
Brief Announcement: Faster Data Structures in
Transactional Memory using Three Paths

Trevor Brown ?

University of Toronto, Toronto, Ontario, Canada

With the introduction of Intel’s restricted hardware transactional memory
(HTM) in commodity hardware, the transactional memory abstraction has fi-
nally become practical to use. Transactional memory allows a programmer to
easily implement safe concurrent code by specifying that certain blocks of code
should be executed atomically. However, Intel’s HTM implementation does not
offer any progress guarantees. Even in a single threaded system, a transaction
can repeatedly fail for complex reasons. Consequently, any code that uses HTM
must also provide a non-transactional fallback path to be executed if a trans-
action fails. Since the primary goal of HTM is to simplify the task of writing
concurrent code, a typical fallback path simply acquires a global lock, and then
runs the same code as the transaction. This is essentially transactional lock eli-
sion (TLE). Changes made by a process on the fallback path are not atomic, so
transactions that run concurrently with a process on the fallback path may see
inconsistent state. Thus, at the beginning of each transaction, a process reads
the state of the global lock and aborts the transaction if it is held.

Despite its widespread use, there are many problems with this fallback path.
If transactions abort infrequently, then processes rarely execute on the fallback
path. However, once one process begins executing on the fallback path, all con-
current transactions will abort, and processes on the fast path will cascade onto
the fallback path. This has been called the lemming effect, from the myth that
lemmings will leap from cliffs in large numbers.

One simple way to mitigate the lemming effect is to retry aborted transactions
a few times, waiting between retries for the fallback path to become empty. For
some common workloads (e.g., range queries and updates on an ordered set
implemented with a binary search tree), some operation is nearly always on the
fallback path, so concurrency is very limited and performance is poor. Thus,
waiting for the fallback path to become empty is not always a good solution.

A more sophisticated solution is to design transactions so they can com-
mit even if processes are executing on the fallback path. One way to do this is
to start with a hand-crafted fallback path that uses fine-grained synchroniza-
tion, and obtain a fast path by wrapping each operation in a transaction (and
then optimizing the resulting sequential code). This technique was explored by
Liu et al. [1]. To support concurrency between the two paths, the fast path must
read and update the meta-data used by the fallback path to synchronize pro-

? This work was supported by NSERC. I thank my advisor Faith Ellen for her helpful
comments on this work. Some experiments were performed while at Oracle Labs.



cesses. Unfortunately, the overhead of manipulating meta-data on the fast path
can eliminate much or all of the performance benefit of HTM.

To overcome this, we introduce a novel
approach for obtaining faster algorithms
by using three execution paths: an HTM-
based fast path, an HTM-based mid-
dle path and a non-transactional fallback
path. Our approach eliminates the lem-
ming effect without imposing any over-
head on the fast path. Each operation be-
gins on the fast path, and moves to the middle path after it retries F times. An
operation on the middle path moves to the fallback path after retrying M times
on the middle path. The fast path does not manipulate any synchronization
meta-data used by the fallback path, so operations on the fast path and fallback
path cannot run concurrently. Thus, whenever an operation is on the fallback
path, all operations on the fast path move to the middle path. The middle path
manipulates the synchronization meta-data used by the fallback path, so oper-
ations on the middle path and fallback path can run concurrently. Operations
on the middle path can also run concurrently with operations on the fast path.
The lemming effect does not occur, since an operation does not have to move
to the fallback path simply because another operation is on the fallback path.
Since processes on the fast path do not run concurrently with processes on the
fallback path, the fallback path does not impose any overhead on the fast path.

Experiments were performed on a 36-core
Intel system, comparing the performance of a
binary search tree with several two- and three-
path algorithms, and different retry strate-
gies, over a variety of workloads. In the 100%
update workload, the three-path algorithm
matches the performance of TLE and signif-
icantly outperforms the other algorithms. In
the workload with range queries, TLE suc-
cumbs to the lemming effect and performs
very poorly. These results suggest that three-
path algorithms can be used to obtain the full
performance benefit of HTM while robustly
avoiding the lemming effect.

References

1. Y. Liu, T. Zhou, and M. Spear. Transactional
acceleration of concurrent data structures. In
Proc. of 27th ACM Sym. on Parallelism in Al-
gorithms and Arch., SPAA ’15, pages 244–253,
New York, NY, USA, 2015. ACM.


