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Abstract

B-slack trees, a subclass of B-trees that have substantially better worst-case space complexity, are introduced.
They store n keys in height O(logb n), where b is the maximum node degree. Updates can be performed in O(log b

2
n)

amortized time. A relaxed balance version, which is well suited for concurrent implementation, is also presented.

1 Introduction
B-trees are balanced trees designed for block-based storage media. Internal nodes contain between b/2 and b child
pointers, and one less key. Leaves contain between b/2 and b keys. All leaves have the same depth, so access times
are predictable. If memory can be allocated on a per-byte basis, nodes can simply be allocated the precise amount
of space they need to store their data, and no space is wasted. However, typically, all nodes have the same, fixed
capacity, and some of the capacity of nodes is wasted. As much as 50% of the capacity of each node is wasted in the
worst case. This is particularly problematic when data structures are being implemented in hardware, since memory
allocation and reclamation schemes are often very simplistic, allowing only a single block size to be allocated (to
avoid fragmentation). Furthermore, since hardware devices must include sufficient resources to handle the worst-case,
good expected behaviour is not enough to allow hardware developers to reduce the amount of memory included in
their devices. To address this problem, we introduce B-slack trees, which are a variant of B-trees with substantially
better worst-case space complexity. We also introduce relaxed B-slack trees, which are a variant of B-slack trees that
are more amenable to concurrent implementation.

The development of B-slack trees was inspired by a collaboration with a manufacturer of internet routers, who
wanted to build a concurrent router based on a tree. In such embedded devices, storage is limited, so it is important
to use it as efficiently as possible. A suitable tree would have a simple algorithm for updates, small space complexity,
fast searches, and searches that would not be blocked by concurrent updates. Updates were expected to be infrequent.
One naive approach is to rebuild the entire tree after each update. Keeping an old copy of the tree while rebuilding a
new copy would allow searches to proceed unhindered, but this would double the space required to store the tree.

Search trees can be either node-oriented, in which each key is stored in an internal node or leaf, or leaf-oriented,
in which each key is stored at a leaf and the keys of internal nodes serve only to direct a search to the appropriate leaf.
In a node-oriented B-tree, the leaves and internal nodes have different sizes (because internal nodes contain keys and
pointers to children, and leaves contain only keys). So, if only one block size can be allocated, a significant amount
of space is wasted. Moreover, deletion in a node-oriented tree sometimes requires stealing a key from a successor (or
predecessor), which can be in a different part of the tree. This is a problem for concurrent implementation, since the
operation involves a large number of nodes, namely, the nodes on the path between the node and its successor.

B-slack trees are leaf-oriented trees with many desirable properties. The average degree of nodes is high, exceeding
b− 2 for trees of height at least three. Their space complexity is better than all of their competitors. Consider
a dictionary implemented by a leaf-oriented search tree, in which, along with each key, a leaf stores a pointer to
associated data. Suppose that each key and each pointer to a child or to data occupies a single word. Then, 2b

b−3 n is
an upper bound on the number of words needed to store a B-slack tree with n > b3 keys. For large b, this tends to 2n,
which is optimal. Section 4 gives a more complex upper bound, which is much better when b is small. B-slack trees
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have logarithmic height, and the number of rebalancing steps performed after a sequence of m updates to a B-slack tree
of size n is amortized O(log(n+m)) per update. Furthermore, the number of rebalancing steps needed to rebalance
the tree can be reduced to amortized constant per update at the cost of slightly increased space complexity.

The rest of this paper is organized as follows. Section 2 surveys related work. Section 3 introduces B-slack
trees and relaxed B-slack trees. Height, average degree, space complexity and rebalancing costs of relaxed B-slack
trees (and, hence, of B-slack trees) are analyzed in Section 4. Section 5 describes the variant of B-slack trees with
amortized constant rebalancing. Section 6 compares the worst-case space complexity of B-slack trees to competing
data structures. Single-threaded experimental results appear in Section 7. Section 8 discusses some implementation
issues surrounding rebalancing. Finally, we conclude in Section 9.

2 Related work
B-trees were initially proposed by Bayer and McCreight in 1970 [4]. Insertion into a full node in a B-tree causes it
to split into two nodes, each half full. Deletion from a half-full node causes it to merge with a neighbour. Arnow,
Tenenbaum and Wu proposed P-trees [2], which enjoy moderate improvements to average space complexity over
B-trees, but waste 66% of each node in the worst case.

A number of generalizations of B-trees have been suggested that achieve much less waste if no deletions are
performed. Bayer and McCreight also proposed B*-trees in [4], which improve upon the worst-case space complexity
of B-trees. At most a third of the capacity of each node in a B*-tree is wasted. This is achieved by splitting a node only
when it and one of its neighbours are both full, replacing these two nodes by three nodes. Küspert [14] generalized B*-
trees to trees where each node contains between b bm

m+1c and b pointers or keys, where m≤ b−1 is a design parameter.
Such a tree behaves just like a B*-tree everywhere except at the leaves. An insertion into a full leaf causes keys to be
shifted among the nearest m−1 siblings to make room for the inserted key. If the m−1 nearest siblings are also full,
then these m nodes are replaced by m+ 1 nodes which evenly share keys. Large values of m yield good worst-case
space complexity. However, with large m, updates would be complicated and inefficient in a concurrent setting.

Baeza-Yates and Per-åke Larson introduced B+trees with partial expansions [3]. Several node sizes are used, each
a multiple of the block size. An insertion to a full node causes it to expand to the next larger node size. With three
node sizes, at most 33% of each node can be wasted, and worst-case utilization improves with the number of block
sizes used. However, this technique simply pushes the complexity of the problem onto the memory allocator. Memory
allocation is relatively simple for one block size, but it quickly becomes impractical for simple hardware to support
larger numbers of block sizes.

Culik, Ottmann and Wood introduced strongly dense multiway trees (SDM-trees) [9]. An SDM-tree is a node-
oriented tree in which all leaves have the same depth, and the root contains at least two pointers. Apart from the
root, every internal node u with fewer than b pointers has at least one sibling. Each sibling of u has b pointers if
it is an internal node and b keys if it is a leaf. Insertion can be done in O(b3 + (logn)b−2) time. Deletion is not
supported, but the authors mention that the insertion algorithm could be modified to obtain a deletion algorithm, and
the time complexity of the resulting algorithm “would be at most O(n) and at least O((logn)b−1).” Besides the long
running times for each operation (and the lack of better amortized results), the insertion algorithm is very complex and
involves many nodes, which makes it poorly suited for hardware implementation. Furthermore, in a concurrent setting,
an extremely large section of the tree would have to be modified atomically, which would severely limit concurrency.

Srinivasan introduced a leaf-oriented B-tree variant called an Overflow tree [18]. For each parent of a leaf, its
children are divided into one or more groups, and an overflow node is associated with each group. The tree satisfies
the B-tree properties and the additional requirement that each leaf contains at least b− 1− s keys, where s ≥ 2 is a
design parameter and b is the maximum degree of nodes. Inserting a key into a full leaf causes the key to be inserted
into the overflow node instead; if the overflow node is full, the entire group is reorganized. Deleting from a leaf is the
same as in a B-tree unless it will cause the leaf to contain too few keys, in which case, a key is taken from the overflow
node; if a key cannot be taken from the overflow node, the entire group is reorganized. Each search must look at an
overflow node. The need to atomically modify and search two places at once makes this data structure poorly suited
for concurrent implementation.

Hsuang introduced a class of node-oriented trees called H-trees [12], which are a subclass of B-trees parameterized
by γ and δ . These parameters specify a lower bound on the number of grandchildren of each internal node (that has
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grandchildren), and a lower bound on the number of keys contained in each leaf, respectively. Larger values of δ

and γ yield trees that use memory more efficiently. When δ and γ are as large as possible, each leaf contains at least
b− 3 keys, and each internal node has zero or at least b b2+1

2 c grandchildren. The paper presents O(logn) insertion
and deletion algorithms for node-oriented H-trees. The algorithms are very complex and involve many cases. H-trees
have a minimum average degree of approximately b/

√
2 for internal nodes, which is much smaller than the b− 2 of

B-slack trees (for trees of height at least three).
Section 6 describes families of B-trees, H-trees and Overflow trees which require significantly more space than

B-slack trees.
Rosenberg and Snyder introduced compact B-trees [17], which can be constructed from a set of keys using the

minimum number of nodes possible. No compactness preserving insertion or deletion procedures are known. The
authors suggested using regular B-tree updates and periodically compacting a data structure to improve efficiency.
However, experiments in [1] showed that starting with a compact B-tree and adding only 1.6% more keys using stan-
dard B-tree operations reduced storage utilization from 99% to 67%. Thus, to maintain reasonable space complexity,
the expensive tree rebuilding/compaction algorithm would have to be executed prohibitively often.

An impressive paper by Brönnimann et al. [5] presented three ways to transform an arbitrary sequential dictionary
into a more space efficient one. One of these ways will be discussed here; of the other two, one is extremely complex
and poorly suited for concurrent hardware implementation, and the other pushes the complexity onto the memory
allocator.

This transformation takes any sequential tree data structure and modifies it by replacing each key in the sequential
data structure with a chunk, which is a group of b−2, b−1 or b keys, where b is the memory block size. All chunks
in the data structure are also kept in a doubly linked list to facilitate iteration and movement of keys between chunks.
For instance, a BST would be transformed into a tree in which each node has zero, one or two children, and b− 2,
b− 1 or b keys. All keys in chunks in the left subtree of a node u would be smaller than all keys in u’s chunk, and
all keys in chunks in the right subtree of u would be larger than all keys in u’s chunk. A search for key k behaves the
same as in the sequential data structure until it reaches the only chunk that can contain k, and searches for k within the
chunk. An insertion first searches for the appropriate chunk, then it inserts the key into this chunk. Inserting into a full
chunk requires shifting the keys of the b closest neighbouring chunks to make room. If these b chunks are full, then
b consecutive keys from these chunks are first placed in a new chunk, and the remaining b(b−1) keys are distributed
amongst the original b chunks. Deletion is similar. Each operation in the resulting data structure runs in O( f (n)+b2)
steps, where f (n) is the number of steps taken by the sequential data structure to perform the same operation.

After this transformation, a B-tree with maximum degree b requires 2n+O(n/b) words to store n keys and pointers
to data. In the worst-case, each chunk wastes 2/b of its space, which is somewhat worse than in B-slack trees.
Furthermore, supporting fast searches can introduce significant complexity to the hardware design. Suppose this
transformation is applied to a B-tree. Then a node in the transformed B-tree contains up to b− 1 chunks, each of
which contains b− 2,b− 1 or b keys, and occupies one block of memory. Thus in order to determine which child
pointer should be followed, a search must load up to b− 1 blocks. In order for searches to be fast, hardware must
therefore be able to quickly load up to b−1 blocks from memory (a total of θ(b2) memory words). This represents a
significant challenge for hardware design.

B-trees with relaxed balance have previously been proposed. In particular, several of the updates to B-slack trees
are derivative of updates to the relaxed (a,b)-tree of Larsen [15]. However, limited work has been done on improving
the space complexity of relaxed balance data structures. Larsen and Fagerberg improved the space complexity of the
relaxed (a,b)-tree while the tree is out of balance [13], but its worst-case space complexity remains unchanged.

3 B-slack trees
A B-slack tree is a variant of a B-tree. Each node stores its keys in sorted order, so binary search can be used to
determine which child of an internal node should be visited next by a search, or whether a leaf contains a key. Let
p0, p1, ..., pm be the sequence of pointers contained in an internal node, and k1,k2, ...,km be its sequence of keys. For
each 1 ≤ i ≤ m, the subtree pointed to by pi−1 contains keys strictly smaller than ki, and the subtree pointed to by pi
contains keys greater than or equal to ki. We say that the degree of an internal node is the number of non-NIL pointers
it contains, and the degree of a leaf is the number of keys it contains. This unusual definition of degree simplifies our
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discussion. The degree of node v is denoted deg(v). If the maximum possible degree of a node is b, and its degree is
b− x, then we say it contains x units of slack (or simply x slack).
A B-slack tree is a leaf-oriented search tree with maximum degree b > 4 in which:

P1: every leaf has the same depth,
P2: internal nodes contain between 2 and b pointers (and one less key),
P3: leaves contain between 0 and b keys, and
P4: for each internal node u, the total slack contained in the children of u is at most b−1.

P4 is the key property that distinguishes B-slack trees from other variants of B-trees. It limits the aggregate space
wasted by a number of nodes, as opposed to limiting the space wasted by each node. Alternatively, P4 can be thought
of as a lower bound on the sum of the degrees of the children of each internal node. Formally, for each internal node
with children v1,v2, ...,vl , deg(v1)+ deg(v2)+ ...+ deg(vl) ≥ lb− (b− 1) = lb− b+ 1. This interpretation is useful
to show that all nodes have large subtrees. For instance, it implies that a node u with two internal children must have
at least b+1 grandchildren. If these grandchildren are also internal nodes, we can conclude that u must have at least
b2−b+2 great grandchildren.

A tree that satisfies P1, and in which every node has degree b−1, is an example of a B-slack tree. Another example
of a B-slack tree is a tree of height two, where b is even, the root has degree two, its two children have degree b/2 and
b/2+1, respectively, and the grandchildren of the root are leaves with degree b, except for two, one in the left subtree
of the root, and one in the right subtree, that each have degree one. This tree contains the smallest number of keys of
any B-slack tree of height two.

3.1 Relaxed B-slack trees
A relaxed balance search tree decouples updates that rebalance (or reorganize the keys of) the tree from updates that
modify the set of keys stored in the tree [16]. The advantages of this decoupling are twofold. First, updates to a relaxed
balance version of a search tree are smaller, so a greater degree of concurrency is possible in a multithreaded setting.
Second, for some applications, it may be useful to temporarily disable rebalancing to allow a large number of updates
to be performed quickly, and to gradually rebalance the tree afterwards.

A relaxed B-slack tree is a relaxed balance version of a B-slack tree that has weakened the properties. A weight
of zero or one is associated with each node. These weights serve a purpose similar to the colors red and black in a
red-black tree. We define the relaxed depth of a node to be one less than the sum of the weights on the path from the
root to this node. A relaxed B-slack tree is a leaf-oriented search tree with maximum degree b > 4 in which:

P0′: every node with weight zero contains exactly two pointers,
P1′: every leaf has the same relaxed depth,
P2′: internal nodes contain between 1 and b pointers (and one less key), and
P3 : leaves contain between 0 and b keys
To clarify the difference between B-slack trees and relaxed B-slack trees, we identify several types of violations

of the B-slack trees properties that can be present in a relaxed B-slack tree. We say that a weight violation occurs
at a node with weight zero, a slack violation occurs at a node that violates P4, and a degree violation occurs at an
internal node with only one child (violating P2). Observe that P1 is satisfied in a relaxed B-slack tree with no weight
violations. Likewise, P2 is satisfied in a relaxed B-slack tree with no degree violations, and P4 is satisfied in a relaxed
B-slack tree with no slack violations. Therefore, a relaxed B-slack tree that contains no violations is a B-slack tree.
Rebalancing steps can be performed to eliminate violations, and gradually transform any relaxed B-slack tree into a
B-slack tree.

3.2 Updates to relaxed B-slack trees
We now describe the algorithms for inserting and deleting keys in a relaxed B-slack tree (in a way that maintains P0′,
P1′, P2′ and P3). We use the Insert, Delete and Overflow updates introduced by Larsen and Fagerberg in their work
on relaxed (a,b)-trees [15]. These updates appear in Figure 1. There, weights appear to the right of nodes, and shaded
regions represent slack. If u is a node that is not the root, then we let π(u) denote the parent of u. The insertion and
deletion algorithms always ensure that all leaves have weight one. We also study how these updates change the amount
of slack in nodes, and how they create, move or eliminate violations.
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Figure 1: Updates to B-slack trees (and relaxed B-slack trees). Nodes with weight zero contain exactly two pointers.



Deletion. First, a search is performed to find the leaf u where the deletion should occur. If the leaf does not contain
the key to be deleted, then the deletion terminates immediately, and the tree does not change. If the leaf contains the
key to be deleted, then the key is removed from the sequence of keys stored in that leaf. Deleting this key may create
a slack violation.

Insertion. To perform an insertion, a search is first performed to find the leaf u where the insertion should occur.
If u contains some slack, then the key is added to the sequence of keys in u, and the insertion terminates. Otherwise, u
cannot accommodate the new key, so Overflow is performed. Overflow replaces u by a subtree of height one consisting
of an internal node with weight zero, and two leaves with weight one. The b keys stored in u, plus the new key, are
evenly distributed between the children of the new internal node. If u was the root before the insertion, then the new
internal node becomes the new root. Otherwise, u’s parent π(u) before the insertion is changed to point to the new
internal node instead of u. After Overflow, there is a weight violation at the new internal node. Additionally, since the
new internal node contains b−2 slack, whereas u contained no slack, there may be a slack violation at π(u).

Delete, Insert and Overflow maintain the properties of a relaxed B-slack tree. They will also maintain the properties
of a B-slack tree, provided that rebalancing steps are performed to remove any violations that are created.

3.3 Rebalancing steps
The rebalancing steps are also based on the work of Larsen and Fagerberg. In fact, Root-Zero, Root-Replace, Absorb
and Split are the same as in [15]. However, the Compress and One-Child operations are newly introduced by this
work. These operations ensure that P4 and P2 are satisfied, respectively.

If there is a degree violation at the root, then Root-Replace is performed. If there is no degree violation at the root,
but there is a weight violation at the root, then Root-Zero is performed. If there is a weight violation at an internal
node that is not the root, then Absorb or Split is performed. Suppose there are no weight violations. If there is a degree
violation at a node u and no degree or slack violation at π(u), then One-Child is performed. If there is a slack violation
at a node u and no degree violation at u, then Compress is performed. Figure 1 illustrates these rebalancing steps. The
goal of rebalancing is to eliminate all violations, while maintaining the relaxed B-slack tree properties.

Root-Zero. Root-Zero changes the weight of the root from zero to one, eliminating a weight violation, and
incrementing the relaxed depth of every node. If P1′ held before Root-Zero, it holds afterwards.

Root-Replace. Root-Replace replaces the root r by its only child u, and sets u’s weight to one. This eliminates a
degree violation at r, and any weight violation at u. If u had weight zero before Root-Replace, then the relaxed depth
of every leaf is the same before and after Root-Replace. Otherwise, the relaxed depth of every leaf is decremented by
Root-Replace. In both cases, if P1′ held before Root-Replace, it holds afterwards.

Absorb. Let u be a non-root node with weight zero. Absorb is performed when π(u) contains less than b pointers.
In this case, the two pointers in u are moved into π(u), and u is removed from the tree. Since the pointer from π(u) to
u is no longer needed once u is removed, π(u) now contains at most b pointers. The only node that was removed is
u and, since it had weight zero, the relaxed depth of every leaf remains the same. Thus, if P1′ held before Absorb, it
also holds afterwards. Absorb eliminates a weight violation at u, but may create a slack violation at π(u).

Split. Let u be a non-root node with weight zero. Split is performed when π(u) contains exactly b pointers. In this
case, there are too many pointers to fit in a single node. We create a new node v with weight one, and evenly distribute
all of the pointers and keys of u and π(u) (except for the pointer from π(u) to u) between u and v. Now π(u) has two
children, u and v. The weight of u is set to one, and the weight of π(u) is set to zero. As above, this does not change
the relaxed depth of any leaf, so P1′ still holds after Split. Split moves a weight violation from u to π(u) (closer to the
root, where it can be eliminated by a Root-Zero or Root-Replace), but may create slack violations at u and v.

Compress. Compress is performed when there is a slack violation at an internal node u, there is no degree violation
at u, and there are no weight violations at u or any of its k ≥ 2 children. Let c ≤ kb− b be the number of pointers
or keys stored in the children of u. Compress evenly distributes the pointers or keys contained in the children of u
amongst the first dc/be children of u, and discards the other children. This will also eliminate any degree violations at
the children of u if c > 1. After the update, u satisfies P4. Compress does not change the relaxed depth of any node,
so P1′ still holds after. Compress removes at least one child of u, so it increases the slack of u by at least one, possibly
creating a slack violation at π(u). (However, it decreases the total amount of slack in the tree by at least b−1.) Thus,
after a Compress, it may be necessary to perform another Compress at π(u). Furthermore, as Compress distributes
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keys and pointers, it may move nodes with different parents together, under the same parent. Even if two parents
initially satisfied P4 (so the children of each parent contain a total of less than b slack), the children of the combined
parent may contain b or more slack, creating a slack violation. Therefore, after a Compress, it may also be necessary
to perform Compress at some of the children of u.

One-Child. One-Child is performed when there is a degree violation at an internal node u, there are no weight
violations at u or any of its siblings, and there is no violation of any kind at π(u). Let k be the degree of π(u). Since
there is no slack violation at π(u), there are a total of c > kb−b = b(k−1) pointers stored in u and its siblings. Since
u has only one child pointer, each of its other k−1 siblings must contain b pointers. One-Child evenly distributes the
keys and pointers of the children of π(u). One-Child does not change the relaxed depth of any node, so P1′ still holds
after. One-Child eliminates a degree violation at u, but, like Compress, it may move children with different parents
together under the same parent, possibly creating slack violations at some children of π(u). So, it may be necessary to
perform Compress at some of the children of π(u).

All of these updates maintain P0′, P2′ and P3. While rebalancing steps are being performed to eliminate the
violation created by an insertion or deletion, there is at most one node with weight zero.

We prove that a rebalancing step can be applied in any relaxed B-slack tree that is not a B-slack tree.

Lemma 1 Let T be a relaxed B-slack tree. If T is not a B-slack tree, then a rebalancing step can be performed.

Proof: If T is not a B-slack tree, it contains a weight violation, a slack violation or a degree violation. If there is
weight violation, then Root-Zero, Absorb or Split can be performed. Suppose there are no weight violations. Let u be
the node at the smallest depth that has a slack or degree violation. Suppose u has a degree violation. If u is the root,
then Root-Replace can be performed. Otherwise, π(u) has no violation, so One-Child can be performed. Suppose u
does not have a degree violation. Then, u must have a slack violation, and Compress can be performed.

4 Analysis
This section provides a detailed analysis of B-slack trees that store n keys, by giving: an upper bound on the height
of the tree, a lower bound on the average degree of nodes (and, hence, utilization), and an upper bound on the space
complexity. We first give a brief outline of the proofs and results, and then provide the full details.

Arbitrary B-slack trees are difficult to analyze, so we begin by studying a class of trees called b-overslack trees.
A b-overslack tree has a root with degree two, and satisfies P1, P2 and P3, but instead of P4, the children of each
internal node contain a total of exactly b slack. Thus, a b-overslack tree is a relaxed B-slack tree, but not a B-slack
tree. Consider a b-overslack tree T of height h that contains n keys. We prove that the total degree at depth δ ≤ h in T
is d(δ ) = 2−δ (αδ + γδ ), where α = b+

√
b2−4b and γ = b−

√
b2−4b. Since the total degree at the lowest depth is

precisely the number of keys in the tree, every b-overslack tree of height h contains exactly d(h) keys. Furthermore,
when h≥ 3, we also have (b−2)h < d(h)≤ bh. Therefore, for n > b3 (which implies height at least three), h satisfies
dlogb ne ≤ h≤ dlogb−2 ne. We also prove that the average degree of nodes in T is b·d(h−1)−b+2

b·d(h−2)−b+3 , which is greater than
b−2 for h≥ 3.

We next prove some connections between overslack trees and B-slack trees. First, we show that each b-overslack
tree of height h has a smaller total degree of nodes at each depth than any B-slack tree of height h. We do this by
starting with an arbitrary B-slack tree of height h, and repeatedly removing pointers and keys from the children of
each internal node that satisfies P4 (taking care not to violate P1, P2 or P3), until we obtain a b-overslack tree. It
follows that each b-overslack tree of height h contains fewer keys than any B-slack tree of height h. Consequently,
every b-overslack tree with n keys has height at least as large as any B-slack tree with n keys. We next prove that every
b-overslack tree of height h has a smaller average node degree than any B-slack tree of height h. As above, the proof
starts with an arbitrary B-slack tree of height h, and removes pointers and keys from nodes until the tree becomes a
b-overslack tree. However, in this proof, every time we remove a pointer, we must additionally show that the average
degree of nodes in the tree decreases.

We then compute the space complexity of a B-slack tree containing n keys, which is the number of words needed
to store it. Consider a leaf-oriented tree with maximum degree b. For simplicity, we assume that each key and each
pointer to a child or data occupies one word in memory. Thus, a leaf occupies 2b words, and an internal node occupies
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2b− 1 words. A memory block size of 2b is assumed. Let D̄ be the average degree of nodes. Then, U = D̄/b is the
proportion of space that is utilized (which we call the average space utilization of the tree), and 1−U is the proportion
of space that is wasted. The space complexity is 2bF , where F is the number of nodes in the tree. Suppose the tree
contains n keys. By definition, the sum of the degrees of all nodes is F−1+n, since each node, except the root, has a
pointer into it and the degree of a leaf is the number of keys it contains. Additionally, FD̄ is equal to the sum of degrees
of all nodes, so F = (n−1)/(D̄−1). Therefore, the space complexity is 2b(n−1)/(D̄−1). In order to compute an
upper bound on the space complexity for a B-slack tree of height h, we simply need a lower bound on D̄. Above, we
saw that D̄ > b−2 for B-slack trees of height at least three. It follows that a B-slack tree with n > b3 keys has space
complexity at most 2b(n−1)/(b−3)< 2n b

b−3 . (Recall that 2n is optimal under these assumption.) A slightly tighter

upper bound is 2b(n−1)/
( b·d(h−1)−b+2

b·d(h−2)−b+3 −1
)
.

Section 6 describes pathological families of B-trees, Overflow trees and H-trees, and compares the space complex-
ity of example trees in these families with the worst-case upper bound on the space complexity of a B-slack tree. By
studying these families, we obtain lower bounds on the space complexity of these trees that are above the upper bound
for B-slack trees.

We also study the number of rebalancing steps necessary to maintain balance in a relaxed B-slack tree. Consider
a relaxed B-slack tree obtained by starting from a B-slack tree containing n keys and performing a sequence of i
insertions and d deletions. We prove that such a relaxed B-slack tree will be transformed back into a B-slack tree after
at most 2i(2+blogb b

2 c
(n+ i)/2c)+d/(b−1) rebalancing steps, irrespective of which rebalancing steps are performed,

and in which order. Hence, insertions perform amortized O(log(n+ i)) rebalancing steps and deletions perform an
amortized constant number of rebalancing steps.

4.1 Analysis of overslack trees
For our analysis, it is helpful to generalize the definition of b-overslack trees to the following. A (b,k)-overslack tree
is the same as b-overslack tree, except that the root has degree k, instead of degree two.

We now compute the total degree of nodes at each depth in a (b,k)-overslack tree. As we will see, for each k, the
total degree of nodes at a given depth δ is the same in every (b,k)-overslack tree of height at least δ .

Lemma 2 The total degree of nodes at depth δ in a (b,k)-overslack tree of height h is:

d(δ ,k) =

 k if δ = 0
kb−b if δ = 1
b(d(δ −1,k)−d(δ −2,k)) if 1 < δ ≤ h

Proof: In the following, we use c(u) to denote the set of children of node u. Let T be a (b,k)-overslack tree. The
proof is by induction on δ . The base cases δ = 0 and δ = 1 are immediate from the definition of a (b,k)-overslack
tree. Consider δ > 1. Let Tδ be the set of nodes at depth δ in T . Then,

d(δ ,k) = ∑
v∈Tδ

deg(v) = ∑
u∈Tδ−1

∑
v∈c(u)

deg(v).

Since T is an overslack tree,
∑

v∈c(u)
deg(v) = deg(u)b−b = b(deg(u)−1), so

d(δ ,k) = ∑
u∈Tδ−1

b(deg(u)−1) = b(d(δ −1,k)−|Tδ−1|) = b(d(δ −1,k)−d(δ −2,k)).

Since d(δ ,k) is a linear homogeneous recurrence relation with constant coefficients, we use the technique de-
scribed in Section 2.1.1(a) of [11] to obtain the following closed form solution.

Lemma 3 d(δ ,k) = 2−δ (k1(b+
√

b2−4b)δ + k2(b−
√

b2−4b)δ ), where k1 =
bk−2b

2
√

b2−4b
+ k

2 and k2 = k− k1.
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Corollary 4 d(δ ,2) = 2−δ ((b+
√

b2−4b)δ +(b−
√

b2−4b)δ ).

Since b+
√

b2−4b asymptotically approaches 2b as b increases, and b−
√

b2−4b approaches zero, d(δ ,2) ap-
proximately grows like bδ for large b. Simple algebra establishes the following bounds on d(δ ,2).

Corollary 5 For h≥ 3,
( b

2

)h
< d(h,2)≤ bh.

For the following lemma, we used symbolic mathematics software to obtain the partial derivatives of d(δ ,k) with
respect to δ and k, and prove that they are positive.

Lemma 6 d(δ ,k) is an increasing function of δ and k.

Lemma 7 The total degree of nodes in every (b,k)-overslack tree of height h is

D(h,k) =
{

k : h = 0
k+b(d(h−1,k)−1) : h > 0

Moreover, D(h,k) is increasing in h and k.

Proof: By Lemma 2, D(h,k) = ∑
h
δ=0 d(δ ,k) = k+(kb− b)+∑

h
δ=2 b(d(δ − 1,k)− d(δ − 2,k)). This telescoping

sum reduces to D(h,k) = k+(kb−b)+b(d(h−1,k)−d(0,k)) = k+b(d(h−1,k)−1). Lemma 6 implies that D(h,k)
is increasing in h and k.

We now consider the average degree of nodes at each depth in a (b,2)-overslack tree. In any (b,2)-overslack tree,
the two children of the root must share exactly 2b− b = b pointers or keys. Let us build intuition with an example.
Consider a (b,2)-overslack tree in which the children of the root evenly share b pointers or keys. The grandchildren of
the root must share a total of exactly ((b/2)b−b)+((b/2)b−b) = b2−2b pointers or keys. Thus, the average degree
of nodes at depth zero is two, at depth one is b/2, and at depth two is b−2. We prove that every (b,2)-overslack tree
T of height h has the smallest average node degree of any (b,k)-overslack tree of height h. We first derive expressions
for the average degree of nodes in an overslack tree, and the average degree at each depth.

Since the total degree of nodes at depth δ is d(δ ,k), and the total number of nodes at depth δ is d(δ − 1,k), we
obtain the following.

Lemma 8 The average degree of nodes at depth δ in any (b,k)-overslack tree of height h is:

d̄(δ ,k) =

{
k : δ = 0

d(δ ,k)
d(δ−1,k) : 0 < δ ≤ h

We used our mathematics software to obtain the partial derivatives of d̄(δ ,k) with respect to δ and k. We proved the
following two lemmas by showing that ∂

∂δ
d̄(δ ,k)> 0 for 2≤ k≤ b−2, ∂

∂δ
d̄(δ ,k)< 0 for k > b−2, and ∂

∂k d̄(δ ,k)> 0.

Lemma 9 d̄(δ ,k) is an increasing function of δ for 2≤ k ≤ b−2, and is a decreasing function of δ for k ≥ b−1.

Lemma 10 d̄(δ ,k) is an increasing function of k.

Let T be a B-slack tree of height h. Since every node in T except for the root is pointed to by exactly one child
pointer, the number of nodes in T is the total degree of all nodes at depths zero through h− 1, plus one for the root,
which is exactly D(h−1,k)+1. Thus, we obtain the following.

Lemma 11 The average degree of nodes in any (b,k)-overslack tree of height h is:

D̄(h,k) =

{
k : h = 0

D(h,k)
D(h−1,k)+1 : h > 0

Lemma 12 D̄(h,k) is an increasing function of h for 2≤ k ≤ b−2, and is a decreasing function of h for k ≥ b−1.
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Proof: The average node degree at depth δ ∈ {0,1, ...,h} is the same in every (b,k)-overslack tree of height at
least h. By definition, D̄(h,k) must be a weighted average of the terms d̄(0,k), d̄(1,k), ..., d̄(h,k). Thus, D̄(h+ 1,k)
is a weighted average of D̄(h,k) and d̄(h + 1,k) Suppose k ≤ b− 2. By Lemma 9, d̄(h + 1,k) > maxi≤h d̄(i,k).
Therefore, d̄(h+ 1,k) > D̄(h,k), which implies that D̄(h+ 1,k) > D̄(h,k). Now, suppose k ≥ b− 1. By Lemma 9,
d̄(h+1,k)< mini≤h d̄(i,k). Therefore, d̄(h+1,k)< D̄(h,k), which implies that D̄(h+1,k)< D̄(h,k).

We used our mathematics software to obtain the partial derivative of D̄(h,k) with respect to k, and proved that it is
positive, yielding the following result.

Lemma 13 D̄(h,k) is an increasing function of k.

We proved a simple lower bound on D̄(h,k) using our mathematics software.

Lemma 14 D̄(h,k)> b−2 for h≥ 3 (and b≥ 5).

4.2 Relating B-slack trees to overslack trees
In this section, we first prove that a (b,2)-overslack tree has the greatest height of any B-slack tree containing the same
number of keys, and a smaller average degree of nodes than any B-slack tree with the same height. Then, we compute
upper and lower bounds on the space used to store a B-slack tree with n keys.

Proposition 15 Let u be an internal node in a B-slack tree. If the total slack contained in the children of u is less than
b, then some child of u has degree at least three.

Proof: Suppose the total slack contained in the children v1,v2, ...,vl of u is less than b. Then, deg(v1)+ deg(v2)+
...+ deg(vl) > lb− b. By P2, l ≥ 2. Since b > 4, it follows that lb− b = b(l− 1) > 4(l− 1) ≥ 2l. Therefore, the
average degree of the children of u is (deg(v1)+deg(v2)+ ...+deg(vl))/l > lb−b

l > 2.

Lemma 16 Every (b,2)-overslack tree of height h has a smaller total degree of nodes, at each depth, than any B-slack
tree of height h.

Proof: Let T be a B-slack tree of height h. We can transform T into a (b,2)-overslack tree by removing keys and
pointers. Removing a key, or a pointer from a node that has at least three pointers, does not affect P1, P2 or P3. Let u
be any internal node whose children share a total of less than b slack. We arbitrarily remove a key or pointer from the
child, v, of u with the largest degree. By Proposition 15, v must have degree at least three. We can repeat this process
until T is a (b,2)-overslack tree.

Corollary 17 Every (b,2)-overslack tree with n keys has a larger height than any B-slack tree with n keys.

Corollary 18 Any B-slack tree of height h contains more keys than every (b,2)-overslack tree of height h, and, hence,
more than d(h,2) keys.

Lemma 19 Every (b,2)-overslack tree of height h has a smaller average node degree than any B-slack tree of height h.

Proof: We first describe how to transform a B-slack tree into an overslack tree of the same height while decreasing
the average node degree. Observe that, since an overslack tree satisfies P1, P2 and P3, any B-slack tree will become
an overslack tree if pointers and keys are removed until, for each internal node u, the children of u share a total of b
slack. The proof is by induction on the height of the tree. Let u be the root of a B-slack tree T .

In the base case, the children of u are leaves. Arbitrarily removing keys from the children of u until the children
contain a total of exactly b slack will transform T into an overslack tree while decreasing the average degree of nodes.

Now, suppose the children of u are internal. By the inductive hypothesis, we can transform each subtree rooted at a
child of u into an overslack tree. After these transformations, for every internal node in every subtree rooted at a child
of u, the children of this internal node contain a total of b slack. If the children of u contain a total of b slack, then T
is an overslack tree. Otherwise, we would like to remove some grandchild of u, to increase this slack. As we argued
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in the proof of Lemma 16, removing a pointer from a node that has the largest degree amongst its siblings yields a
B-slack tree. However, we must carefully choose which grandchild to remove so that we decrease the average degree
of nodes. Let v be the child of u that is the root of the tree with the largest average degree. By Lemma 13, v has the
largest degree amongst its siblings. By Lemma 15, v must have at least three pointers, so removing one of its children
does not violate P2. It is easy to verify that removing one of v’s children will not violate P1 or P3. We remove the
child of v that is the root of the tree with the largest average degree. Since this tree has the largest average degree of
any tree rooted at a child of v, removing it decreases the average degree of T . (This is because every other subtree
rooted at a child of v has the same or smaller average degree, and removing this child of v decreases the degree of v.)
We can repeatedly apply this transformation until the children of u contain a total of b slack, at which point T is an
overslack tree.

We now prove the main result. Given a B-slack tree T , we first transform it into an overslack tree. Then, if the root
of T has more than two children, we transform T into a (b,2)-overslack tree by keeping the two children that are the
roots of the trees with the largest average degrees, and throwing away the rest.

Since the average degree of nodes represents the fraction of space that is utilized, this implies that every (b,2)-
overslack tree of height h wastes a larger proportion of space than any B-slack tree of the same height. We can also
obtain a lower bound on the average degree (and, hence, the fraction of space that is utilized) for any B-slack tree
containing n keys.

Lemma 20 A B-slack tree with n≥ 2 keys has average degree greater than D̄(dlogb ne−1,2).

Proof: Let T be a B-slack tree of height h containing n keys. By Lemma 19, T has average degree greater than
D̄(h,2). Lemma 12 implies that D̄(h,2) increases with h, so it suffices to find a lower bound on h. Since b is the
maximum possible degree for any node in T , h is at least dlogb ne−1.

We can now compute bounds on S(n), the space complexity of a B-slack tree containing n keys. Recall from
Section 3 that S(n) = 2b(n−1)/(D̄−1). By Lemma 20, D∗ ≥ D̄(dlogb ne−1,2). Let s = D̄(dlogb ne−1,2). Then,

n−1
b−1

≤ F ≤ n−1
s−1

and
2b(n−1)

b−1
≤ S(n)≤ 2b(n−1)

s−1
.

4.3 Amortized logarithmic rebalancing
In the following, we assume that the tree is initially a B-slack tree. After a sequence of insertions and deletions, the
tree is a relaxed B-slack tree. The goal of this section is to establish an upper bound on the number of rebalancing
steps needed to transform this relaxed B-slack tree back into a B-slack tree.

We assume that the updates shown in Figure 1 are performed sequentially. In a concurrent setting, locks or lock-
free methodologies such as the template described by Brown, Ellen and Ruppert [7] can be used to ensure that updates
appear to atomically operate on mutually exclusive sets of nodes (so that the effect will be the same as if the updates
were performed sequentially in some order).

Our analysis follows the approach taken in [15]. Consider any arbitrary B-slack tree T . Initially, we associate
every key in the tree with the leaf that contains it. When a key is inserted into a leaf u, we associate the key with u.
After a key is deleted from u, the key is still associated with u. If the node u is deleted, then all keys associated with u
are instead associated with another node. Two cases arise. If u is deleted by a Root-Replace, then all keys associated
with u are instead associated with the only child of u. Otherwise, u is deleted by Absorb or Compress, and all keys
associated with u are instead associated with the node that was the parent of u before the Absorb or Compress.

Let σ be a sequence of updates to T , and w be an internal node in the tree after the updates in σ have been
performed. We define the A-multiset of w to be the multiset of all keys associated with nodes in the subtree rooted at
w. Therefore, the A-multiset of the root contains n+ i keys, where i is the number of insertions in σ and n is the size
of T .
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We also define the relaxed height of a node u in a relaxed B-slack tree. Suppose we formed a new relaxed B-slack
tree T ′ by detaching the subtree rooted at u from the relaxed B-slack tree that contains it. The relaxed height of u,
denoted rh(u), is then the relaxed depth of the leaves in T ′.

The following lemma relates the relaxed height of a node to the number of keys in its A-multiset.

Lemma 21 Consider a B-slack tree T containing at least two keys, and a sequence of updates to it. Then, let u be any
node in the resulting tree. If u is the root, then its A-multiset contains at least 2

⌊ b
2

⌋rh(u)−weight(u) keys. Otherwise, its

A-multiset contains at least
⌊ b

2

⌋rh(u) keys.

Proof: The proof is by induction on the sequence of updates performed on T .
Base case. Let u be any node in T , Tu be the tree rooted at u, and hu be the height of Tu. Any subtree of a B-slack

tree is a B-slack tree, so Tu is a B-slack tree. By Corollary 18, Tu must contain at least d(hu,2) keys. By Corollary 5,
d(hu,2)> ( b

2 )
hu . Since Tu is a B-slack tree, every node has weight one, so the relaxed height of each node is equal to

its height and hu = rh(u). Therefore, d(hu,2)> ( b
2 )

rh(u) ≥ b b
2crh(u) ≥ 2b b

2crh(u)−1 = 2b b
2crh(u)−weight(u).

Inductive step. Suppose the claim holds before an update U . We prove it holds after U . Let rh′(u) be the relaxed
height of a node u after U .

Suppose U is Delete. Then, each A-multiset remains the same, and every node has the same relaxed height before
and after U .

Suppose U is Insert. Then, each A-multiset either gains one new key, or remains the same, and every node has the
same relaxed height before and after U .

Suppose U is Root-Replace. Let p be the old root, and u be its only child. If u has weight one before U , then
rh′(u) = rh(p)−1. Otherwise, u has weight zero before U , so rh′(u) = rh(p). Any keys associated with p before U
are associated with u after U , so the A-multiset of the root is the same before and after U .

Suppose U is Root-Zero. Let r be the relaxed height of the root before U . By the inductive hypothesis, the A-
multiset of the root contains at least 2

⌊ b
2

⌋r keys before U . Moreover, U does not change any A-multiset. After U , the
relaxed height of the root increases to r+1 because the weight of the root changes from zero to one, so the A-multiset
of the root contains at least 2

⌊ b
2

⌋r
= 2
⌊ b

2

⌋(r+1)−1
= 2
⌊ b

2

⌋rh(root)−weight(root).
Suppose U is Absorb. Let u be the child before U and p be its parent. In this case, u is removed by U , and all of its

associated keys are instead associated with p. The A-multiset, weight and relaxed height of p are all the same before
and after U .

Suppose U is Split. Let u be the child before U and p be its parent. In this case, U creates a new child, v, of p and
moves all of p’s pointers (except for its pointers to u and v) into u and v, so that u and v each contain at least b b+1

2 c ≥ b
2

pointers. Observe that rh′(u) = rh′(v) = rh′(p) = rh(p). Each pointer in u or v after U points to a node with relaxed
height rh(p)− 1. By the inductive hypothesis, the A-multiset of every such node contains at least b b

2crh(p)−1 keys.
Therefore, the A-multisets of u and v each contain at least b

2b b
2crh(p)−1 ≥ b b

2crh(p) = b b
2crh′(u) = b b

2crh′(v) keys, and the
A-multiset of p contains at least b b

2crh′(u)+ b b
2crh′(v) = 2b b

2crh′(p) keys.
Suppose U is Overflow. Let u be the leaf that is full. In this case, U creates a new leaf r and an internal node p with

weight zero and pointers to u and v, and moves half of the keys from u into v. After U , the A-multiset of p contains at
least b+1 keys. Since u and v are leaves, rh(p) = 1, so b+1≥ 2b b

2crh(p). The A-multisets of u and v each contain at
least b

2 keys. Since rh(u) = rh(v) = 1, b
2 ≥ b b

2crh(u) = b b
2crh(v).

Suppose U is Compress or One-Child. Let p be the upper node and k be its degree. Observe that U does not change
the weight or relaxed height of any node, and does not remove any key from the A-multiset of p. After U , p has d c

be
children that evenly share c pointers or keys. Thus, each child contains at least b c

dc/bec ≥ b c
c/b+1c= b cb

c+bc= b b
1+b/cc

pointers or keys. If U is One-Child, then c > kb− b and k ≥ 2, so c > b and b b
1+b/cc > b b

2c. If U is Compress, then
two cases arise. If p has at least two children after U , then d c

be ≥ 2, so c/b+1≥ 2 and b/c≤ 1. Therefore, each child
of p contains at least b b

1+b/cc ≥ b b
2c pointers or keys after U . Otherwise, after U , the single child of p contains all of

the pointers and keys of the children that were removed, so its A-multiset is at least as large as it was before U . The
claim then follows immediately from the inductive hypothesis.
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Corollary 22 Consider a relaxed B-slack tree that results from performing a sequence of operations, i of which are
insertions, on a B-slack tree containing n keys. The relaxed height of the root, and, hence, any node in this relaxed
B-slack tree is at most

⌊
logb b

2 c
n+i

2

⌋
+1.

Lemma 23 After a sequence of operations, i of which are insertions, on a B-slack tree containing n keys, the total
number of Absorb and Root-Zero updates that can be performed is at most i, and the number of Split updates that can
be performed is at most i(1+

⌊
logb b

2 c
n+i

2

⌋
).

Proof: Absorb or Split is performed when a node has weight zero. Overflow is the only update that increases the
number of zero weights in the tree, and at most i Overflows occur, so there are at most i nodes with weight zero in the
tree. Absorb and Root-Zero each decrease the number of zero weights in the tree by one, so at most i of these updates
can be performed. Root-Zero, Root-Replace, Absorb and Split are the only updates that can change the relaxed height
of a node with weight zero. Root-Zero, Root-Replace and Absorb each change a zero weight to one, and Split moves
a zero weight from a node with relaxed height r to a node with relaxed height r+1. Therefore, each zero weight will
remain at a node with the same relaxed height until it is moved by Split or changed to one by Root-Zero, Root-Replace
or Absorb. Since the relaxed height of any node in the tree is at most

⌊
logb b

2 c
n+i

2

⌋
+ 1, each of the i zero weights in

the tree can be moved by Split at most
⌊

logb b
2 c

n+i
2

⌋
+1 times.

Lemma 24 Let T be a relaxed B-slack tree of height h that is obtained by performing any sequence of i insertions and
d deletions on an initially empty relaxed B-slack tree. At most 2i(4+ 3

2

⌊
logb b

2 c
n+i

2

⌋
)+2d/(b−1) rebalancing steps

can be applied to T .

Proof: Let c be the total degree of the children of a parent where Compress or One-Child is performed. We first
bound the number of One-Child updates that can be performed. If a node has exactly one pointer, we say a pointer
violation occurs at that node. One-Child is performed only when a pointer violation occurs at a child of the parent
and c > kb− b. Since c > kb− b and k ≥ 2, c ≥ b+ 1, so the parent will have at least two children after One-Child.
Furthermore, each child of the parent will have degree at least bb/2c. Thus, One-Child removes every pointer violation
at a child of the parent, and does not create any pointer violation. Root-Replace removes a pointer violation at the
root, decreasing the number of pointer violations in the tree by one. However, Compress can increase the number of
pointer violations in the tree by one if c ≤ b. No other update changes the number of pointer violations in the tree.
Therefore, the total number of One-Child and Root-Replace updates that can be performed is bounded above by the
number of Compress updates.

We bound the number of Compress updates by studying the change in the total amount of slack in the tree that is
caused by each type of update. It is convenient to ignore the slack in any node with a zero weight value, since Compress
cannot affect any such node. Compress redistributes a total of c < kb−b pointers or keys from k nodes to dc/be nodes.
Since c≤ kb−b = b(k−1), dc/be ≤ k−1, Compress will remove at least one node from the tree. Removing this node
removes b slack, and increases slack at the parent by one. Thus, Compress reduces the total amount of slack in the tree
by at least b−1 (and by even more, if more than one node is removed). Split is applied precisely when the parent of a
node with weight value zero contains exactly b pointers (and no slack). Since the node with weight value zero contains
exactly two pointers, b+1 pointers are moved into the nodes with weight value one in Figure 1, so Split increases the
total slack in the tree by exactly b− 1. By Lemma 23, Split can be performed at most i(1+

⌊
logb b

2 c
n+i

2

⌋
) times, so

the total amount of slack created by Split is at most i(1+
⌊

logb b
2 c

n+i
2

⌋
)(b−1). It is easy to verify that Insert, Insert-

Distribute and Absorb each decrease the total slack by one, and that Delete and Insert-Overflow increase the total slack
by one and 2(b−1), respectively. Thus, the total slack created by Delete and Insert-Overflow updates is d+2i(b−1),
so the total slack in T is at most i(1+

⌊
logb b

2 c
n+i

2

⌋
)(b−1)+d+2i(b−1) = i(b−1)(3+

⌊
logb b

2 c
n+i

2

⌋
)+d. Therefore,

at most i(3+
⌊

logb b
2 c

n+i
2

⌋
)+d/(b−1) Compress updates can occur.

By Lemma 23 at most i Absorb and Root-Zero updates and i(1+
⌊

logb b
2 c

n+i
2

⌋
) Split updates can occur. Since the

total number of Root-Replace and One-Child updates is at most the number of Compress updates, the number of Root-
Replace, One-Child and Compress updates that can occur is at most 2i(3+

⌊
logb b

2 c
n+i

2

⌋
)+2d/(b−1). Therefore, at

most 2i(3+
⌊

logb b
2 c

n+i
2

⌋
)+ 2d/(b− 1)+ i+ i(1+

⌊
logb b

2 c
n+i

2

⌋
) = 2i(4+ 3

2

⌊
logb b

2 c
n+i

2

⌋
)+ 2d/(b− 1) rebalancing

steps can be applied to T .
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This result implies that the number of rebalancing steps needed to rebalance the tree after a sequence of deletions
is amortized constant, and after a sequence of insertions is amortized logarithmic in: the size of the tree the last time
it was a B-slack tree plus the number of insertions that have occurred since then. Section 5 explains how B-slack trees
can be modified to obtain amortized constant rebalancing by slightly increasing the amount of slack shared amongst
the children of an internal node.

5 B-slack trees with amortized constant rebalancing
The main challenge in achieving amortized constant rebalancing is ensuring that long sequences of Split and Compress
operations occur infrequently. Split can necessitate other Splits higher in the tree and many Compresses. Compress
can necessitate many other Compresses. This makes Split and Compress particularly problematic.

Split occurs only when an internal node is full. If a Compress at an internal node leaves some slack in each of its
children, then Splits will not immediately occur at the children. With this in mind, we make some small modifications.
P4 is replaced with P4′, which says that, for each internal node u of degree k, the total slack contained in the children
of u is at most b+ k−1 (so the worst-case slack per node is only one greater than in a standard B-slack tree). A slack
violation then occurs at any internal node that violates P4′. The children of an internal node of degree k where a slack
violation occurs will have total degree less than kb−(b+k−1) = (k−1)(b−1). Thus, Compress is performed only at
internal nodes whose children have total degree c≤ (k−1)(b−1), and One-Child is performed only at internal nodes
whose children have total degree c > (k− 1)(b− 1). This threshold is chosen so that Compress is only performed
when it can remove one node and still leave each child with one slack (so that each child can accommodate one more
key before necessitating a Split). We then change Compress so that it evenly distributes the c pointers or keys of its
children amongst d c

b−1e nodes, instead of d c
be. This way, each child is guaranteed to have at least one slack afterwards.

We prove that the number of rebalancing steps is amortized constant using the potential method. The potential of a
node u, denoted φ(u), captures the intuition that a node is bad if it contains too much slack, is full, or has weight zero.

φ(u) =
{

b−deg(u) if deg(u)< b and u has weight one
b otherwise (i.e., deg(u) = b or u has weight zero)

The potential of a tree T , denoted Φ(T ), is the sum of potentials of its nodes.
We now study how Φ(T ) is changed by deletion, insertion, and each rebalancing step. Let u be a node with degree

k. Recall that leaves never have weight zero.
Delete. If u is full, then φ(u) changes from b to 1. Otherwise, φ(u) changes from b− k to b− (k− 1). So, φ(u)

increases by at most one.
Insert. If the insertion fills u, then φ(u) changes from 1 to b. Otherwise, φ(u) changes from b− k to b− (k+1).

So, φ(u) increases by at most b−1.
Overflow. A full node with potential b turns into a node with weight zero, which has potential b, and two nodes

with weight one that share a total of b−1 slack. Thus, b potential is replaced by b+b−1 = 2b−1 potential, which
is an increase of b−1.

Absorb. Let u be the node with weight zero. Its parent π(u) has weight one. Beforehand, u has degree two and
π(u) contains j ≤ b− 1 pointers, so is it not full. Absorb decreases potential by b by eliminating u. It also moves a
pointer from u to π(u). If j = b−1, then φ(π(u)) changes from 1 to b, increasing potential by b−1, for a net decrease
of one. Otherwise, φ(π(u)) changes from b− j to b− ( j−1), for a net decrease in potential of b−1.

Split. Let u be the node with weight zero. Its parent π(u) has weight one, but it is full, so it has potential b
behorehand. Afterwards, it has weight zero, so its potential does not change. Before the Split, u has potential b, and it
is split into two nodes, each of weight one, that share a total of b−1 slack. After the Split, the sum of their potentials
is b−1. Thus, the potential of the tree is decreased by one.

Compress. Let u be a node with k≥ 2 children that have total degree at most (k−1)(b−1). The modified version
of Compress will leave at least one slack at each child of u, so the total potential of u’s children will be the total amount
of slack they contain, which decreases by at least b, since at least one of the children is removed. Removing a child
of u also increases the slack at u by one, which increases φ(u) by one (unless u was full, in which case it decreases
φ(u)). For each child of u that is removed by Compress, b slack is eliminated at at the children of u, and one slack is
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added at the parent. Therefore, the total potential of the tree decreases by b−1 for each child removed by Compress.
Since at least one child is removed, the total potential of the tree decreases by at least b−1.

One-Child. Since One-Child evenly distributes keys, it cannot create any more full nodes than existed beforehand.
It does not affect weights, and it does not remove any key or pointer. So, One-Child does not affect the total potential
of the tree.

Since Φ(T ) is increased by one for Delete and b− 1 for Insert (and Overflow), and no other operation increases
it, after i insertions and d deletions, Φ(T )≤ (b−1)i+d. We can use Φ(T ) to bound the number of rebalancing steps
that can be performed on T . Let C, A, S, R0, Rr be the number of Compresses, Absorbs, Splits, Root-Zeros and Root-
Replaces, respectively. We immediately obtain (b−1)C+A+S+2(R0 +Rr)≤Φ(T )≤ (b−1)i+d. Astute readers
will notice that One-Child has not yet made an appearance. By the same argument as in Lemma 24, the number of
One-Childs is at most C. Therefore, the number of rebalancing steps is constant per update.

In fact, we can achieve tighter bounds if we are more careful. By the same argument as in Lemma 23, A+R0 ≤ i.
Additionally, the same argument used to show that the number of One-Childs is at most C applies to Root-Replace,
so Rr ≤ C. Therefore, on average, there is at most one Absorb or Root-Zero per insertion, at most one Compress
(and One-Child) and Root-Replace per insertion, and at most one Split per insertion. Similarly, on average, there is
at most one Absorb, Split, Root-Replace or Root-Zero per deletion, and at most one Compress (and One-Child) per
b−1 deletions.

The increase in space complexity associated with these changes is very small. Since the worst-case slack per
node is only one greater than in a B-slack tree, the minimum average degree of this modified B-slack tree is at most
one less than in a B-slack tree. So, worst-case lower bound on utilization changes from D̄/b to (D̄− 1)/b, and the
space complexity upper bound changes from 2b(n− 1)/(D̄− 1) < 2b(n− 1)/(b− 3) to 2b(n− 1)/((D̄− 1)− 1) <
2b(n−1)/(b−4).

6 Space complexity of competing trees
In this section, we study the space complexity of some pathological families of B-trees, Overflow trees and H-trees.
The maximum degree of nodes is b, the block size is 2b, and all trees are leaf-oriented.

• B-tree. The root has degree two, and all other nodes have degree b/2.

• Overflow tree. The root has degree two, the internal nodes have degree b/2, and the leaves have degree b−3.
Overflow groups are chosen to be as large as possible, to minimize wasted space. Specifically, for each parent
u of a leaf, u’s children are all in a single group, with one shared overflow node. Thus, each overflow node is
shared by b/2 leaves (which contain a total of (b−3)(b/2) = b2/2−3b/2 keys).

• H-tree. Parameters γ and δ are chosen to be as large as possible, to minimize wasted space. The root has degree
two, the internal nodes have degree db/

√
2e, and the leaves have degree b−2. (H-trees are node-oriented, which

would significantly inflate their space complexity on a system with only one block size. The space complexity
bounds shown in Figure 2 ignore this, and are thus quite charitable. To actually achieve such good space
complexity bounds for H-trees, one would have to completely redesign the data structure to be leaf-oriented.)

We assume that a key and a pointer each occupy a single word in memory. For each family, and each choice of
maximum degree in {8,16,32}, we consider the minimum height tree from the family containing at least 106 keys,
and computed its space complexity. Observe that the resulting space complexity values are lower bounds on the worst-
case space complexity for these data structures. These space complexity values appear in Figure 2, along with very
pessimistic upper bounds on the space complexity for any B-slack tree (b ∈ {8,16,32}) containing at least 50,000
keys. (The aforementioned upper bounds actually apply to overslack trees, which allow the slack shared amongst the
children of a node to be one greater than in a B-slack tree. Additionally, despite the fact that the space complexity of
B-slack trees improves as the number of keys grows, these upper bounds only assume the tree contains at least 50,000
keys, in contrast to the other data structures, which contain at least 106 keys.) Therefore, these results are actually
quite charitable to the other data structures.
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Max degree B-tree Overflow tree H-tree B-slack tree Optimal
8 ≥ 5.333n ≥ 5.066n ≥ 3.840n < 2.789n 2.000n

16 ≥ 4.571n ≥ 3.120n ≥ 2.685n < 2.301n 2.000n
32 ≥ 4.266n ≥ 2.492n ≥ 2.307n < 2.145n 2.000n

Figure 2: Space complexity of example trees, and worst-case bound for B-slack trees.

Nevertheless, the advantage of B-slack trees is clear. The optimal space to store n keys and pointers to associated
data is 2n. H-trees, the closest competitor to B-slack trees, use more than double the space beyond what is optimal. If
these trees were modified to implement a set instead of a dictionary (by eliminating data and allowing leaves to contain
up to 2b keys), then the optimal space would become n, and it is expected that relative differences in space complexity
between the trees would increase further.

7 Experiments
Java implementation The B-slack tree was implemented as a sequential data structure in Java. Each update U
shown in Figure 1 was implemented as follows. A process performing U creates new a node for each node on the
right hand side of the depiction of U in Figure 1, and replaces the nodes on the left hand side by these new nodes. The
nodes that were replaced by U are eventually reclaimed by Java’s automatic garbage collection. If a Delete, Insert or
Overflow creates a violation, then the process invokes a Cleanup procedure to perform rebalancing steps until the tree
no longer contains any violations.

For simplicity, we implemented Cleanup as a recursive procedure. Cleanup takes the node u where a violation
occurs as its argument, and attempts to perform a rebalancing step to fix the violation at u. If this rebalancing step
creates any new violations, or replaces any nodes with existing violations and moves the violations to new nodes, then
recursive invocations of Cleanup are performed to eliminate these violations. If an invocation of Cleanup sees that the
node whose violation it was supposed to fix has already been replaced, then it knows the invocation of Cleanup that
replaced it will make a recursive call to fix the violation, wherever it was moved. Thus, this invocation of Cleanup can
simply return. The downside of a recursive implementation of Cleanup is that stack overflow may occur if rebalancing
steps create a large number of violations. Other ways to implement the Cleanup procedure are discussed in Section 8.

Java is not an ideal language for implementing the B-slack tree, since it gives very little control over memory
layout. The purpose of our Java implementation is simply to serve as a guide for any implementers who are interested
in porting the B-slack tree tree to other languages. Each node is implemented as an array of keys, and an array
of child pointers. Unlike in C/C++, in Java, arrays cannot be embedded directly in a node. Instead, nodes contain
pointers to arrays, which are located elsewhere in memory. Thus, even after a process has loaded (a cache line
that contains) a node, accessing a key or child pointer of that node still requires performing additional loads from
potentially distant locations in main memory. This makes the implementation somewhat inefficient. Furthermore, the
implementation does not directly satisfy the space complexity upper bounds computed in Section 4. However, if we
ignore these complications and pretend that keys and pointers are embedded directly inside nodes, then we can still
use this implementation to study structural properties of B-slack trees in practice.

Methodology We performed randomized experimental trials for several b values, simulated workloads, and tree
sizes. Each trial was divided into two phases. In the first phase, a B-slack tree was created and initialized by insert-
ing and deleting (with 50% probability each) keys drawn uniformly randomly from [0,size), until the tree stabilized,
containing approximately size/2 keys. In the second phase, one million random insertions and deletions were per-
formed with some specified probabilities, and each rebalancing step was recorded. We considered probabilities: 50%
insertion and 50% deletion (50i-50d), 90% insertion and 10% deletion (90i-10d), and 10% insertion and 90% deletion
(10i-90d). At the end of each trial, average degree and space complexity were computed (under the assumption that
keys and pointers were actually embedded directly in nodes).
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Figure 3: Histogram showing the frequency of updates that perform a certain number of rebalancing steps in a ran-
domized trial.

Results We discuss a small selection of the results. For 50i-50d, b = 16 and size = 220 = 1,048,576, there were
approximately 1.2 rebalancing steps per successful update, the average degree was approximately 15.5, and the space
complexity was less than 2.209n. In fact, even with a rather small size of 212 = 4,096, the average degree was ap-
proximately 15.4, and the space complexity was less than 2.226n, which is substantially better than the theoretical
average degree lower bound of 12.7 and space complexity upper bound of 2.726n. This suggests that the performance
of B-slack trees is much better in practice than what is suggested by our theoretical results. For 50i-50d, b = 32, and
size = 220, there were approximately 1.1 rebalancing steps per successful update, the average degree was approxi-
mately 31.5, and the space complexity was less than 2.097n. For 10i-90d, b = 16 and size = 220, there was less than
one rebalancing step per successful update. Even with 90% of updates being deletion, the average degree remained the
same as in the 50i-50d case, and the space complexity was less than 2.213n. For 90i-10d, there were approximately
1.2 rebalancing steps per successful update. These results suggest that little rebalancing is required for random updates
on uniform keys.

Distribution of rebalancing It is also interesting to understand how many rebalancing steps are necessitated by
each insertion or deletion. So, we plotted a histogram for one trial with parameters 50i-50d, b = 16 and size = 220 =
1,048,576 in Figure 3. (Results for other trials, values of b and simulated workloads are similar.) The x-axis shows
the number of rebalancing steps that were performed by a single insertion or deletion, and the y-axis shows how many
insertions or deletions performed x rebalancing steps. The total number of successful insertions and deletions was
500,326, and the height of the tree was four when the trial finished. The most rebalancing steps performed by an
insertion or deletion was 18, 67.6% of successful insertions and deletions performed no rebalancing, 97.6% performed
six or less rebalancing steps, and 99.9% performed less than ten rebalancing steps.

8 Implemention issues for rebalancing
One way to implement rebalancing is to explicitly maintain a collection of pointers to internal nodes where rebalancing
steps must be performed. After an update creates a violation, a rebalancing step is performed to fix that violation. Every
time a rebalancing step creates a violation, a pointer to the node where the violation occurs (and possibly also a pointer
to its parent) is added to the collection. An update does not terminate until it has emptied the queue and performed
rebalancing steps to fix all violations in the tree.

Observe that violations can only occur at internal nodes. The number of internal nodes is quite small compared to
n (close to n/(b−2)2 in B-slack trees of height at least three). So, even if a collection contains every internal node, the
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worst-case collection size may be reasonable for some applications. Since the amortized number of rebalancing steps
per update is small, most updates will result in a small collection. We recommend using a small, fixed-size queue and
switching to a more computationally expensive algorithm if the queue becomes full. For instance, when a process tries
to enqueue a pointer and the queue is full, it can simply discard that pointer, and continue the algorithm, recording the
fact that the a pointer was discarded. Eventually, after enough rebalancing steps are performed, the queue becomes
empty, and the process can traverse the tree to find any outstanding violations, repopulate the queue, and continue the
algorithm. Although this approach is very expensive once the queue becomes full, it will not significantly increase the
average running time of updates if the queue rarely becomes full. The experimental results in Section 7 indicate that
this approach could be practical, even with a very small bound on queue size.

9 Conclusion
We introduced B-slack trees, which have excellent space complexity in the worst case, and amortized logarithmic
updates. The data structure is simple, requires only one block size, and is well suited for concurrent implementation,
both in software and in hardware. Modifying the definition of B-slack trees so that the total slack shared amongst the
children of each internal node of degree k is at most b+ k−1, instead of b−1, yields a data structure with amortized
constant rebalancing (with small constants), and only a slight increase in space complexity. Specifically, such a tree
containing n > b3 keys occupies at most 2b

b−4 n words.
Recently, the lock-free tree update template of Brown, Ellen and Ruppert [7] has been used to obtain a fast concur-

rent implementation of relaxed B-slack trees [6] that tolerates process crashes and guarantees some process will always
make progress (Java and C++ code available at http://implementations.tbrown.pro). In that implementation,
localized updates to disjoint parts of the tree can proceed concurrently, and searches can proceed without synchroniz-
ing with updates, which makes them extremely fast. That implementation also guarantees that, in a quiescent state,
when no updates are in progress, the data structure is a (strict) B-slack tree.

Our sequential Java implementation of B-slack trees is available at http://implementations.tbrown.pro.
Experiments have been performed to validate the theoretical worst-case bounds, and to better understand the level of
pessimism in them. The results indicate that few rebalancing steps are performed in practice, and average degree is
somewhat better than the already good worst-case bounds. For instance, for b = 16 and b = 32, over a variety of
simulated random workloads with tree sizes varying between 25 = 32 and 220 = 1,048,576 keys, there were at most
1.2 rebalancing steps per insertion or deletion, and average degrees for trees were approximately b− 0.5, which is
extremely close to optimal.
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