
Are Your Epochs Too Epic? Batch Free Can Be Harmful
Daewoo Kim

University of Waterloo
Canada

daewoo.kim@uwaterloo.ca

Trevor Brown
University of Waterloo

Canada
trevor.brown@uwaterloo.ca

Ajay Singh
University of Waterloo

Canada
ajay.singh1@uwaterloo.ca

Abstract
Epoch based memory reclamation (EBR) is one of the most
popular techniques for reclaiming memory in lock-free and
optimistic locking data structures, due to its ease of use and
good performance in practice. However, EBR is known to
be sensitive to thread delays, which can result in perfor-
mance degradation. Moreover, the exact mechanism for this
performance degradation is not well understood.
This paper illustrates this performance degradation in a

popular data structure benchmark, and does a deep dive to
uncover its root cause—a subtle interaction between EBR
and state of the art memory allocators. In essence, mod-
ern allocators attempt to reduce the overhead of freeing
by maintaining bounded thread caches of objects for local
reuse, actually freeing them (a very high latency operation)
only when thread caches become too large. EBR immediately
bypasses these mechanisms whenever a particularly large
batch of objects is freed, substantially increasing overheads
and latencies. Beyond EBR, many memory reclamation al-
gorithms, and data structures, that reclaim objects in large
batches suffer similar deleterious interactions with popular
allocators.
We propose a simple algorithmic fix for such algorithms

to amortize the freeing of large object batches over time, and
apply this technique to ten existing memory reclamation
algorithms, observing performance improvements for nine
out of ten, and over 50% improvement for six out of ten in
experiments on a high performance lock-free ABtree. We
also present an extremely simple token passing variant of
EBR and show that, with our fix, it performs 1.5-2.6× faster
than the fastest known memory reclamation algorithm, and
1.2-1.5× faster than not reclaiming at all, on a 192 thread
four socket Intel system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0435-2/24/03. . . $15.00
https://doi.org/10.1145/3627535.3638491

CCS Concepts: • Computing methodologies → Concur-
rent algorithms; Concurrent programming languages.

Keywords: safememory reclamation,memory allocator, con-
current data structures, memory management

1 Introduction
Concurrent data structures serve as crucial building blocks
for high performance multicore applications. Many concur-
rent data structures assume that memory is automatically
garbage collected, which means that in unmanaged environ-
ments such as C/C++, they must be paired with a separate
safe memory reclamation (SMR) algorithm. SMR algorithms
ensure that a thread can free an object only if no other thread
can possibly access the object (or else a segmentation fault
could occur). Epoch based reclamation (EBR) is one of the
most widely used reclamation algorithms for concurrent data
structures, largely owing its popularity to its ease of use and
extremely low overhead.

To obtain the highest performance from a modern concur-
rent data structure, one must typically also pair it with a fast
memory allocator that is engineered for highly concurrent
systems. JEmalloc [15] and TCmalloc [17] are two of the
most popular choices. Both of these allocators have seen
widespread use and undergone significant development by
industry. For example, JEmalloc is the standard allocator for
the FreeBSD operating system, as well as the allocator for
the Firefox web browser.

SMR algorithms and memory allocators have historically
been developed and optimized for relatively small scale sys-
tems with one or two processor sockets with fairly uniform
memory architectures. However, in recent years, processor
and system designs have become increasingly non-uniform.
Recent AMD processors follow a hierarchical chiplet design,
wherein a 64 core processor is actually a set of eight intercon-
nected chiplets of eight cores each, with their own internal
interconnects and local caches. In server environments, large
multi socket servers are becoming common, with Amazon
AWS M7i cloud servers running on four socket, 192 hard-
ware thread Intel configurations similar to the experimental
system we use in this paper. It is important to consider the
impact such increasing non-uniformity has on the perfor-
mance of popular algorithms and system software.
To this end, we conduct a rigorous study of the perfor-

mance of a fast concurrent data structure paired with a state
of the art implementation of EBR called DEBRA [9] and two
popular memory allocators–JEmalloc and TCmalloc. Our

https://doi.org/10.1145/3627535.3638491

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Daewoo Kim, Trevor Brown, and Ajay Singh

experiments show that common workloads that show strong
scaling up to moderate thread counts (up to two proces-
sor sockets) can experience severe performance degradation
when running at very high thread counts (using three or four
sockets). Subsequent experiments delve into the root cause
of this performance problem, which turns out to be a sub-
tle interaction between the EBR algorithm and the memory
allocator.
With the help of a new visualization technique that we

call timeline graphs, we discover that algorithms such as
DEBRA that free objects in large batches circumvent a key
optimization in JEmalloc. This optimization is intended to
avoid the overhead of returning an object to a remote thread
that allocated it (i.e., its owner), by instead placing the ob-
ject in a local buffer that the local thread can subsequently
allocate from. Every object allocated locally from this buffer
is an object that does not need to be freed remotely, back
to its owner. Freeing a large batch of objects can overflow
this buffer, triggering an extremely high latency free call
(on the order of tens of milliseconds or more) in which many
objects are removed from this buffer and freed remotely to
their respective owners, incurring extremely high lock con-
tention in the process. We call this the remote batch free (RBF)
problem.
Beyond EBR, the RBF problem appears to broadly affect

any kind of data structure or algorithm that reclaimsmemory
in batches. Many algorithms, including nearly all modern
SMR algorithms, treat batching objects to free them together
as a kind of optimization. In this work, we argue that this is
actually an anti-pattern.

We propose a simple algorithmic fix called amortized free
(AF) to mitigate the RBF problem. AF essentially reverses the
typical batch freeing optimization. Whenever an algorithm
would normally free a batch of nodes, we instead place them
in an auxiliary list and free them gradually over time. Free-
ing objects gradually creates opportunities for a thread to
reallocate these objects locally, rather than returning them
to their owners.

To demonstrate the generality of this work, we reproduce
the problem in both JEmalloc and TCmalloc, implement our
solution in ten different SMR algorithms, and leverage new in-
sights to design a new, exceedingly simple, high performance
SMR algorithm. Although our primary goal is to shed light
on the subtle interactions between modern algorithms and
system software, our experiments show that our solution is
strikingly effective, and it results in dramatic improvements
over prior art, as we explain below.

In summary, we make the following contributions.

• We reveal a subtle and highly impactful negative per-
formance interaction between modern memory allo-
cators and algorithms that free objects in batches, as
well as a simple algorithmic fix for this problem called
amortized freeing.

• We introduce timeline graphs, a new visualization that
makes it substantially easier to understand the be-
haviour of threads in workloads with high latency
operations.

• We apply amortized freeing to ten of the most popular
SMR algorithms, resulting in performance improve-
ments in nine of the ten algorithms, doubling the per-
formance of six of the algorithms on average with 192
threads.

• Leveraging the insights gained in this work, we de-
velop an extremely simple variant of EBR, Amortized-
free Token-EBR, that outperforms the fastest existing
SMR algorithm by 2.6× with 192 threads.

• To our knowledge, this is the most rigorous and in
depth analysis of the behaviour of threads in EBR al-
gorithms, and of the interaction between SMR and
memory allocators, to date.

The paper is organized as follows. We discuss background
in Section 2, diagnose the RBF problem, identify its root
causes, and describe a simple solution in Section 3. Section 4
presents our new SMR algorithm as a sequence algorithmic
improvements. Along the way, with the help of our timeline
graphs, we describe in detail the lessons learned about the
behaviour of threads in each variant that lead to our im-
provements. Our evaluation appears in Section 5. Finally, we
survey related work in Section 6 and conclude in Section 7.

2 Background
In this paper, we study two of the most popular allocators,
JEmalloc [15] and TCmalloc [17], as well as a new allocator
from Microsoft Research called MImalloc [26]. Necessary
details about the allocators’ designs are included inline in the
paper, but a more detailed description of the three allocators
appears in the supplementary material.

We give a brief primer on EBR. Epoch based reclamation is
one of the most widely used memory reclamation algorithms
for concurrent data structures, particularly because it is easy
to use and offers high performance. At a high level, in EBR,
instead of freeing objects immediately, threads store these
objects in a buffer called a limbo bag, to be freed later as a
batch. The program execution is logically divided into epochs,
and whenever the epoch changes, objects that were placed
in a limbo bag in older epochs are freed.
Brown [9] introduced DEBRA, which has been shown to

be one of the fastest EBR algorithms. A basic understanding
of DEBRA will be important for our performance investiga-
tion below. In DEBRA, there is a global epoch number, and
a single writer multi reader announcement array with one
slot per thread, in which each thread stores the number of
the epoch it is currently in. Threads update their announced
epoch number at the start of each data structure operation.
The global epoch can be advanced when all threads have
announced it. To efficiently determine whether all threads

Are Your Epochs Too Epic? Batch Free Can Be Harmful PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

(a) Performance (b) Peak memory usage (MiB)

(c) Performance (d) Peak memory usage (MiB)

Figure 1. Performance (operations per second) and peak
memory usage with JEmalloc, for OCCtree and ABtree, using
DEBRA (upper) vs leaking memory (lower).

have announced the current epoch, each thread periodically
(once every 𝑘 operations) reads one other thread’s epoch, pro-
ceeding in round robin order. The first thread to notice that
all threads have announced the current epoch will update
the global epoch.

3 Diagnosing the RBF Problem
In running experiments on concurrent tree data structures,
we observed that on large scale NUMA systems with four
processor sockets, some data structures that scale similarly
when running on a single socket scale drastically differently
when running on four sockets. For example, consider an AVL
tree by Bronson et al. [7] that uses optimistic concurrency
control (hereafter, OCCtree), and a concurrency friendly vari-
ant of a B-tree by Brown [8] that uses lock-free techniques
(hereafter, ABtree). We performed experiments to compare
the performance of these data structures in a simple mi-
crobenchmark. Both data structures allocated memory using
JEmalloc and reclaimed memory using DEBRA.

Experimental Methodology. For each thread count 𝑛 ∈
{6, 12, 24, 36, 48, 96, 144, 192}, three trials were performed. In
each trial, 𝑛 threads access the same data structure, and for
five seconds, repeatedly: flip a coin to decide whether to
insert or delete a key, and perform the resulting operation
on a uniform random key in a fixed key range [0, 2 × 107).
Note that with a fixed key range, and 50 percent insert oper-
ations and 50 percent delete operations, in the steady state
(after threads have run for a long time), the data structure
should contain half of the key range. To avoid measuring
the performance of a data structure as its size is changing at
the beginning of the trial, the five second measured portion
of the experiment begins once the size of the data struc-
ture stabilizes. In each trial, the total number of insert and

delete operations performed per second, across all threads
(i.e., throughput), is reported. Each data point shows the av-
erage throughput over three trials, and the minimum and
maximum throughput over these three trials is shown using
error bars. This experimental methodology is similar to that
in other papers that study concurrent memory reclamation
(e.g., [9, 34, 35, 39]).

System. This experiment was run on a four socket Intel
Xeon Platinum 8160 with 384 GB of DRAM. Each socket has
24 cores running at 2.1GHz nominal frequency with turbo
boost up to 3.7GHz, and 48 logical processors with hyper-
threading enabled, for a total of 96 cores and 192 hyper-
threads across all sockets. The operating system was Ubuntu
20.04 LTS, with kernel version 5.8.0-55. Code was compiled
with g++ 9.3.0-17 with -O3 optimization and std=c++14. All
experiments were run with numactl –interleave=all and
threads were pinned to logical processors such that thread
counts 1-24 run on a single socket, without hyperthreading,
25-48 run in a single socket with hyperthreading, and as
additional threads are added, the same pinning pattern is
applied to additional sockets as needed. (Sockets are popu-
lated with one thread per logical processor before additional
sockets are used.)

Symptom: poor scaling on NUMA. Figure 1a clearly
demonstrates the scaling issue described above. Both data
structures scale well up to 48 threads, but the ABtree stops
scaling above 96 threads, whereas the OCCtree continues
to scale. One significant difference between the ABtree and
the OCCtree is that the ABtree allocates one or two large
nodes (240 bytes each) per insert or delete operation, whereas
the OCCtree only allocates one small node (64 bytes) per
insert operation (and does not allocate memory in a delete
operation).

Hypothesis: memory reclamation is a bottleneck. Fig-
ure 1b shows the peak memory used (on average over three
trials) for each of the data points in Figure 1a. Interestingly,
peak memory usage for the ABtree is not much higher than
for the OCCtree. This is perhaps surprising, since the ABtree
allocates and reclaims substantially more memory per oper-
ation, on average, than the OCCtree. One might thus expect
the ABtree to have substantially higher peak memory usage,
especially at low thread counts, where it also performs more
operations than the OCCtree. But, that is clearly not the case.
One possible explanation is that, compared to the OCCtree,
the ABtree spends a larger fraction of the execution time allo-
cating and reclaiming memory than performing other useful
work in the data structure (traversing and/or modifying it),
limiting its performance.
To confirm this hypothesis, we disable memory reclama-

tion for both data structures, and simply leak memory, to
see whether this closes the performance gap between them.
The results in Figure 1c largely confirm this hypothesis. It

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Daewoo Kim, Trevor Brown, and Ajay Singh

250msTime

(a) 96 threads
250msTime

(b) 192 threads

Figure 2. Timeline graphs showing how much time threads
spend freeing batches of nodes as epochs change with JE-
malloc. (Y-axis = thread ID, blue dot = epoch change, space
between boxes = time spent accessing the data structure.)

is clear that the ABtree allocates much more memory (Fig-
ure 1d), which means the allocator must do more work, and
thememory reclamation algorithmmust domuchmore work
to maintain a small memory footprint. This suggests the per-
formance degradation comes from memory management,
either in the allocator or reclamation algorithm.

3.1 Investigating the Reclamation Bottleneck
Crucially, although DEBRAmaintains a similar memory foot-
print for all of the thread counts in our experiment (Fig-
ure 1b), the performance of the ABtree substantially flattens
at high thread counts in Figure 1a. This suggests that DE-
BRA is struggling to keep up with the amount of garbage
being produced. DEBRA, like all EBR algorithms, is very
sensitive to thread delays: a single delayed thread can prevent
all threads from reclaiming garbage [35, 37]. To determine
if this performance degradation is caused by thread delays,
we visualized the behaviour of threads, specifically the time
spent freeing objects, in a graph that we call a timeline.

Timeline Graphs. Wehave not seen timeline graphs used
elsewhere in the literature, but our experience with them
suggests they are a very useful tool for investigating perfor-
mance problems caused by thread delays. We implemented
a highly efficient mechanism to allow threads to record data
(specifically two time stamps and a user specified value) in
memory to be printed to files at the end of an experiment,
with very little impact on performance. We did not measure
any significant impact on performance when recording up
to 100,000 timeline events per thread. Our code will be made
available publicly when this paper is published.

Figure 2a and Figure 2b are timeline graphs showing how
much time threads spend freeing nodes as epochs change
in the ABtree with JEmalloc for 96 threads (left) and 192
(right). Rows represent different threads, and the x-axis rep-
resents time. For clarity, only 20 of the running threads and
a representative 250ms of the 5 second trial are shown. Full
graphs showing all threads and the entire 5 seconds of the

trial appear in the supplementary material. Each box repre-
sents a reclamation event, i.e., the time spent freeing a batch
of objects removed from the data structure in a previous
epoch. Boxes are coloured to make it easier to differentiate
neighbouring events. Blue dots represent a thread success-
fully changing the global epoch number. All blue dots are
also projected at the bottom of the graph to give a visual
indication of how often the epoch changes overall. (This
makes it easier to identify periods of time during which the
epoch is not changed by any thread.)

Comparing Timelines: 96 vs 192 Threads. Comparing
Figure 2a and Figure 2b, it is clear that more time is spent
freeing objects, and individual reclamation events are much
longer, with 192 threads than with 96 threads. (The time
scales for these two enlarged graphs are the same.) Recall
from Section 2 that DEBRA effectively amortizes the cost of
scanning threads’ epoch announcements over many opera-
tions. This keeps per operation overhead low, but it means
that doubling the number of threads should, on average, dou-
ble the length of time needed to advance the epoch. This
should in turn, double the amount of garbage to be reclaimed
in each epoch, and double the length of time needed to free
a batch, on average. So, we would expect the lengths of the
reclamation events to be twice as long for 192 threads as for
96 threads.1 However, we see that these events are many
times longer than expected, which suggests there is an addi-
tional factor at work.

3.2 Root Cause of Long Reclamation Events
Further investigation using Linux Perftools led to the real-
ization that poor performance in JEmalloc, such as when
running on four sockets, is usually accompanied by a large
fraction of the total cycle count being spent in function called
je_tcache_bin_flush_small. Table 1 summarizes perf re-
sults to support the following discussion, and also quantifies
how the total number of epochs changes as the thread count
increases. These results confirm that the cost of freeing ob-
jects becomes prohibitive at high thread counts, preventing
the data structure from scaling.

According to the source code for this version (5.0.1-25) of
JEmalloc, when a thread invokes free, it places the freed
object in a thread local buffer, and then checks whether the
buffer is filled beyond a given threshold. If so, it takes a large
number of objects from that buffer (approximately 3/4 of
the buffer), and for each object, does the following. First,
it identifies which bin the object belongs to2. If the object
1And, indeed, the lengths of reclamation events approximately double from
48 threads to 96 threads. See supplementary material for additional JEmalloc,
TCmalloc and MImalloc results. Timeline graphs for TCMalloc showed
similar behaviour.
2In this paper, we are not giving a detailed description of the “bin an object
belongs to,” but intuitively, one can imagine it is the heap from which the
object was originally allocated (and, hence, the heap to which it should be
returned).

Are Your Epochs Too Epic? Batch Free Can Be Harmful PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

threads ops/s epochs % free % flush % lock

48 35.9M 12631 11.5 9.9 4.9
96 45.3M 5176 39.3 38.3 24.6
192 43.4M 1980 59.5 58.8 39.8

Table 1. JEmalloc free overhead. % free = time spent in
free. % flush = time spent in je_tcache_bin_flush_small.
% lock = time spent in je_malloc_mutex_lock_slow.

was originally allocated by a different thread, this bin might
reside on a remote core, or even a remote socket. The thread
locks the bin, then iterates over all objects in its buffer (while
holding the lock), and for each object that belongs to this
bin, it performs the necessary bookkeeping to free the object
to that bin.

Freeing a batch, especially the very large batches induced
by high thread counts in DEBRA, triggers this mechanism
often. This defeats the purpose of the buffer, which is in-
tended to give a thread an opportunity to reallocate freed
objects from the buffer, rather than always performing the
bookkeeping required to move objects to remote bins.
Most of the overhead of je_tcache_bin_flush_small

comes from lock contention, as we discovered using perf.
With 192 threads, 39.8% of the total time was spent in the
function je_malloc_mutex_lock_slow, compared to 9.9%
with 48 threads. After applying the solutionwe present below
in Section 3.3, the time spent in this function is reduced to
5.5% with 192 threads and less than 0.1% with 48 threads.
In summary, it is extremely expensive in JEmalloc for

free to return objects to the remote threads that allocated
them. To avoid this overhead, a thread frees to a local buffer,
and subsequently allocates from that buffer. Every object
allocated from that buffer is an object that does not need to
be freed to a remote thread in future. Freeing a large batch
overflows the buffer, forcing all objects to be freed remotely,
causing extremely high lock contention.

3.3 A Simple Solution: Amortized Free
Given the above, it is clear that freeing large batches should
be avoided wherever possible, at least when using JEmalloc.
Although batching is inherent in EBR (and is also common in
many other memory reclamation algorithms), once a batch
of nodes has been identified as safe to free, one does not
necessarily need to free them immediately as a batch. One
could instead, for example, place the batch in a thread local
freeable list, and gradually free objects one by one, each
time a data structure operation is performed. We call this
approach amortized free (AF).3

3As we will see, the amortized free approach is quite effective in improving
multiple allocators and memory reclamation algorithms. However, another
option is to modify the allocator itself to be sensitive to the possibility

250msTime

(a) Batch free
250msTime

(b) Amortized free

Figure 3. Timeline graphs showing how long individual
free calls take for batch free vs amortized free. 192 threads.

approach ops/s freed % free % flush % lock

JE batch 43.4M 114M 59.5 58.8 39.8
JE amort. 111.3M 292M 19.2 17.6 5.5

Table 2. Amortized free vs. batch free. 192 threads. freed
= number of objects freed. % free = time spent freeing. %
flush = time spent in je_tcache_bin_flush_small. % lock
= time spent in je_malloc_mutex_lock_slow.

In addition to gradually freeing objects from this list, one
could optimize further by allocating objects from this list
directly. This would essentially turn this approach into ob-
ject pooling, avoiding most interaction with the allocator
altogether. We want to show that we can make interaction
with the allocator fast—not avoid it—so we do not perform
this optimization.4
In the rest of the paper, unless otherwise stated, every

graph shows results for the ABtree and JEmalloc with
192 threads, and follows the samemethodology as described
at the beginning of Section 3.

Effect on the Overhead of Reclamation. Figure 3a and
Figure 3b illustrate the impact of amortized freeing on a
timeline graph. Whereas Figure 2 visualized the time to free
batches of objects, these new timelines show individual free
calls. In both Figure 3a and Figure 3b the vast majority of
free calls are too short to be visible on the graph. However,
there is a clear difference: the batch free approach performs
many more high latency free calls. The small number of
high latency free calls that remain in the amortized free
graph are further analyzed in the supplementary material.
The supporting perf results in Table 2 show that the

amortized free algorithm spends ≈ 3× fewer cycles freeing

of batch frees coming from the reclamation algorithm. This would be an
interesting direction for future work.
4The results in this paper can also help to explain why memory reclamation
algorithms that free large batches, but use object pooling, such as Version
Based Reclamation (VBR) [34], have been shown to outperform some prior
EBR algorithms that interact directly with the allocator [19, 39].

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Daewoo Kim, Trevor Brown, and Ajay Singh

Figure 4. Comparing the number of garbage nodes in each
epoch for batch free (upper) and amortized free (lower) re-
veals the latter has a smoothing effect on memory usage.

memory and ≈ 7× fewer spinning on locks. However, the
amortized free algorithm is 2.6× faster. These results suggest
that amortized freeing can yield substantial performance
improvements by reducing the overhead of freeing nodes.

Crucially, note that the algorithms that perform amortized
freeing spend a third as much time freeing nodes (or less),
even though they allocate and free more than twice as many
nodes (because of the increased throughput). Effectively,
JE batch spends 5 × 0.595 ≈ 2.98 seconds freeing 114M
objects, averaging 38.3M objects freed/second, whereas JE
amortized averages 304M objects freed/second. This suggests
the improvement in the overhead of managing memory is
on the order of 8×.

Effect on Unreclaimed Garbage. Figure 4 shows how
the amount of unreclaimed garbage changes as the epoch
advances for the original batch free approach (upper) and
the amortized free approach (lower). To be precise, these
graphs show: for each epoch, the sum, over all threads 𝑡 ,
of the number of unreclaimed nodes 𝑡 had in its limbo bag
when 𝑡 began that epoch. Amortized freeing substantially
reduces the number of peaks in the graph while maintaining
only a slightly larger amount of garbage on average.

These Results Generalize to TCmalloc. To determine
whether these results are specific to JEmalloc, or are more
general, we repeated all of the above experimentation and
analysis with TCmalloc, another popular allocator. We found
that the same problem arose and the same solution yielded
large improvements. A small preview of the results appears
in Table 3, where amortized freeing can be seen to improve
performance by 3.25×. Additional results appear in the sup-
plementary material.

MImalloc Sidesteps the Problem Altogether. MImalloc,
on the other hand, is essentially immune to the problem
we describe above by design. In MImalloc, a remote free
synchronizes on a particular page’s free list. In contrast, in

approach ops/s freed % free

TC batch 25.7M 69M 52.6
TC amort. 83.5M 219M 11.8
MI batch 104M 273M 15.6
MI amort. 95.0M 249M 17.2

Table 3. Analysis for additional allocators. 192 threads.

JEmalloc, a remote batch free synchronizes on one of 4T
arenas, where𝑇 is the number of hardware threads, meaning
if𝑇 threads all perform remote free operations, we would ex-
pect approximately 1/4 of them to contend with one another.
In TCmalloc, a remote batch free synchronizes on a global
cache, which is even worse. This makes it relatively inex-
pensive to immediately free an individual object to a remote
thread in MImalloc, as doing so will cause contention only if
another thread is simultaneously freeing another object that
was allocated from the same page. On the other hand, if a
non-trivial number of threads are performing remote batch
frees in JEmalloc or TCmalloc, they are much more likely
to experience contention. As expected, Table 3 shows that
amortized free does not improve performance in MImalloc,
and in fact worsens it slightly.
MImalloc is quite unique in its approach. To our knowl-

edge, no other allocator maintains per-page free lists. As a
result, we expect that many other allocators would suffer
similar RBF problems to JEmalloc and TCmalloc. It is worth
noting that the JEmalloc results above with amortized free-
ing are faster than MImalloc, and that programmers are not
always free to change the allocator in their environment, so
finding workarounds for deficiencies in the most popular
allocators is worthwhile.

4 Token-EBR: A Simpler EBR Algorithm
In this section, we investigate the question of whether an
extremely simple EBR algorithm, paired with amortized free-
ing, can match or exceed the performance of the state of
the art. To this end, we revisit an old idea: token rings. To
our knowledge, the idea of passing a token around a ring to
establish an epoch (which we call Token-EBR) has not been
implemented or evaluated in the peer reviewed literature
on safe memory reclamation, appearing only in a thesis by
Tam [38] where the idea is simply sketched at a high level,
then dismissed as inefficient.
We consider a sequence of possible implementations of

the abstract algorithm, study their characteristics, show that
all of the implementations that do not use amortized freeing
are unusable in practice, and derive a final implementation
that outperforms the state of the art in concurrent mem-
ory reclamation. It was surprising to us that such a simple
EBR implementation outperformed the state of the art when
paired with Amortized Freeing.

Are Your Epochs Too Epic? Batch Free Can Be Harmful PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

We start by explaining the abstract algorithm and why it
is correct.

Abstract Algorithm. Conceptually, the algorithm is straight-
forward. All threads, 𝑇1, 𝑇2, · · · 𝑇𝑛 , are arranged in a ring.
The token is passed around the ring to define epochs. More
specifically, all threads begin in epoch zero, and enter a new
epoch whenever they receive the token. Each thread has two
limbo bags: one for the current epoch (the current bag), and
one for the previous epoch (the previous bag), both initially
empty. Objects that a thread unlinks from the data structure
are always placed in the thread’s current bag.
Whenever 𝑇𝑖 begins a new data structure operation, it

checkswhether it has received the token. If so, it conceptually
enters a new epoch, and can (1) pass the token to the next
thread, and (2) free all objects in its previous bag. (We will
discuss the safety of freeing objects below.) Since its previous
bag is now empty, it can simply swap its current and previous
bags. The result is an empty current bag, and a previous bag
that contains objects unlinked in the previous epoch (as it
should).

Correctness Sketch. To understand why this algorithm
ensures safe memory reclamation (i.e., ensures that a thread
frees an object only if no other thread has a pointer to it),
consider a time interval 𝐼 during which the token makes its
way around the entire ring. During this interval, each thread
has passed the token, so each thread has begun a new data
structure operation. Suppose an object 𝑂 is unlinked from
the data structure (but not yet freed) before the interval 𝐼
begins. We argue that 𝑂 is safe to free at the end of 𝐼 .

Each thread that begins a data structure operation before
𝑂 is unlinked could potentially still access 𝑂 until it finishes
its operation. However, at the end of interval 𝐼 , each thread
has finished its current operation and started a new opera-
tion. And, each thread’s new operation began after 𝑂 was
already unlinked from the data structure, and so cannot have
obtained a pointer to𝑂 by accessing the data structure. So, no
thread can access𝑂 , and thus𝑂 is safe to free. More broadly,
every object that was removed from the data structure before
𝐼 is safe to free after 𝐼 .

4.1 Naive Token-EBR
In our first implementation of Token-EBR, which we call
Naive Token-EBR, at the start of a data structure operation,
a thread first (1) checks whether it has received the token,
(2) if so frees the contents of its previous bag, swaps its bags
and passes the token, in that order.

At first glance, Figure 5a suggests that Naive Token-EBR is
a better algorithm than DEBRA. However, Figure 5b reveals
that it does a terrible job of actually reclaiming memory. And,
all of that time spent not reclaiming memory can be directed
towards performing data structure operations, artificially
inflating its throughput—at least until the system runs out
of memory.

(a) Performance (b) Peak memory usage (MiB)

Figure 5. Performance and peak memory usage with JEmal-
loc, for ABtree, using Naive Token-EBR.

Figure 6. Timeline graph showing batch frees (upper) and
number of garbage nodes (lower) for Naive Token-EBR.

The problem is illustrated in Figure 6, which looks quite
different from the timeline graphs shown in Section 3. Visu-
ally, the graph looks like a continuous curve, but the “curve”
is in fact a sequence of batch frees performed by individ-
ual threads, one after another, with no two threads freeing
objects concurrently.

This serialization is a direct consequence of the decision to
free the contents of the previous bag before passing the token.
The next thread cannot free until it receives the token—after
the previous thread finishes freeing. Worse still, while one
thread is freeing, 𝑛−1 other threads are continually perform-
ing data structure operations without freeing, accumulating
more and more garbage. Consequently, each thread finds
itself with more garbage to free than the previous thread,
and the problem compounds in each epoch. We call this the
garbage pile up problem.

This problem is so pronounced, that the last epoch domi-
nates the graph, lasting from ≈ 0.25 seconds until 5 seconds.
The previous epoch lasts approximately a fifth of a second,
and is visible as a very faint curve near the beginning of the
time axis. There are 21 epochs in total, and the first 19 are
too short to see.

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Daewoo Kim, Trevor Brown, and Ajay Singh

Figure 7. Timeline graph showing batch frees (upper) and
number of garbage nodes (lower) for Pass-first Token-EBR.

The bottom plot in Figure 6 shows the drastic increase
in the amount of garbage accumulated in each epoch. To
understand why the garbage pile up is so large in the final
epoch, note that more than 90% of the execution is spent in
that epoch, and after the first thread reclaims memory at the
start of that epoch, it never reclaims again (and similarly for
the second thread, and so on).

Pass-first Token-EBR. In our second algorithm, Pass-
first Token-EBR, the token is passed before the contents of
the previous bag are freed. Note that, in terms of correctness,
it does not matter whether the thread frees and then passes
the token, or passes then frees—it is the receipt of the token
that tells the thread it can safely free its previous bag.

Figure 10 shows that Pass-first Token-EBR improves perfor-
mance and reduces peak memory usage compared to Naive
Token-EBR. Now that threads can free their bags concurrently,
Figure 7 looks a little bit more like the timeline graphs in
Section 3. However, the algorithm is clearly still susceptible
to garbage pile up, as the lengths of batch free operations are
increasing over time. This is further confirmed in Figure 7.

One reason for this is that a thread that receives the token,
passes it to the next thread, and begins freeing a large bag
of objects, may actually receive the token again before it is
finished freeing. It will then hold onto the token until it has
finished freeing, which can potentially be a long time.

Periodic Token-EBR. In our third algorithm, Periodic Token-
EBR, a thread passes the token, then begins freeing the con-
tents of its previous bag. However, as it is freeing objects,
it periodically checks, every 𝑘 free calls (100 in our experi-
ments), whether it has received the token, and if so passes it
along.
As Figure 10 shows, this approach performs somewhat

similarly to Pass-first Token-EBR, but has significantly lower

Figure 8. Timeline graph showing batch frees (upper) and
number of garbage nodes (lower) for Periodic Token-EBR.

peak memory usage with 192 threads. Unfortunately, as Fig-
ure 8 shown, there is still a garbage pile up problem. This
result may seem surprising at first. If we free no more than
100 objects while holding the token before passing it, how
can threads have an opportunity to accumulate more than
40 million garbage nodes without passing the token all the
way around the ring and advancing the epoch?

It turns out we have already learned the answer to this
question above. In JEmalloc, whenever a thread overflows
its internal buffer of freed nodes, and triggers a high latency
remote free operation, a single free call can run for a very
long time—on the order of milliseconds. As a result, it does
not matter whether a thread checks if it holds the token after
every 100 free calls, or after every free call. Unless it can
somehow perform this check during a single long free call
(which presumably would require modifying the allocator
itself), the epoch cannot advance until that long free call
has finished. And, as we saw in Figure 3a, large batch free
operations can and do frequently cause such long free calls.

One might also wonder why peak memory usage is lower
for this approach, even through the epoch counts in Figure 7
and Figure 8 are similar, and the problem of high latency free
operations still exists. Since epochs are increasing in length
as time passes, peak memory usage is essentially dictated
solely by the final epoch. Moreover, a thread that begins
freeing in the final epoch has typically accumulated so much
garbage that it will not finish freeing until the experiment is
over (as evidenced by the fact that batch frees do not finish
until after the 5 second time limit). In the final epoch in Pass-
first Token-EBR, such a thread will not pass the token, so all
threads after it in the token ring will accumulate garbage
in the final epoch, increasing peak memory usage. On the
other hand, in Periodic Token-EBR, although such a thread

Are Your Epochs Too Epic? Batch Free Can Be Harmful PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

Figure 9. Timeline graph (upper) and number of garbage
nodes (lower) for Amortized-free Token-EBR. This timeline
graph shows individual free calls longer than 0.1ms.

will be unable to pass the token during a high latency free
operation, if the thread performs at least two high latency
free operations in the final epoch, then it can still pass the
token in between high latency free operations. This enables
additional threads to free their limbo bags concurrently in
the final epoch, reducing peak memory usage.

Amortized-Free Token-EBR. Our final algorithm applies
the amortized freeing approach to Periodic Token-EBR. Fig-
ure 10 shows this offers drastic improvements in both perfor-
mance and peak memory usage with 192 threads. As Figure 9
shows, amortized free mitigates the garbage pile up prob-
lem (as well as greatly increasing the epoch count). Table 4
summarizes the impact of each algorithmic change on per-
formance, time spent freeing, and the total number of objects
freed.

(a) Performance (b) Peak memory usage (MiB)

Figure 10. Performance and peak memory usage with JE-
malloc, for ABtree, using Amortized-free Token-EBR.

5 Evaluation
We evaluate the impact of the amortized freeing technique
using a benchmark that implements the ABtree with 10

algorithm ops/s % free freed

Naive 73.7M 3.3 7M
Pass-first 52.4M 45.4 98M
Periodic 54.4M 47.1 118M
Amortized 123.7M 14.7 323M

Table 4. Analysis of Token EBR variants. 192 threads.

memory reclamation algorithms, encompassing Amortized-
free Token-EBR (token_af), debra [9] and its amortized free
version (debra_af), hazard eras (he) [33], hazard pointers
(hp) [28], interval based reclamation (ibr) [39], two neutral-
ization based reclamation techniques [35], nbr and nbr+, qui-
escent state based reclamation (qsbr) [20], read-copy-update
(rcu) [20] and wait free eras (wfe) [32] in two different ex-
periments. The methodology and system are the same as
in Section 3, except for the selected thread counts.

Note that our codewill be submitted for artifact evaluation,
and will be made public when the paper is published.

Experiment 1: We compare the performance of token_af
and debra_af against a broad cross section of the state of the
art in reclamation techniques (in Figure 11a). The vertical red
line denotes the number of hardware threads in the system.
A leaky implementation (none) is also included.

Our token_af algorithm outperforms all other techniques.
Averaging the results across all thread counts, it is ≈1.7×
fast than the next fastest algorithm, nbr+, and ≈7-9× better
than the slowest algorithms, hp and he. Surprisingly, both
of our amortized free algorithms token_af and debra_af
significantly outperform none, which is often (incorrectly)
described as an upper bound on the performance of a recla-
mation algorithm in the literature. Of course, prior recla-
mation algorithms have been shown to outperform leaky
implementations previously [9], citing improved locality.

Experiment 2: We assess the potential for the amortized
free technique to improve other reclamation algorithms by
implementing amortized free (AF) versions of all 10 of the
reclamation algorithms studied in Experiment 1. We then
compare their throughput with their original (ORIG) imple-
mentations with 192 threads (Figure 11b). All of these algo-
rithms accumulate a batch of garbage before freeing, and we
use a uniform batch size of 32K nodes for all algorithms. This
particular size was chosen because (1) each algorithm per-
formed best with this size, and (2) the nbr algorithm already
uses this bag size by default [35].

Figure 11b shows that the AF algorithms outperform their
ORIG counterparts for 9 algorithms: debra, ibr, nbr/nbr+,
qsbr, rcu, token, hp and wfe, demonstrating up to 2.3× im-
provements in throughput. The he algorithm does not im-
prove, whereas hp and wfe show modest improvements of
≈1.2×. The lack of improvement (or limited improvement) in

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Daewoo Kim, Trevor Brown, and Ajay Singh

(a) Experiment 1: Comparison of proposed Amortized-free Token-EBR
(token_af) with other reclamation techniques across threads.

(b) Experiment 2: Comparison with amortized free versions of various
reclaimers at 192 threads.

Figure 11. Data structure: Brown’s ABtree. Workload: 50% inserts and 50% deletes. Size: 20M. Allocator:JEmalloc.

these algorithms is likely due to the fact that they have much
higher synchronization overhead than the other algorithms,
which prevents any improvement from manifesting. Addi-
tional experiments showing AF vs ORIG improvements at
various thread counts appear in the supplementary material.

6 Related Work
The idea of passing a token around to establish a time when it
is safe to free is not new. Practitioners have discussed imple-
menting EBR in this way on online discussion forums [40],
and similar algorithms have been used to reclaim memory
in operating system kernels [25]. Token based algorithms
have also been used as part of complex garbage collection
algorithms in the distributed setting [22], and token based
EBR has been described in a thesis due to Tam in the shared
memory multicore setting [38], where it was dismissed as in-
efficient. Our new token based algorithm surpasses the state
of the art, which is especially impressive considering there
has been more than 15 years of progress in EBR algorithms
since the publication of [38].

The study of concurrent memory reclamation saw multi-
ple fundamental results appear in the early 2000s, including
EBR algorithms [16, 27], pointer based reclamation tech-
niques [21, 28] and reference counting techniques [13]. Since
then, many new algorithms have appeared [1–6, 9–12, 14,
18, 20, 23, 24, 30–32, 32, 33, 33–35, 39], nearly all of which
free batches of objects.

Most recently, a hardware-software co-design called Con-
ditional Access [36] has appeared that facilitates the imme-
diate reclamation of individual object, rather than batches.
Experiments using JEmalloc showed significant performance
improvement vs traditional memory reclamation algorithms
that free batches of objects, but the authors did not estab-
lish a concrete reason for the improvement. Our work sheds
new light on why techniques like Conditional Access that
immediately free individual objects perform well in practice.

Mitake et al [29] studied the impact of peak memory us-
age on in-memory database transaction latencies that used
epoch based reclamation. They suggested freeing batches us-
ing a separate background thread to increase the frequency
with which the main worker threads could participate in
advancing the epoch. In light of our work, moving batch
freeing to a background thread appears to be insufficient to
avoid the RBF problem. Batch freeing is, itself, the problem.

7 Conclusion
In this paper, we identify a performance problem that limits
the performance and scaling of concurrent memory recla-
mation algorithms on modern multi socket systems. We per-
form a rigorous study of the root causes of this problem, and
identify subtle interactions between popular allocators and
memory reclamation algorithms that free batches of objects.

We present a simple workaround, amortized freeing, and
demonstrate its effectiveness by applying it to ten existing
memory reclamation algorithms, and a new reclamation
algorithm token_af. As our experiments show, the poten-
tial impact of the presented ideas on the memory reclama-
tion literature is substantial. With 192 concurrent threads,
amortized freeing on average doubles the performance of
the six fastest existing memory reclamation algorithms, and
token_af outperforms the state of the art by 2.6×.
Amortized freeing was a natural fit for the ABtree data

structure that we used in our experiments, since each opera-
tion frees at most one object on average. In data structures
that free more than one object per operation on average,
amortized freeing should be tuned to free more than one ob-
ject per operation. Amortized freeing will be most effective
if the number of objects freed and allocated per operation
is similar, so that objects gradually freed to internal thread-
local buffers in the allocator can be reallocated locally.

Are Your Epochs Too Epic? Batch Free Can Be Harmful PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

Finally, we have timeline graphs to thank for many of
our insights. We hope this new visualization tool will prove
useful in designing and profiling new concurrent algorithms.

Acknowledgments
This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) Collaborative
Research and Development grant: 539431-19, the Canada
Foundation for Innovation John R. Evans Leaders Fund (38512)
with equal support from the Ontario Research Fund CFI Lead-
ers Opportunity Fund, NSERC Discovery Program Grant:
2019-04227, NSERC Discovery Launch Grant: 2019-00048,
and the University of Waterloo. The findings and opinions
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies. We
also thank the anonymous reviewers for their thoughtful
comments and insights.

References
[1] 2021. Crystalline: Fast and Memory Efficient Wait-Free Reclamation,

Ruslan Nikolaev and Binoy Ravindran (Eds.). CoRR abs/2108.02763.
arXiv:2108.02763 https://arxiv.org/abs/2108.02763

[2] Dan Alistarh, Patrick Eugster, Maurice Herlihy, Alexander Matveev,
and Nir Shavit. 2014. Stacktrack: An automated transactional ap-
proach to concurrent memory reclamation. In Proceedings of the Ninth
European Conference on Computer Systems. 1–14.

[3] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit.
2017. Forkscan: Conservative memory reclamation for modern oper-
ating systems. In Proceedings of the Twelfth European Conference on
Computer Systems. 483–498.

[4] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit.
2018. Threadscan: Automatic and scalable memory reclamation. ACM
Transactions on Parallel Computing (TOPC) 4, 4 (2018), 1–18.

[5] Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2021. Concur-
rent Deferred Reference Counting with Constant-Time Overhead. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (Virtual, Canada)
(PLDI 2021). Association for Computing Machinery, New York, NY,
USA, 526–541. https://doi.org/10.1145/3453483.3454060

[6] Daniel Anderson, Guy E Blelloch, and Yuanhao Wei. 2022. Turning
manual concurrent memory reclamation into automatic reference
counting. In Proceedings of the 43rd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation. 61–75.

[7] Nathan G Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
2010. A practical concurrent binary search tree. ACM Sigplan Notices
45, 5 (2010), 257–268.

[8] Trevor Brown. 2017. Techniques for Constructing Efficient Lock-free
Data Structures. Ph. D. Dissertation. University of Toronto.

[9] Trevor Alexander Brown. 2015. Reclaiming memory for lock-free data
structures: There has to be a better way. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing. 261–270.

[10] Nachshon Cohen and Erez Petrank. 2015. Automatic memory reclama-
tion for lock-free data structures. ACM SIGPLAN Notices 50, 10 (2015),
260–279.

[11] Nachshon Cohen and Erez Petrank. 2015. Efficient memory manage-
ment for lock-free data structures with optimistic access. In Proceedings
of the 27th ACM symposium on Parallelism in Algorithms and Architec-
tures. 254–263.

[12] Andreia Correia, Pedro Ramalhete, and Pascal Felber. 2021. Orcgc: au-
tomatic lock-free memory reclamation. In Proceedings of the 26th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming.
205–218.

[13] David L Detlefs, Paul A Martin, Mark Moir, and Guy L Steele Jr. 2001.
Lock-free reference counting. In Proceedings of the twentieth annual
ACM symposium on Principles of distributed computing. 190–199.

[14] Dave Dice, Maurice Herlihy, and Alex Kogan. 2016. Fast non-intrusive
memory reclamation for highly-concurrent data structures. In Proceed-
ings of the 2016 ACM SIGPLAN International Symposium on Memory
Management. 36–45.

[15] Jason Evans. 2006. A scalable concurrent malloc (3) implementation
for FreeBSD. In Proc. of the bsdcan conference, ottawa, canada.

[16] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University
of Cambridge, Computer Laboratory.

[17] Sanjay Ghemawat and Paul Menage. 2005. TCMalloc: Thread-caching
malloc. Retrieved from http://goog-perftools.sourceforge.net/doc/
tcmalloc.html on January 27, 2023 (2005).

[18] Anders Gidenstam,Marina Papatriantafilou, Håkan Sundell, and Philip-
pas Tsigas. 2008. Efficient and reliable lock-free memory reclamation
based on reference counting. IEEE Transactions on Parallel and Dis-
tributed Systems 20, 8 (2008), 1173–1187.

[19] Timothy L Harris. 2001. A pragmatic implementation of non-blocking
linked-lists. In International Symposium on Distributed Computing.
Springer, 300–314.

[20] Thomas EHart, Paul EMcKenney, Angela Demke Brown, and Jonathan
Walpole. 2007. Performance of memory reclamation for lockless syn-
chronization. J. Parallel and Distrib. Comput. 67, 12 (2007), 1270–1285.

[21] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. 2005.
Nonblocking memory management support for dynamic-sized data
structures. ACM Transactions on Computer Systems (TOCS) 23, 2 (2005),
146–196.

[22] Richard L Hudson, Ron Morrison, J Eliot B Moss, and David S Munro.
1997. Training distributed garbage: The DMOS collector. Object-
Oriented Programming Systems, Language and Applications (1997).

[23] Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang.
2023. Applying Hazard Pointers to More Concurrent Data Structures.
In Proceedings of the 35th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2023, Orlando, FL, USA, June 17-19, 2023, Kunal
Agrawal and Julian Shun (Eds.). ACM, 213–226. https://doi.org/10.
1145/3558481.3591102

[24] Jeehoon Kang and Jaehwang Jung. 2020. A marriage of pointer-and
epoch-based reclamation. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation. 314–
328.

[25] Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W Wis-
niewski, Jimi Xenidis, Dilma Da Silva, Michal Ostrowski, Jonathan
Appavoo, Maria Butrico, Mark Mergen, et al. 2006. K42: building a
complete operating system. ACM SIGOPS Operating Systems Review
40, 4 (2006), 133–145.

[26] Daan Leijen, Benjamin Zorn, and Leonardo de Moura. 2019. Mimalloc:
Free list sharding in action. In Programming Languages and Systems:
17th Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, Decem-
ber 1–4, 2019, Proceedings 17. Springer, 244–265.

[27] Paul E McKenney and John D Slingwine. 1998. Read-copy update:
Using execution history to solve concurrency problems. In Parallel and
Distributed Computing and Systems, Vol. 509518. Citeseer, 509–518.

[28] Maged M Michael. 2004. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Transactions on Parallel and Distributed
Systems 15, 6 (2004), 491–504.

[29] Hitoshi Mitake, Hiroshi Yamada, and Tatsuo Nakajima. 2019. Looking
into the Peak memory consumption of epoch-based reclamation in
scalable in-memory database systems. In Database and Expert Systems
Applications: 30th International Conference, DEXA 2019, Linz, Austria,
August 26–29, 2019, Proceedings, Part II 30. Springer, 3–18.

https://arxiv.org/abs/2108.02763
https://arxiv.org/abs/2108.02763
https://doi.org/10.1145/3453483.3454060
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://doi.org/10.1145/3558481.3591102
https://doi.org/10.1145/3558481.3591102

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Daewoo Kim, Trevor Brown, and Ajay Singh

[30] Pedro Moreno and Ricardo Rocha. 2023. Releasing Memory with
Optimistic Access: A Hybrid Approach to Memory Reclamation and
Allocation in Lock-Free Programs. In Proceedings of the 35th ACM
Symposium on Parallelism in Algorithms and Architectures. 177–186.

[31] Ruslan Nikolaev and Binoy Ravindran. 2019. Hyaline: fast and trans-
parent lock-free memory reclamation. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing. 419–421.

[32] Ruslan Nikolaev and Binoy Ravindran. 2020. Universal wait-free mem-
ory reclamation. In Proceedings of the 25th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. 130–143.

[33] Pedro Ramalhete and Andreia Correia. [n. d.]. Brief announcement:
Hazard eras-non-blocking memory reclamation. In Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and Architectures.
367–369.

[34] Gali Sheffi, Maurice Herlihy, and Erez Petrank. 2021. Vbr: Version
based reclamation. In Proceedings of the 33rd ACM Symposium on
Parallelism in Algorithms and Architectures. 443–445.

[35] Ajay Singh, Trevor Brown, and Ali Mashtizadeh. 2021. Nbr: neutral-
ization based reclamation. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 175–
190.

[36] Ajay Singh, Trevor Brown, andMichael Spear. 2023. Efficient Hardware
Primitives for Immediate Memory Reclamation in Optimistic Data
Structures. In 2023 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 112–122. https://doi.org/10.1109/IPDPS54959.
2023.00021

[37] Ajay Singh, Trevor Alexander Brown, and Ali José Mashtizadeh. 2024.
Simple, Fast and Widely Applicable Concurrent Memory Reclamation
via Neutralization. IEEE Transactions on Parallel and Distributed Sys-
tems 35, 2 (2024), 203–220. https://doi.org/10.1109/TPDS.2023.3335671

[38] Adrian Tam. 2006. QDo: A Quiescent State Callback Facility. Ph. D.
Dissertation. University of Toronto.

[39] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H Alan Beadle, and
Michael L Scott. 2018. Interval-based memory reclamation. ACM
SIGPLAN Notices 53, 1 (2018), 1–13.

[40] ycombinator. 2017. Why is memory reclamation so important for
lock-free algorithms? Retrieved from https://web.archive.org/web/
20200223075152/https://news.ycombinator.com/item?id=15269628 on
January 27, 2023.

A Artifact Description
The artifact containing the source code, scripts to run all
experiments, and a detailed readme file is present at the
URL: https://doi.org/10.5281/zenodo.10226261. If you prefer
to run the artifact locally on your machine (without using the
docker container) please directly refer to the accompanying
readme file in the source code.

The following instructions will help you load and run the
provided Docker image within the artifact. Once the docker
container starts you can use the accompanying readme file
to compile and run the experiments on the benchmark.

Steps to load and run the provided Docker image in
the artifact:

Note: Sudo permission may be required to execute the fol-
lowing instructions. The following instructions will help you
install and directly run the docker container for amortizedfree-
setbench.

1. Install the latest version of Docker on your system.
We tested the artifact with the Docker version 20.10.2,
build 20.10.2-0ubuntu1 20.04.2. Instructions to install
Docker may be found at
https://docs.docker.com/engine/install/ubuntu.
$ docker -v

2. Download the artifact named amortizedfree-setbench.zip
from the artifact submission link:
https://doi.org/10.5281/zenodo.10226261.

3. Extract the downloaded folder and move to
amortizedfree-setbench/ directory using 𝑐𝑑 command.

4. Find docker image named amortizedfree_docker.tar.gz
in amortizedfree-setbench/ directory. And load the
downloaded docker image with the following com-
mand:
$ sudo docker load -i amortizedfree_docker.tar.gz

5. Verify that image was loaded:
$ sudo docker images

6. Start a docker container from the loaded image:
$ sudo docker run --name amortizedfree -it \
--privileged amortizedfree-setbench /bin/bash

7. Invoke 𝑙𝑠 to see several files/folders of the artifact:
Dockerfile README.md, common, ds, install.sh, lib,
microbench, af_experiments, tools.

Now, to compile and run the experiments you could follow
the instructions in the readme file. You may need to change
the thread counts in scripts to suit the configuration of your
machine.

https://doi.org/10.1109/IPDPS54959.2023.00021
https://doi.org/10.1109/IPDPS54959.2023.00021
https://doi.org/10.1109/TPDS.2023.3335671
https://web.archive.org/web/20200223075152/https://news.ycombinator.com/item?id=15269628
https://web.archive.org/web/20200223075152/https://news.ycombinator.com/item?id=15269628
https://doi.org/10.5281/zenodo.10226261
https://docs.docker.com/engine/install/ubuntu
https://doi.org/10.5281/zenodo.10226261

	Abstract
	1 Introduction
	2 Background
	3 Diagnosing the RBF Problem
	3.1 Investigating the Reclamation Bottleneck
	3.2 Root Cause of Long Reclamation Events
	3.3 A Simple Solution: Amortized Free

	4 Token-EBR: A Simpler EBR Algorithm
	4.1 Naive Token-EBR

	5 Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Artifact Description

