tseqp := tseqp + 2⌈logn⌉ ▷ increment p’s tagged sequence number
8 ▷ Freeze all Data-records in V to protect their mutable fields from being changed by other SCXs
9 for each r i n V enumerated in order do
10 Let r info be the pointer indexed by r in infoF ields
11 i f r .info = r info then r .info := tseqp
12 e l se Abort hardware transaction (explicitly)

13 ▷ Finished freezing Data-records
14 ▷ Finalize each r ∈ R , update f ld , and unfreeze all r ∈(V \ R)
15 for each r ∈ R do r .marked := True ▷ mark step
16 i f f ld = old then f ld := new
17 Commit hardware transaction
18 return True

Figure 10: Transforming SCXO : after replacing CAS with sequential code and optimizing.

by our transformations). Consequently, p will fail to freeze r , and
S will perform an explicit abort and return False, so it will not
reach line 16, which contradicts our assumption (so this case is
impossible). On the other hand, if r changes after p executes line 11,
and before p executes line 16, then the transaction will abort due
to a data conflict (detected by the HTM system). Therefore, when p
executes line 16, f ld must contain old .

For the second optimization, we split the loop in Figure 10 into
two. The first loop contains all of the steps that check whether
r .info = r info, and the second loop contains all of the steps that set
r .info := tseqp . This way, all of the writes to r .info occur after all of
the reads and if-statements. The advantage of delaying writes for
as long as possible in a transaction is that it reduces the probability
of the transaction causing other transactions to abort. As a minor
point, whereas the loop in SCXO iterated over the elements of the
sequence V in a particular order to guarantee progress, it is not
necessary to do so here, since progress is guaranteed by the fallback
path, not the fast path. This final transformation yields the code in
Figure 4. Clearly, it does not affect correctness or progress.

5 ACCELERATED TEMPLATE
IMPLEMENTATIONS

The 2-path con algorithm.We now use our HTM-based LLX and
SCX to obtain an HTM-based implementation of a template opera-
tionO . The fallback path forO is simply a lock-free implementation
ofO using LLXO and SCXO . The fast path forO starts a transaction,
then performs the same code as the fallback path, except that it
uses the HTM-based LLX and SCX. Since the entire operation is
performed inside a transaction, we can optimize the invocations
of SCXHTM that are performed by O as follows. Lines 15 and 23
can be eliminated, since SCXHTM is already running inside a large
transaction. Additionally, lines 17-19 can be eliminated, since the
transaction will abort due to a data conflict if r .info changes after
it is read in the (preceding) linked invocation of LLX(r), and before
the transaction commits. The proof of correctness and progress
for 2-path con follows immediately from the proof of the original
template and the proof of the HTM-based LLX and SCX implemen-
tation.

1 Private variable for process p : tseqp

2 SCXHTM (V , R, f ld, new) by process p
3 Let infoF ields be a pointer to a table in p’s private memory containing,
4 for each r in V , the value of r .info read by p’s last LLX(r)
5 Let old be the value for f ld returned by p’s last LLX(r)

6 Begin hardware transaction
7 tseqp := tseqp + 2⌈logn⌉ ▷ increment p’s tagged sequence number
8 for each r ∈ V do ▷ abort if any r ∈ V has changed since the linked LLX(r)
9 Let r info be the pointer indexed by r in infoF ields
10 i f r .info , r info then Abort hardware transaction (explicitly)
11 for each r ∈ V do r .info := tseqp ▷ change r .info to a new value, for each r ∈ V
12 for each r ∈ R do r .marked := True ▷ mark each r ∈ R (so it will be finalized)
13 write new to the field pointed to by f ld ▷ perform the update
14 Commit hardware transaction
15 return True

Figure 11: Final implementation of SCXHTM .

Note that it is not necessary to perform the entire operation in
a single transaction. In Section 8, we describe a modification that
allows a read-only searching prefix of the operation to be performed
before the transaction begins.
The TLE algorithm. To obtain a TLE implementation of an op-
eration O , we simply take sequential code for O and wrap it in a
transaction on the fast path. The fallback path acquires and releases
a global lock instead of starting and committing a transaction, but
otherwise executes the same code as the fast path. To prevent the
fast path and fallback path from running concurrently, transac-
tions on the fast path start by reading the lock state and aborting
if it is held. An operation attempts to run on the fast path up to
AttemptLimit times (waiting for the lock to be free before each at-
tempt) before resorting to the fallback path. The correctness of TLE
is trivial. Note, however, that TLE only satisfies deadlock-freedom
(not lock-freedom).
The 2-path con algorithm. We can improve concurrency on the
fallback path and guarantee lock-freedom by using a lock-free al-
gorithm on the fallback path, and a global fetch-and-increment
object F instead of a global lock. Consider an operation O imple-
mented with the tree update template. We describe a 2-path con
implementation of O . The fallback path increments F , then exe-
cutes the lock-free tree update template implementation of O , and
finally decrements F . The fast path executes sequential code for O
in a transaction. To prevent the fast path and fallback path from
running concurrently, transactions on the fast path start by reading
F and aborting if it is nonzero. An operation attempts to run on the
fast path up to AttemptLimit times (waiting for F to become zero
before each attempt) before resorting to the fallback path.

Recall that operations implemented using the tree update tem-
plate can only change a single pointer atomically (and can perform
multiple changes atomically only by creating a connected set of
new nodes that reflect the desired changes). Thus, each operation
on the fallback path simply creates new nodes and changes a single
pointer (and assumes that all other operations also behave this
way). However, since the fast path and fallback path do not run
concurrently, the fallback path does not impose this requirement
on the fast path. Consequently, the fast path can make (multiple)
direct changes to nodes. Unfortunately, as we described above, this
algorithm can still suffer from concurrency bottlenecks.

The 3-path algorithm. One can think of the 3-path algorithm as
a kind of hybrid between the 2-path con and 2-path con algorithms
that obtains their benefits while avoiding their downsides. Consider
an operation O implemented with the tree update template. We
describe a 3-path implementation of O . As in 2-path con, there is
a global fetch-and-increment object F , and the fast path executes
seqeuential code forO in a transaction. The middle path and fallback
path behave like the fast path and fallback path in the 2-path con
algorithm, respectively. Each time an operation begins (resp., stops)
executing on the fallback path, it increments (resp., decrements)
F . (If the scalability of fetch-and-increment is of concern, then a
scalable non-zero indicator object [17] can be used, instead. Alter-
natively, one could use a counter object, which is weaker and can
be implemented using only registers.) This prevents the fast and
fallback paths from running concurrently. As we described above,
operations begin on the fast path, and move to the middle path after
FastLimit attempts, or if they see F , 0. Operations move from
the middle path to the fallback path after MiddleLimit attempts.
Note that an operation never waits for the fallback path to become
empty—it simply moves to the middle path.

Since the fast path and fallback path do not run concurrently,
the fallback path does not impose any overhead on the fast path,
except checking if F = 0 (offering low overhead for light workloads).
Additionally, when there are operations running on the fallback
path, hardware transactions can continue to run on the middle path
(offering high concurrency for heavy workloads).
Correctness and progress for 3-path. The correctness argument
is straightforward. The goal is to prove that all template operations
are linearizable, regardless of which path they execute on. Recall
that the fallback path and middle path behave like the fast path
and fallback path in 2-path con. It follows that, if there are no
operations on the fast path, then the correctness of operations on
the middle path and fallback path is immediate from the correctness
of 2-path con. Of course, whenever there is an operation executing
on the fallback path, no operation can run on the fast path. Since
operations on the fast path and middle path run in transactions,
they are atomic, and any conflicts between the fast path and middle
path are handled automatically by the HTM system. Therefore,
template operations are linearizable.

The progress argument for 3-path relies on three assumptions.

A1. The sequential code for an operation executed on the fast path
must terminate after a finite number of steps if it is run on a
static tree (which does not change during the operation).

A2. In an operation executed on the middle path or fallback path,
the search phase must terminate after a finite number of steps
if it is run on a static tree.

A3. In an operation executed on the middle path or fallback path,
the update phase can modify only a finite number of nodes.

We give a simple proof that 3-path satisfies lock-freedom. To
obtain a contradiction, suppose there is an execution in which
after some time t , some process takes infinitely many steps, but no
operation terminates. Thus, the tree does not change after t . We first
argue that no process takes infinitely many steps in a transaction
T . IfT occurs on the fast path, then A1 guarantees it will terminate.
If T occurs on the middle path, then A2 and A3 guarantee that
it will terminate. Therefore, eventually, processes only take steps
on the fallback path. Progress then follows from the fact that the
original tree update template implementation (our fallback path) is
lock-free.

6 EXAMPLE DATA STRUCTURES
We used two data structures to study the performance of our accel-
erated template implementations: an unbalanced BST, and a relaxed
(a,b)-tree. The BST is similar to the chromatic tree in [8], but with
no rebalancing. The relaxed (a,b)-tree is a concurrency-friendly
generalization of a B-tree that is based on the work of Jacobson and
Larsen [20]. In this section, we give a more detailed description of
these data structures, and give additional details on their 3-path
implementations.

Each data structure implements the ordered dictionary ADT,
which stores a set of keys, and associates each key with a value.
An ordered dictionary offers four operations: Insert(key,value),
Delete(key), Search(key) and RangeQuery(lo,hi).

Both data structures are leaf-oriented (also called external), which
means that all of the keys in the dictionary are stored in the leaves
of the tree, and internal nodes contain routing keys which simply
direct searches to the appropriate leaf. This is in contrast to node-
oriented or internal trees, in which internal nodes also contain keys
in the set.

6.1 Unbalanced BST
Fallback path. The fallback path consists of a lock-free imple-
mentation of the operations in Figure 12 using the (original) tree
update template. As required by the template, these operations
change child pointers, but do not change the key or value fields of
nodes directly. Instead, to replace a node’s key or value, the node
is replaced by a new copy. If key is not already in the tree, then
Insert(key,value) inserts a new leaf and internal node. Otherwise,
Insert(key,value) replaces the leaf containing key with a new leaf
that contains the updated value. Delete(key) replaces the leaf l being
deleted and its parent with a new copy of the sibling of l .

It may seem strange that Delete creates a new copy of the deleted
leaf’s sibling, instead of simply reusing the existing sibling (which
is not changed by the deletion). This comes from a requirement of
the tree update template: each invocation of SCX(V ,R, f ld,new)
must change the field f ld to a value that it has never previously

contained. This requirement is motivated by a particularly tricky
aspect of lock-free programming: avoiding the ABA problem. The
ABA problem occurs when a process p reads a memory location
x and sees value A, then performs a CAS on x to change it from
A to C , and interprets the success of this CAS to mean that x has
not changed between when p read x and performed the CAS on it.
In reality, after p read x and before it performed the CAS, another
process q may have changed x to B, and then back to A, rendering
p’s interpretation invalid. In practice, the ABA problem can result
in data structure operations being applied multiple times, or lost
altogether. The ABA problem cannot occur if each successful CAS
on a field stores a value that has never previously been contained
in the field (since, then, q cannot change x from B back to A). So, in
the template, the ABA problem is avoided by having each operation
use SCX to store a pointer to a newly created node (which cannot
have previously been contained in any field).
Middle path. The middle path is the same as the fallback path,
except that each operation is performed in a large transaction, and
the HTM-based implementation of LLX and SCX is used instead of
the original implementation.
Fast path. The fast path is a sequential implementation of the BST,
where each operation is executed in a transaction. Figure 13 shows
the insertion and deletion operations on the fast path. Unlike on
the fallback path, operations on the fast path directly modify the
keys and values of nodes, and, hence, can avoid creating nodes in
some situations. If key is already in the tree, then Insert(key,value)
directly changes the value of the leaf that contains key. Otherwise,
Insert(key,value) creates a new leaf and internal node and attaches
them to the tree. Delete(key) changes a pointer to remove the leaf
containing key and its parent from the tree.
How the fast path improves performance. The first major per-
formance improvement on the fast path comes from a reduction in
node creation. Each invocation of Insert(key,value ′) that sees key
in the tree can avoid creating a new node by writingvalue ′ directly
into the node that already contains key. In contrast, a new node
had to be created on the middle path, since the middle path runs
concurrently with the fallback path, which assumes that the keys
and values of nodes do not change. Additionally, each invocation
of Delete that sees key in the tree can avoid creating a new copy of
the sibling of the deleted leaf. This optimization was not possible
on the middle path, because the fallback path assumes that each
successful operation writes a pointer to a newly created node. The
second major improvement comes from the fact that reads and
writes suffice where invocations of LLX and SCX were needed on
the other paths.

6.2 Relaxed (a,b)-tree
The relaxed (a,b)-tree [20] is a generalization of a B-tree. Larsen
introduced the relaxed (a,b)-tree as a sequential data structure that
was well suited to fine-grained locking. Internal nodes contain up
to b − 1 routing keys, and have one more child pointer than the
number of keys. Leaves contain up tob key-value pairs (which are in
the dictionary). (Values may be pointers to large data objects.) The
degree of an internal node (resp. leaf) is the number of pointers (resp.
keys) it contains. When there are no ongoing updates (insertions
and deletions) in a relaxed (a,b)-tree, all leaves have the same

Figure 12: Fallback path operations for the unbalanced BST.

Figure 13: Fast path operations for the unbalanced BST. (Insert(d,v ′) is the same as on the fallback path.)

depth, and nodes have degree at least a and at most b, where b ≥
2a − 1. Maintaining this balance condition requires rebalancing
steps similar to the splits and joins of B-trees. (See [20] for further
details on the rebalancing steps.)
Fallback path. The fallback path consists of a lock-free implemen-
tation of the relaxed (a,b)-tree operations using the (original) tree
update template. Ifkey is in the tree, then Insert(key,value) replaces
the leaf containing key with a new copy that contains (key,value).
Suppose key is not in the tree. Then, Insert finds the leaf u where
the key should be inserted. If u is not full (has degree less than
b), then it is replaced with a new copy that contains (key,value).
Otherwise,u is replaced by a subtree of three new nodes: one parent
and two children. The two new children evenly share the key-value
pairs of u and (key,value). The new parent p contains only a single
routing key and two pointers (to the two new children), and is
tagged, which indicates that the subtree rooted at p is too tall, and
rebalancing should be performed to shrink its height. Delete(key)
replaces the leaf containing key with a new copy new that has key
deleted. If the degree of new is smaller than a, then rebalancing
must be performed.
Middle path. This path is obtained from the fallback path the same
way as in the unbalanced BST.
Fast path. The fast path is a sequential implementation of a re-
laxed (a,b)-tree whose operations are executed inside transactions.
Like the external BST, the major performance improvement over
the middle path comes from the facts that (1) operations create
fewer nodes, and (2) reads and writes suffice where LLX and SCX
were needed on the other paths. In particular, Insert(key,value) and
Delete(key) simply directly modify the keys and values of leaves,
instead of creating new nodes, except in the case of an Insert into
a full node u. In that case, two new nodes are created: a parent
and a sibling for u. (Recall that this case resulted in the creation of
three new nodes on the fallback path and middle path.) Note that
reducing node creation is more impactful for the relaxed (a,b)-tree
than for the unbalanced BST, since nodes are much larger.

As a minor point, we found that it was faster in practice to per-
form rebalancing steps by creating new nodes, and simply replacing

the old nodes with the new nodes that reflect the desired change
(instead of rebalancing by directly changing the keys, values and
pointers of nodes).

7 EXPERIMENTS
We used two different Intel systems for our experiments: a dual-
socket 12-core E7-4830 v3 with hyperthreading for a total of 48
hardware threads (running Ubuntu 14.04LTS), and a dual-socket
18-core E5-2699 v3 with hyperthreading for a total of 72 hardware
threads (running Ubuntu 15.04). Each machine had 128GB of RAM.
We used the scalable thread-caching allocator (tcmalloc) from the
Google perftools library. All code was compiled on GCC 4.8+ with
arguments -std=c++0x -O2 -mcx16. (Using the higher optimiza-
tion level -O3 did not significantly improve performance for any
algorithm, and decreased performance for some algorithms.) On
both machines, we pinned threads such that we saturate one socket
before scheduling any threads on the other.
Data structure parameters.. Recall that nodes in the relaxed
(a,b)-tree contain up to b keys, and, when there are no ongoing
updates, they contain at least a keys (where b ≥ 2a − 1). In our
experiments, we fix a = 6 and b = 16. With b = 16, each node
occupies four consecutive cache lines. Since b ≥ 2a−1, with b = 16,
we must have a ≤ 8. We chose to make a slightly smaller than
8 in order to exploit a performance tradeoff: a smaller minimum
degree may slightly increase depth, but decreases the number of
rebalancing steps that are needed to maintain balance.
Template implementations studied. We implemented each of
the data structures with four different template implementations:
3-path, 2-path con, TLE and the original template implementation,
which we call Non-HTM. (2-path con is omitted, since it performed
similarly to TLE, and cluttered the graphs.) The 2-path con and TLE
implementations perform up to 20 attempts on the fast path before
resorting to the fallback path. 3-path performs up to 10 attempts
(each) on the fast path and middle path. We implemented memory
reclamation using DEBRA [5], an epoch based reclamation scheme.
A more efficient way to reclaim memory for 3-path is proposed in
Section 9

2x 24-thread Intel E7-4830 v3
Unbalanced BST (LLX/SCX)
Updates w/key range [0, 104)

(a, b)-tree (LLX/SCX)
Updates w/key range [0, 106)

Li
gh

tw
or
kl
oa
d

H
ea
vy

w
or
kl
oa
d

Figure 14: Results (48-thread system) showing throughput
(operations per second) vs. concurrent processes.

7.1 Light vs. Heavy workloads
Methodology. We study two workloads: in light, n processes per-
form updates (50% insertion and 50% deletion), and in heavy, n − 1
processes perform updates, and one thread performs 100% range
queries (RQs). For each workload and data structure implementa-
tion, and a variety of thread counts, we perform a set of five ran-
domized trials. In each trial, n processes perform either updates or
RQs (as appropriate for the workload) for one second, and counted
the number of completed operations. Updates are performed on
keys drawn uniformly randomly from a fixed key range [0,K). RQs
are performed on ranges [lo, lo + s) where lo is uniformly random
in [0,K) and s is chosen, according to a probability distribution
described below, from [1, 1000] for the BST and [1, 10000] for the
(a,b)-tree. (We found that nodes in the (a,b)-tree contained approx-
imately 10 keys, on average, so the respective maximum values of s
for the BST and (a,b)-tree resulted in range queries returning keys
from approximately the same number of nodes in both data struc-
tures.) To ensure that we are measuring steady-state performance,
at the start of each trial, the data structure is prefilled by having
threads perform 50% insertions and 50% deletions on uniform keys
until the data structure contains approximately half of the keys in
[0,K).

We verified the correctness of each data structure after each trial
by computing key-sum hashes. Each thread maintains the sum of all
keys it successfully inserts, minus the sum of all keys it successfully
deletes. At the end of the trial, the total of these sums over all
threads must match the sum of keys in the tree.
Probability distribution of s.We chose the probability distribu-
tion of s to produce many small RQs, and a smaller number of very
large ones. To achieve this, we chose s to be ⌊x2S⌋ + 1, where x
is a uniform real number in [0, 1), and S = 1000 for the BST and
S = 10000 for the (a,b)-tree. By squaring x , we bias the uniform
distribution towards zero, creating a larger number of small RQs.

2x 36-thread Intel E5-2699 v3
Unbalanced BST (LLX/SCX)
Updates w/key range [0, 104)

(a, b)-tree (LLX/SCX)
Updates w/key range [0, 106)

Li
gh

tw
or
kl
oa
d

H
ea
vy

w
or
kl
oa
d

Figure 15: Results (72 thread system) showing throughput
(operations per second) vs. concurrent processes.

Results.We briefly discuss the results from the 48 thread machine,
which appear in Figure 14. The BST and the relaxed (a,b)-tree be-
have fairly similarly. Since the (a,b)-tree has large nodes, it benefits
much more from a low-overhead fast path (in TLE or 3-path) which
can avoid creating new nodes during updates. In the light work-
loads, 3-path performs significantly better than 2-path con (which
has more overhead) and approximately as well as TLE. On aver-
age, the 3-path algorithms completed 2.1x as many operations as
their non-HTM counterparts (and with 48 concurrent processes, this
increases to 3.0x, on average). In the heavy workloads, 3-path signif-
icantly outperforms TLE (completing 2.0x as many operations, on
average), which suffers from excessive waiting. Interestingly, 3-path
is also significantly faster than 2-path con in the heavy workloads.
This is because, even though RQs are always being performed, some
RQs can succeed on the fast path, so many update operations can
still run on the fast path in 3-path, where they incur much less
overhead (than they would in 2-path con).

Results from the 72-thread machine appear in Figure 15. There,
3-path shows an even larger performance advantage overNon-HTM.

7.2 Code path usage and abort rates
To gain further insight into the behaviour of our accelerated tem-
plate implementations, we gathered some additional metrics about
the experiments described above. Here, we only describe results
from the 48-thread Intel machine. (Results from the 72-thread Intel
machine were similar.)
Operations completed on each path.We started by measuring
how often operations completed successfully on each execution
path. This revealed that operations almost always completed on
the fast path. Broadly, over all thread counts, the minimum number
of operations completed on the fast path in any trial was 86%, and
the average over all trials was 97%.

In each trial that we performed with 48 concurrent threads, at
least 96% of operations completed on the fast path, even in the

Figure 16: How many transactions commit vs. how many
abort in our experiments on the 48-thread machine.

workloads with RQs. Recall that RQs are the operations most likely
to run on the fallback path, and they are only performed by a single
thread, so they make up a relatively small fraction of the total
operations performed in a trial. In fact, our measurements showed
that the number of operations which completed on the fallback
path was never more than a fraction of one percent in our trials
with 48 concurrent threads.

In light of this, it might be somewhat surprising that the perfor-
mance of TLE was so much worse in heavy workloads than light
ones. However, the cost of serializing threads is high, and this cost
is compounded by the fact that the operations which complete on
the fallback path are often long-running. Of course, in workloads
where more operations run on the fallback path, the advantage of
improving concurrency between paths would be even greater.
Commit/abort rates.We also measured how many transactions
committed and how many aborted, on each execution path, in each
of our trials. Figure 16 summarizes the average commit/abort rates
for each data structure, template implementation and workload.
Since nearly all operations completed on the fast path, we decided
not to distinguish between the commit/abort rate on the fast path
and the commit/abort rate on the middle path.

7.3 Comparing with hybrid transactional
memory

Hybrid transactional memory (hybrid TM) combines hardware and
software transactions to hide the limitations of HTM and guar-
antee progress. This offers an alternative way of using HTM to
implement concurrent data structures. Note, however, that state
of the art hybrid TMs use locks. So, they cannot be used to im-
plement lock-free data structures. Regardless, to get an idea of
how such implementations would perform, relative to our acceler-
ated template implementations, we implemented the unbalanced

2x 24-thread Intel E7-4830 v3
Unbalanced BST (LLX/SCX)
Updates w/key range [0, 104)

Li
gh

tw
or
kl
oa
d

Figure 17: Results showing throughput (operations per sec-
ond) versus number of processes for an unbalanced BST im-
plemented with different tree update template algorithms,
and with the hybrid TM algorithm Hybrid NOrec.

BST using Hybrid NOrec, which is arguably the fastest hybrid TM
implementation with readily available code [29].

If wewere to use a precompiled library implementation of Hybrid
NOrec, then the unbalanced BST algorithmwould have to perform a
library function call for each read and write to shared memory, which
would incur significant overhead. So, we directly compiled the code
for Hybrid NOrec into the code for the BST, allowing the compiler
to inline the Hybrid NOrec functions for reading and writing from
shared memory into our BST code, eliminating this overhead. Of
course, if one intended to use hybrid TM in practice (and not in
a research prototype), one would use a precompiled library, with
all of the requisite overhead. Thus, the following results are quite
charitable towards hybrid TMs.

We implemented the BST using Hybrid NOrec by wrapping se-
quential code for the BST operations in transactions, and manually
replacing each read from (resp., write to) shared memory with a
read (resp., write) operation provided by Hybrid NOrec. Figure 17
compares the performance of the resulting implementation to the
other BST implementations discussed in Section 7.

The BST implemented with Hybrid NOrec performs relatively
well with up to six processes. However, beyond six processes, it
experiences severe negative scaling. The negative scaling occurs
because Hybrid NOrec increments a global counter in each updating
transaction (i.e., each transaction that performs at least one write).
This global contention hotspot in updating transactions causes
many transactions to abort, simply because they contend on the
global counter (and not because they conflict on any data in the
tree). However, even without this bottleneck, Hybrid NOrec would
still perform poorly in heavy workloads, since it incurs very high
instrumentation overhead for software transactions (which must
acquire locks, perform repeated validation of read-sets, maintain
numerous auxiliary data structures for read-sets and write-sets, and

so on). Note that this problem is not unique to Hybrid NOrec, as
every hybrid TMmust use a software TM as its fallback path in order
to guarantee progress. In contrast, in our template implementations,
the software-only fallback path is a fast lock-free algorithm.

8 MODIFICATIONS FOR PERFORMING
SEARCHES OUTSIDE OF TRANSACTIONS

In this section, we describe how the 3-path implementations of
the unbalanced BST and relaxed (a,b)-tree can be modified so that
each operation attempt on the fast path or middle path performs
its search phase before starting a transaction (and only performs its
update phase in a transaction). (The same technique also applies
to the 2-path con implementations.) First, note that the lock-free
search procedure for each of these data structures is actually a
standard, sequential search procedure. Consequently, a simple se-
quential search procedure will return the correct result, regardless
of whether it is performed inside a transaction. (Generally, when-
ever we produce a 3-path implementation starting from a lock-free
fallback path, we will have access to a correct non-transactional
search procedure.)

The difficulty is that, when an operation starts a transaction
and performs its update phase, it may be working on a part of the
tree that was deleted by another operation. One can imagine an
operation Od that deletes an entire subtree, and an operation Oi
that inserts a node into that subtree. If the search phase of Oi is
performed, then Od is performed, then the update phase of Oi is
performed, then Oi may erroneously insert a node into the deleted
subtree.

We fix this problem as follows. Whenever an operation O on
the fast path or middle path removes a node from the tree, it sets
amarked bit in the node (just like operations on the fallback path
do). WheneverO first accesses a node u in its transaction, it checks
whether u has its marked bit set, and, if so, aborts immediately.
This way, O’s transaction will commit only if every node that it
accessed is in the tree.

We found that this modification yielded small performance im-
provements (on the order of 5-10%) in our experiments. The reason
this improves performance is that fewer memory locations are
tracked by the HTM system, which results in fewer capacity aborts.
We briefly discuss why the performance benefit is small in our ex-
periments. The relaxed (a,b)-tree has a very small height, because
it is balanced, and its nodes contain many keys. The BST also has
a fairly small height (although it is considerably taller than the
relaxed (a,b)-tree), because processes in our experiments perform
insertions and deletions on uniformly random keys, which leads to
trees of logarithmic height with high probability. So, in each case,
the sequence of nodes visited by searches is relatively small, and is
fairly unlikely to cause capacity aborts.

The performance benefit associated with this modification will
be greater for data structures, operations or workloads in which an
operation’s search phase will access a large number of nodes. Addi-
tionally, IBM’s HTM implementation in their POWER8 processors
is far more prone to capacity aborts than Intel’s implementation,
since a transaction will abort if it accesses more than 64 different
cache lines [26]. (In contrast, in Intel’s implementation, a trans-
action can potentially commit after accessing tens of thousands

of cache lines.) Thus, this modification could lead to significantly
better performance on POWER8 processors.

9 MORE EFFICIENT MEMORY
RECLAMATION ON THE FAST PATH

For the data structures presented in the paper, we implemented
memory reclamation using an epoch based reclamation scheme
called DEBRA [5]. This reclamation scheme is designed to reclaim
memory for lock-free data structures, which are notoriously difficult
to reclaim memory for. Since processes do not lock nodes before
accessing them, one cannot simply invoke free() to release a
node’s memory back to the operating system as soon as the node
is removed from the data structure. This is because a process can
always be poised to access the node just after it is freed. The penalty
for accessing a freed node is a program crash (due to a segmentation
fault). Thus, reclamation schemes like DEBRA implement special
mechanisms to determine when it is safe to free a node that has
been removed from the data structure.

However, advanced memory reclamation schemes become un-
necessary if all accesses to nodes are performed inside transactions.
With Intel’s HTM, accessing freed memory inside a transaction can-
not cause a segmentation fault and crash the program. Instead, the
transaction simply aborts. (Note, however, that this is not true for
IBM’s transactional memory implementation in their POWER8 pro-
cessors.) Consider a graph-based data structure whose operations
are performed entirely in transactions. In such a data structure,
deleting and immediately freeing a node will simply cause any
concurrent transaction that accesses the node (after it is freed) to
abort. This is because removing the node will change a pointer that
was traversed during any concurrent search that reached the node.
Consequently, in such a data structure, reclaiming memory is as
easy as invoking free() immediately after a node is removed.

In our three path algorithms, the fast path can only run con-
currently with the middle path (but not the fallback path). Thus,
if every operation on the fast path or middle path runs entirely
inside a transaction, then memory can be reclaimed on the fast path
simply by using free() immediately after removing a node inside
a transaction. Our performance experiments did not implement
this optimization, but doing so would likely further improve the
performance of the three path algorithms.

10 OTHER USES FOR THE 3-PATH
APPROACH

10.1 Accelerating data structures that use
read-copy-update (RCU)

In this section, we sketch a 3-path algorithm for an ordered dictio-
nary implemented with a node-oriented unbalanced BST that uses
the RCU synchronization primitives. The intention is for this to
serve as an example of how one might use the 3-path approach to
accelerate a data structure that uses RCU.

RCU is both a programming paradigm and a set of synchroniza-
tion primitives. The paradigm organizes operations into a search/reader
phase and an (optional) update phase. In the update phase, all mod-
ifications are made on a new copy of the data, and the old data

is atomically replaced with the new copy. In this work, we are
interested in the RCU primitives (rather than the paradigm).

Semantics of RCU primitives and their uses. The basic RCU
synchronization primitives are rcu_begin, rcu_end and rcu_wait [12].
Operations invoke rcu_begin and rcu_end at the beginning and end
of the search phase, respectively. The interval between an invoca-
tion of rcu_begin and the next invocation of rcu_end by the same
operation is called a read-side critical section. An invocation of
rcu_wait blocks until all read-side critical sections that started be-
fore the invocation of rcu_wait have ended. One common use of
rcu_wait is to wait, after a node has been deleted, until no readers
can have a pointer to it, so that it can safely be freed. It is possible
to use RCU as the sole synchronization mechanism for an algo-
rithm if one is satisfied with allowing many concurrent readers,
but only a single updater at a time. If multiple concurrent updaters
are required, then another synchronization mechanism, such as
fine-grained locks, must also be used. However, one must be careful
when using locks with RCU, since locks cannot be acquired inside
a read-side critical section without risking deadlock.

The CITRUS data structure.We consider how one might ac-
celerate a node-oriented BST called CITRUS [2], which uses the
RCU primitives, and fine-grained locking, to synchronize between
threads. First, we briefly describe the implementation of CITRUS.
At a high level, RCU is used to allow operations to search without
locking, and fine-grained locking is used to allow multiple updaters
to proceed concurrently.

The main challenge in the implementation of CITRUS is to pre-
vent race conditions between searches (which do not acquire locks)
and deletions. When an internal nodeu with two children is deleted
in an internal BST, its key is replaced by its successor’s key, and
the successor (which is a leaf) is then deleted. This case must be
handled carefully, or else the following can happen. Consider con-
current invocations D of Delete(key) and S of Search(key′), where
key′ is the successor of key. Suppose S traverses past the node u
containing key, and thenD replacesu’s key by key′, and deletes the
node containing key′. The search will then be unable to find key′,
even though it has been in the tree throughout the entire search.
To avoid this problem in CITRUS, rather than changing the key of
u directly, D replaces u with a new copy that contains key′. After
replacingu, D invokes rcu_wait to wait for any ongoing searches to
finish, before finally deleting the leaf containing key′. The primary
sources of overhead in this algorithm are invocations of rcu_wait,
and lock acquisition costs.

Fallback path. The fallback path uses the implementation of
CITRUS in [2] (additionally incrementing and decrementing the
gobal fetch-and-add object F , as described in Section 5).

Middle path. The middle path is obtained from the fallback
path by wrapping each fallback path operation in a transaction and
optimizing the resulting code. The most significant optimization
comes from an observation that the invocation of rcu_wait in Delete
is unnecessary since transactions make the operation atomic. In-
vocations of rcu_wait are the dominating performance bottleneck
in CITRUS, so this optimization greatly improves performance. A
smaller improvement comes from the fact that transactions can
avoid acquiring locks. Transactions on the middle path must en-
sure that all objects they access are not locked by other operations

(on the fallback path), or else they might modify objects locked by
operations on the fallback path. However, it is not necessary for
transaction to actually acquire locks. Instead, it suffices for a trans-
action to simply read the lock state for all objects it accesses (before
accessing them) and ensure that they are not held by another pro-
cess. This is because transactions subscribe to each memory location
they access, and, if the value of the location (in this case, the lock
state) changes, then the transaction will abort.

Fast path. The fast path is a sequential implementation of a
node-oriented BST whose operations are executed in transactions.
As in the other 3-path algorithms, each transaction starts by read-
ing F , and aborts if it is nonzero. This prevents operations on the
fast path and fallback path from running concurrently. There are
two main differences between fast path and the middle path. First,
the fast path does not invoke rcu_begin and rcu_end. These invo-
cations are unnecessary, because operations on the fast path can
run concurrently only with other operations on the fast path or
middle path, and neither path depends on RCU for its correctness.
(However, the middle path must invoke these operations, because
it runs concurrently with the fallback path, which relies on RCU.)
The second difference is that the fast path does not need to read
the lock state for any objects. Any conflicts between operations on
the fast and middle path are resolved directly by the HTM system.

10.2 Accelerating data structures that use
k-CAS

In this section, we sketch a 3-path algorithm for an ordered dic-
tionary implemented with a singly-linked list that uses the k-CAS
synchronization primitive. The intention is for this to serve as an
example of how one might use the 3-path approach to accelerate a
data structure that uses k-CAS.

A k-CAS operation takes, as its arguments, k memory locations,
expected values and new values, and atomically: reads the memory
locations and, if they contain their expected values, writes new
values into each of them. k-CAS has been implemented from single-
word CAS [18]. We briefly describe this k-CAS implementation. At
a high level, a k-CAS creates a descriptor object that describes the
k-CAS operation, then uses CAS to store a pointer to this descriptor
in each memory location that it operates on. Then, it uses CAS to
change each memory location to contain its new value. While a
k-CAS is in progress, some fields may contain pointers to descriptor
objects, instead of their regular values. Consequently, reading a
memory location becomes more complicated: it requires reading the
location, then testing whether it contains a pointer to a descriptor
object, and, if so, helping the k-CAS operation that it represents,
before finally returning a value.

Fallback path. The fallback path consists of the lock-free singly-
linked list in [30]. At a high level, each operation on the fallback
path consists of a search phase, optionally followed by an update
phase, which is performed using k-CAS.

Middle path. Since the search phase in a linked list can be ex-
tremely long, and is likely to cause a transaction to abort (due to
capacity limitations), the middle path was obtained by wrapping
only the update phase of each fallback path operation in a trans-
action, and optimizing the resulting code. The main optimization

on the middle path comes from replacing the software implemen-
tation of k-CAS with straightforward implementation from HTM
(using the approach in [30]). This HTM-based implementation per-
forms the entire k-CAS atomically, so it does not need to create a
descriptor, or store pointers to descriptors at nodes.

Fast path. The fast path is a sequential implementation in which
the update phase of each operation is wrapped in a transaction. The
main optimization on the fast path comes from the fact that, since
there are no concurrent operations on the fallback path, there are
no k-CAS descriptors in shared memory. Consequently, operations
on the fast path do not need to check whether any values they read
from shared memory are actually pointers to k-CAS descriptors,
which can significantly reduce overhead.

Preventing fast/fallback concurrency. Observe that our fast
path optimization (to avoid checking whether any values that are
read are actually pointers to k-CAS descriptors) is correct only if
the search phase in the fast path does not run concurrently with
the update phase of any operation on the fallback path. For each
of the other data structures we described, each operation runs
entirely inside a single transaction. Thus, for these data structures,
it suffices to verify that the global fetch-and-add object F is zero
at the beginning of each transaction to guarantee that operations
on the fast path do not run concurrently with operations on the
fallback path. However, this is not sufficient for the list, since only
the update phase of each operation executes inside a transaction.
So, we need some extra mechanism to ensure that the fast path
does not run concurrently with the fallback path.

If it is not important for the algorithm to be lock-free, then
one can simply use a fast form of group mutual exclusion that
allows many operations on the fast path, or many operations on the
fallback path, but not both. Otherwise, one can solve this problem by
splitting the traversal into many small transactions, and verifying
that F is zero at the beginning of each. If F ever becomes non-zero,
then some transaction will abort, and the enclosing operation will
also abort.

11 RELATEDWORK
Hybrid TMs share some similarities to our work, since they all
feature multiple execution paths. The first hybrid TM algorithms
allowed HTM and STM transactions to run concurrently [11, 21].
Hybrid NOrec [10] and Reduced hardware NOrec [25] are hybrid
TMs that both use global locks on the fallback path, eliminating
any concurrency. We discuss two additional hybrid TMs, Phased
TM [22] (PhTM) and Invyswell [9], in more detail.

PhTM alternates between five phases: HTM-only, STM-only, con-
current HTM/STM, and two global locking phases. Roughly speak-
ing, PhTM’s HTM-only phase corresponds to our uninstrumented
fast path, and its concurrent HTM/STM phase corresponds to our
middle HTM and fallback paths. However, their STM-only phase
(which allows no concurrent hardware transactions) and global
locking phases (which allow no concurrency) have no analogue in
our approach. In heavy workloads, PhTM must oscillate between
its HTM-only and concurrent HTM/STM phases to maximize the
performance benefit it gets from HTM. When changing phases,
PhTM typically waits until all in-progress transactions complete
before allowing transactions to begin in the newmode. Thus, after a

phase change has begun, and before the next phase has begun, there
is a window during which new transactions must wait (reducing
performance). One can also think of our three path approach as pro-
ceeding in two phases: onewith concurrent fast/middle transactions
and one with concurrent middle/fallback transactions. However, in
our approach, “phase changes” do not introduce any waiting, and
there is always concurrency between two execution paths.

Invyswell is closest to our three path approach. At a high level,
it features an HTM middle path and STM slow path that can run
concurrently (sometimes), and an HTM fast path that can run con-
currently with the middle path (sometimes) but not the slow path,
and two global locking fallback paths (that prevent any concur-
rency). Invyswell is more complicated than our approach, and has
numerous restrictions on when transactions can run concurrently.
Our three path methodology does not have these restrictions. The
HTM fast path also uses an optimization called lazy subscription.
It has been shown that lazy subscription can cause opacity to be
violated, which can lead to data corruption or program crashes [13].

Hybrid TM is very general, and it pays for its generality with
high overhead. Consequently, data structure designers can extract
far better performance for library code by using more specialized
techniques. Additionally, we stress that state of the art hybrid TMs
use locks, so they cannot be used in lock-free data structures.

Different options for concurrency have recently begun to be
explored in the context of TLE. Refined TLE [14] and Amalgamated
TLE [1] both improve the concurrency of TLE when a process is on
the fallback path by allowing HTM transactions to run concurrently
with a single process on the fallback path. Both of these approaches
still serialize processes on the fallback path. They also use locks, so
they cannot be used to produce lock-free data structures.

Timnat, Herlihy and Petrank [30] proposed using a strong syn-
chronization primitive calledmultiword compare-and-swap (k-CAS)
to obtain fast HTM algorithms. They showed how to take an algo-
rithm implemented using k-CAS and produce a two-path imple-
mentation that allows concurrency between the fast and fallback
paths. One of their approaches used a lock-free implementation of
k-CAS on the fallback path, and an HTM-based implementation
of k-CAS on the fast path. They also experimented with two-path
implementations that do not allow concurrency between paths, and
found that allowing concurrency between the fast path and fallback
path introduced significiteant overhead. Makreshanski, Levandoski
and Stutsman [24] also independently proposed using HTM-based
k-CAS in the context of databases.

Liu, Zhou and Spear [23] proposed a methodology for acceler-
ating concurrent data structures using HTM, and demonstrated it
on several lock-free data structures. Their methodology uses an
HTM-based fast path and a non-transactional fallback path. The
fast path implementation of an operation is obtained by encapsulat-
ing part (or all) of the operation in a transaction, and then applying
sequential optimizations to the transactional code to improve per-
formance. Since the optimizations do not change the code’s logic,
the resulting fast path implements the same logic as the fallback
path, so both paths can run concurrently. Consequently, the fallback
path imposes overhead on the fast path.

Some of the optimizations presented in that paper are similar to
some optimizations in our HTM-based implementation of LLX and

SCX. For instance, when they applied their methodology to the lock-
free unbalanced BST of Ellen et al. [16], they observed that helping
can be avoided on the fast path, and that the descriptors which are
normally created to facilitate helping can be replaced by a small
number of statically allocated descriptors. However, they did not
give details on exactly how these optimizations work, and did not
give correctness arguments for them. In contrast, our optimizations
are applied to a more complex algorithm, and are proved correct.

Multiversion concurrency control (MVCC) is another way to im-
plement range queries efficiently [3, 4]. At a high level, it involves
maintaining multiple copies of data to allow read-only transactions
to see a consistent view of memory and serialize even in the pres-
ence of concurrent modifications. However, our approach could
also be applied to operations that modify a range of keys, so it is
more general than MVCC.

12 CONCLUDING REMARKS
In this work, we explored the design space for HTM-based imple-
mentations of the tree update template of Brown et al. and presented
four accelerated implementations. We discussed performance is-
sues affecting HTM-based algorithms with two execution paths,
and developed an approach that avoids them by using three paths.
We used our template implementations to accelerate two different
lock-free data structures, and performed experiments that showed
significant performance improvements over several different work-
loads. This makes our implementations an attractive option for
producing fast concurrent data structures for inclusion in libraries,
where performance is critical.

Our accelerated data structures each perform an entire operation
inside a single transaction (except on the fallback code path, where
no transactions are used). We discussed how one can improve effi-
ciency by performing the read-only searching part of an operation
non-transactionally, and simply using a transaction to perform any
modifications to the data structure. Our 3-path approach may also
have other uses. As an example, we sketched an accelerated 3-path
implementation of a node-oriented BST that uses the read-copy-
update (RCU) synchronization primitives. We suspect that a similar
approach could be used to accelerate other data structures that
use RCU. Additionally, we described how one might produce a 3-
path implementation of a lock-free algorithm that uses the k-CAS
synchronization primitive.

REFERENCES
[1] Y. Afek, A. Matveev, O. R. Moll, and N. Shavit. Amalgamated lock-elision. In

Distributed Computing: 29th International Symposium, DISC 2015, Tokyo, Japan,
October 7-9, 2015, Proceedings, pages 309–324. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015.

[2] M. Arbel and H. Attiya. Concurrent updates with rcu: search tree as an example.
In Proceedings of the 2014 ACM symposium on Principles of distributed computing,
pages 196–205. ACM, 2014.

[3] H. Attiya and E. Hillel. A single-version stm that is multi-versioned permissive.
Theory of Computing Systems, 51(4):425–446, 2012.

[4] P. A. Bernstein and N. Goodman. Multiversion concurrency control-theory and
algorithms. ACM Transactions on Database Systems (TODS), 8(4):465–483, 1983.

[5] T. Brown. Reclaiming memory for lock-free data structures: There has to be a
better way. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC ’15, pages 261–270, 2015.

[6] T. Brown. Techniques for Constructing Efficient Data Structures. PhD thesis,
University of Toronto, 2017.

[7] T. Brown, F. Ellen, and E. Ruppert. Pragmatic primitives for non-blocking data
structures. In Proceedings of the 2013 ACM Symposium on Principles of Distributed

Computing, PODC ’13, pages 13–22, 2013.
[8] T. Brown, F. Ellen, and E. Ruppert. A general technique for non-blocking trees.

In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’14, pages 329–342, 2014.

[9] I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and M. Herlihy. Invyswell:
a hybrid transactional memory for haswell’s restricted transactional memory.
In Proceedings of the 23rd international conference on Parallel architectures and
compilation, pages 187–200. ACM, 2014.

[10] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F.
Spear. Hybrid norec: A case study in the effectiveness of best effort hardware
transactional memory. In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XVI, pages 39–52, New York, NY, USA, 2011. ACM.

[11] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid
transactional memory. In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
XII, pages 336–346, New York, NY, USA, 2006. ACM.

[12] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and J. Walpole. User-
level implementations of Read-Copy Update. IEEE Transactions on Parallel and
Distributed Systems, 23(2):375–382, 2012.

[13] D. Dice, T. Harris, A. Kogan, Y. Lev, and M. Moir. Pitfalls of lazy subscription.
In Proceedings of the 6th Workshop on the Theory of Transactional Memory, Paris,
France, 2014.

[14] D. Dice, A. Kogan, and Y. Lev. Refined transactional lock elision. In Proceed-
ings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’16, pages 19:1–19:12, New York, NY, USA, 2016. ACM.

[15] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial
hardware transactional memory implementation. In Proceedings of the 14th Int.
Conf. on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XIV, pages 157–168, New York, NY, USA, 2009.

[16] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking binary search
trees. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, PODC ’10, pages 131–140, 2010. Full version available
as Technical Report CSE-2010-04, York University.

[17] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. Snzi: Scalable nonzero indicators. In
Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed
computing, pages 13–22. ACM, 2007.

[18] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-and-swap
operation. In Proceedings of the 16th International Conference on Distributed
Computing, DISC ’02, pages 265–279, 2002.

[19] M. He and M. Li. Deletion without rebalancing in non-blocking binary search
trees. In Proceedings of the 20th International Conference on Principles of Dis-
tributed Systems, 2016.

[20] L. Jacobsen and K. S. Larsen. Variants of (a, b)-trees with relaxed balance. Int. J.
Found. Comput. Sci., 12(4):455–478, 2001.

[21] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional
memory. In Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’06, pages 209–220, New York, NY,
USA, 2006. ACM.

[22] Y. Lev, M. Moir, and D. Nussbaum. Phtm: Phased transactional memory. In
Workshop on Transactional Computing (Transact), 2007.

[23] Y. Liu, T. Zhou, and M. Spear. Transactional acceleration of concurrent data
structures. In Proc. of 27th ACM Sym. on Parallelism in Algorithms and Arch.,
SPAA ’15, pages 244–253, New York, NY, USA, 2015. ACM.

[24] D. Makreshanski, J. Levandoski, and R. Stutsman. To lock, swap, or elide: on the
interplay of hardware transactional memory and lock-free indexing. Proceedings
of the VLDB Endowment, 8(11):1298–1309, 2015.

[25] A. Matveev and N. Shavit. Reduced hardware norec: A safe and scalable hybrid
transactional memory. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’15, pages 59–71, New York, NY, USA, 2015. ACM.

[26] A. T. Nguyen. Investigation of Hardware Transactional Memory. PhD thesis,
Massachusetts Institute of Technology, 2015.

[27] R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling highly con-
current multithreaded execution. In Proceedings of the 34th annual ACM/IEEE
international symposium on Microarchitecture, pages 294–305. IEEE Computer
Society, 2001.

[28] R. Rajwar and J. R. Goodman. Transactional lock-free execution of lock-based
programs. In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS X, pages
5–17, New York, NY, USA, 2002. ACM.

[29] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimizing hybrid
transactional memory: The importance of nonspeculative operations. In Proceed-
ings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures,
pages 53–64. ACM, 2011.

[30] S. Timnat, M. Herlihy, and E. Petrank. A practical transactional memory interface.
In Euro-Par 2015: Parallel Processing, pages 387–401. Springer, 2015.

	Abstract
	1 Introduction
	2 Model
	3 Background
	4 HTM-based LLX and SCX
	4.1 Correctness and Progress

	5 Accelerated template implementations
	6 Example data structures
	6.1 Unbalanced BST
	6.2 Relaxed (a,b)-tree

	7 Experiments
	7.1 Light vs. Heavy workloads
	7.2 Code path usage and abort rates
	7.3 Comparing with hybrid transactional memory

	8 Modifications for performing searches outside of transactions
	9 More efficient memory reclamation on the fast path
	10 Other uses for the 3-path approach
	10.1 Accelerating data structures that use read-copy-update (RCU)
	10.2 Accelerating data structures that use k-CAS

	11 Related work
	12 Concluding remarks
	References

