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Abstract
We describe a general technique for obtaining provably cor-
rect, non-blocking implementations of a large class of tree
data structures where pointers are directed from parents to
children. Updates are permitted to modify any contiguous
portion of the tree atomically. Our non-blocking algorithms
make use of the LLX, SCX and VLX primitives, which
are multi-word generalizations of the standard LL, SC and
VL primitives and have been implemented from single-word
CAS [10].

To illustrate our technique, we describe how it can be
used in a fairly straightforward way to obtain a non-blocking
implementation of a chromatic tree, which is a relaxed vari-
ant of a red-black tree. The height of the tree at any time is
O(c + log n), where n is the number of keys and c is the
number of updates in progress. We provide an experimen-
tal performance analysis which demonstrates that our Java
implementation of a chromatic tree rivals, and often signifi-
cantly outperforms, other leading concurrent dictionaries.

Categories and Subject Descriptors E.1 [Data]: Data
Structures—Distributed data structures

Keywords balanced binary search tree; non-blocking; chro-
matic tree; relaxed balance; red-black tree

1. Introduction
The binary search tree (BST) is among the most important
data structures. Previous concurrent implementations of bal-
anced BSTs without locks either used coarse-grained trans-
actions, which limit concurrency, or lacked rigorous proofs
of correctness. In this paper, we describe a general technique
for implementing any data structure based on a down-tree (a
directed acyclic graph of indegree one), with updates that
modify any connected subgraph of the tree atomically. The
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resulting implementations are non-blocking, which means
that some process is always guaranteed to make progress,
even if processes crash. Our approach drastically simplifies
the task of proving correctness. This makes it feasible to
develop provably correct implementations of non-blocking
balanced BSTs with fine-grained synchronization (i.e., with
updates that synchronize on a small constant number of
nodes).

As with all concurrent implementations, the implementa-
tions obtained using our technique are more efficient if each
update to the data structure involves a small number of nodes
near one another. We call such an update localized. We use
operation to denote an operation of the abstract data type
(ADT) being implemented by the data structure. Operations
that cannot modify the data structure are called queries. For
some data structures, such as Patricia tries and leaf-oriented
BSTs, operations modify the data structure using a single lo-
calized update. In some other data structures, operations that
modify the data structure can be split into several localized
updates that can be freely interleaved.

A particularly interesting application of our technique is
to implement relaxed-balance versions of sequential data
structures efficiently. Relaxed-balance data structures decou-
ple updates that rebalance the data structure from operations,
and allow updates that accomplish rebalancing to be delayed
and freely interleaved with other updates. For example, a
chromatic tree is a relaxed-balance version of a red-black
tree (RBT) which splits up the insertion or deletion of a key
and any subsequent rotations into a sequence of localized up-
dates. There is a rich literature of relaxed-balance versions
of sequential data structures [22], and several papers (e.g.,
[24]) have described general techniques that can be used to
easily produce them from large classes of existing sequential
data structures. The small number of nodes involved in each
update makes relaxed-balance data structures perfect candi-
dates for efficient implementation using our technique.

Our Contributions
• We provide a simple template that can be filled in to ob-

tain an implementation of any update for a data structure
based on a down-tree. We prove that any data structure
that follows our template for all of its updates will auto-
matically be linearizable and non-blocking. The template



takes care of all process coordination, so the data struc-
ture designer is able to think of updates as atomic steps.

• To demonstrate the use of our template, we provide a
complete, provably correct, non-blocking linearizable
implementation of a chromatic tree [27], which is a
relaxed-balanced version of a RBT. To our knowledge,
this is the first provably correct, non-blocking balanced
BST implemented using fine-grained synchronization.
Our chromatic trees always have height O(c + log n),
where n is the number of keys stored in the tree and c is
the number of insertions and deletions that are in progress
(Section 5.3).

• We show that sequential implementations of some queries
are linearizable, even though they completely ignore con-
current updates. For example, an ordinary BST search
(that works when there is no concurrency) also works in
our chromatic tree. Ignoring updates makes searches very
fast. We also describe how to perform successor queries
in our chromatic tree, which interact properly with up-
dates that follow our template (Section 5.5).

• We show experimentally that our Java implementation
of a chromatic tree rivals, and often significantly out-
performs, known highly-tuned concurrent dictionaries,
over a variety of workloads, contention levels and thread
counts. For example, with 128 threads, our algorithm out-
performs Java’s non-blocking skip-list by 13% to 156%,
the lock-based AVL tree of Bronson et al. by 63% to
224%, and a RBT that uses software transactional mem-
ory (STM) by 13 to 134 times (Section 6).

2. Related Work
There are many lock-based implementations of search tree
data structures. (See [1, 9] for state-of-the-art examples.)
Here, we focus on implementations that do not use locks.
Valois [32] sketched an implementation of non-blocking
node-oriented BSTs from CAS. Fraser [17] gave a non-
blocking BST using 8-word CAS, but did not provide a
full proof of correctness. He also described how multi-word
CAS can be implemented from single-word CAS instruc-
tions. Ellen et al. [15] gave a provably correct, non-blocking
implementation of leaf-oriented BSTs directly from single-
word CAS. A similar approach was used for k-ary search
trees [11] and Patricia tries [28]. All three used the coopera-
tive technique originated by Turek, Shasha and Prakash [31]
and Barnes [4]. Howley and Jones [20] used a similar ap-
proach to build node-oriented BSTs. They tested their im-
plementation using a model checker, but did not prove it
correct. Natarajan and Mittal [25] give another leaf-oriented
BST implementation, together with a sketch of correctness.
Instead of marking nodes, it marks edges. This enables in-
sertions to be accomplished by a single CAS, so they do
not need to be helped. It also combines deletions that would

otherwise conflict. All of these trees are not balanced, so the
height of a tree with n keys can be Θ(n).

Tsay and Li [30] gave a general approach for implement-
ing trees in a wait-free manner using LL and SC operations
(which can, in turn be implemented from CAS, e.g., [3]).
However, their technique requires every process accessing
the tree (even for read-only operations such as searches) to
copy an entire path of the tree starting from the root. Concur-
rency is severely limited, since every operation must change
the root pointer. Moreover, an extra level of indirection is
required for every child pointer.

Red-black trees [5, 18] are well known BSTs that have
height Θ(log n). Some attempts have been made to imple-
ment RBTs without using locks. It was observed that the
approach of Tsay and Li could be used to implement wait-
free RBTs [26] and, furthermore, this could be done so that
only updates must copy a path; searches may simply read
the path. However, the concurrency of updates is still very
limited. Herlihy et al. [19] and Fraser and Harris [16] exper-
imented on RBTs implemented using software transactional
memory (STM), which only satisfied obstruction-freedom,
a weaker progress property. Each insertion or deletion, to-
gether with necessary rebalancing is enclosed in a single
large transaction, which can touch all nodes on a path from
the root to a leaf.

Some researchers have attempted fine-grained approaches
to build non-blocking balanced search trees, but they all
use extremely complicated process coordination schemes.
Spiegel and Reynolds [29] described a non-blocking data
structure that combines elements of B-trees and skip lists.
Prior to this paper, it was the leading implementation of an
ordered dictionary. However, the authors provided only a
brief justification of correctness. Braginsky and Petrank [8]
described a B+tree implementation. Although they have
posted a correctness proof, it is very long and complex.

In a balanced search tree, a process is typically respon-
sible for restoring balance after an insertion or deletion by
performing a series of rebalancing steps along the path from
the root to the location where the insertion or deletion oc-
curred. Chromatic trees, introduced by Nurmi and Soisalon-
Soininen [27], decouple the updates that perform the inser-
tion or deletion from the updates that perform the rebal-
ancing steps. Rather than treating an insertion or deletion
and its associated rebalancing steps as a single, large up-
date, it is broken into smaller, localized updates that can
be interleaved, allowing more concurrency. This decoupling
originated in the work of Guibas and Sedgewick [18] and
Kung and Lehman [21]. We use the leaf-oriented chromatic
trees by Boyar, Fagerberg and Larsen [7]. They provide a
family of local rebalancing steps which can be executed in
any order, interspersed with insertions and deletions. More-
over, an amortized constant number of rebalancing steps per
INSERT or DELETE is sufficient to restore balance for any
sequence of operations. We have also used our template to



implement a non-blocking version of Larsen’s leaf-oriented
relaxed AVL tree [23]. In such a tree, an amortized logarith-
mic number of rebalancing steps per INSERT or DELETE is
sufficient to restore balance.

There is also a node-oriented relaxed AVL tree by Bougé
et al. [6], in which an amortized linear number of rebalanc-
ing steps per INSERT or DELETE is sufficient to restore bal-
ance. Bronson et al. [9] developed a highly optimized fine-
grained locking implementation of this data structure using
optimistic concurrency techniques to improve search perfor-
mance. Deletion of a key stored in an internal node with
two children is done by simply marking the node and a later
insertion of the same key can reuse the node by removing
the mark. If all internal nodes are marked, the tree is essen-
tially leaf-oriented. Crain et al. gave a different implementa-
tion using lock-based STM [12] and locks [13], in which all
deletions are done by marking the node containing the key.
Physical removal of nodes and rotations are performed by
one separate thread. Consequently, the tree can become very
unbalanced. Drachsler et al. [14] give another fine-grained
lock-based implementation, in which deletion physically re-
moves the node containing the key and searches are non-
blocking. Each node also contains predecessor and successor
pointers, so when a search ends at an incorrect leaf, sequen-
tial search can be performed to find the correct leaf. A non-
blocking implementation of Bougé’s tree has not appeared,
but our template would make it easy to produce one.

3. LLX, SCX and VLX Primitives
The load-link extended (LLX), store-conditional extended
(SCX) and validate-extended (VLX) primitives are multi-
word generalizations of the well-known load-link (LL),
store-conditional (SC) and validate (VL) primitives and they
have been implemented from single-word CAS [10]. The
benefit of using LLX, SCX and VLX to implement our
template is two-fold: the template can be described quite
simply, and much of the complexity of its correctness proof
is encapsulated in that of LLX, SCX and VLX.

Instead of operating on single words, LLX, SCX and
VLX operate on Data-records, each of which consists of a
fixed number of mutable fields (which can change), and a
fixed number of immutable fields (which cannot). LLX(r)
attempts to take a snapshot of the mutable fields of a
Data-record r. If it is concurrent with an SCX involving r, it
may return FAIL, instead. Individual fields of a Data-record
can also be read directly. An SCX(V,R, fld, new) takes as
arguments a sequence V of Data-records, a subsequence R
of V , a pointer fld to a mutable field of one Data-record
in V , and a new value new for that field. The SCX tries to
atomically store the value new in the field that fld points
to and finalize each Data-record in R. Once a Data-record is
finalized, its mutable fields cannot be changed by any sub-
sequent SCX, and any LLX of the Data-record will return
FINALIZED instead of a snapshot.

Before a process invokes SCX or VLX(V ), it must per-
form an LLX(r) on each Data-record r in V . The last such
LLX by the process is said to be linked to the SCX or VLX,
and the linked LLX must return a snapshot of r (not FAIL or
FINALIZED). An SCX(V,R, fld, new) by a process modi-
fies the data structure only if each Data-record r in V has
not been changed since its linked LLX(r); otherwise the
SCX fails. Similarly, a VLX(V ) returns TRUE only if each
Data-record r in V has not been changed since its linked
LLX(r) by the same process; otherwise the VLX fails. VLX
can be used to obtain a snapshot of a set of Data-records.
Although LLX, SCX and VLX can fail, their failures are
limited in such a way that we can use them to build non-
blocking data structures. See [10] for a more formal specifi-
cation of these primitives.

These new primitives were designed to balance ease of
use and efficient implementability using single-word CAS.
The implementation of the primitives from CAS in [10] is
more efficient if the user of the primitives can guarantee that
two constraints, which we describe next, are satisfied. The
first constraint prevents the ABA problem for the CAS steps
that actually perform the updates.

Constraint 1: Each invocation of SCX(V,R, fld, new)
tries to change fld to a value new that it never previously
contained.

The implementation of SCX does something akin to
locking the elements of V in the order they are given. Live-
lock can be easily avoided by requiring all V sequences to
be sorted according to some total order on Data-records.
However, this ordering is necessary only to guarantee that
SCXs continue to succeed. Therefore, as long as SCXs are
still succeeding in an execution, it does not matter how V se-
quences are ordered. This observation leads to the following
constraint, which is much weaker.

Constraint 2: Consider each execution that contains
a configuration C after which the value of no field of
any Data-record changes. There is a total order of all
Data-records created during this execution such that, for ev-
ery SCX whose linked LLXs begin after C, the V sequence
passed to the SCX is sorted according to the total order.

It is easy to satisfy these two constraints using standard
approaches, e.g., by attaching a version number to each field,
and sorting V sequences by any total order, respectively.
However, we shall see that Constraints 1 and 2 are automati-
cally satisfied in a natural way when LLX and SCX are used
according to our tree update template.

Under these constraints, the implementation of LLX,
SCX, and VLX in [10] guarantees that there is a lineariza-
tion of all SCXs that modify the data structure (which
may include SCXs that do not terminate because a pro-
cess crashed, but not any SCXs that fail), and all LLXs and
VLXs that return, but do not fail.

We assume there is a Data-record entry which acts as the
entry point to the data structure and is never deleted. This



Data-record points to the root of a down-tree. We represent
an empty down-tree by a pointer to an empty Data-record. A
Data-record is in the tree if it can be reached by following
pointers from entry. A Data-record r is removed from the
tree by an SCX if r is in the tree immediately prior to
the linearization point of the SCX and is not in the tree
immediately afterwards. Data structures produced using our
template automatically satisfy one additional constraint:

Constraint 3: A Data-record is finalized when (and only
when) it is removed from the tree.
Under this additional constraint, the implementation of LLX
and SCX in [10] also guarantees the following three proper-
ties.
• If LLX(r) returns a snapshot, then r is in the tree just

before the LLX is linearized.
• If an SCX(V,R, fld, new) is linearized and new is (a

pointer to) a Data-record, then this Data-record is in the
tree immediately after the SCX is linearized.

• If an operation reaches a Data-record r by following
pointers read from other Data-records, starting from
entry, then r was in the tree at some earlier time dur-
ing the operation.

These properties are useful for proving the correctness of our
template. In the following, we sometimes abuse notation by
treating the sequences V and R as sets, in which case we
mean the set of all Data-records in the sequence.

The memory overhead introduced by the implementation
of LLX and SCX is fairly low. Each node in the tree is aug-
mented with a pointer to a descriptor and a bit. Every node
that has had one of its child pointers changed by an SCX
points to a descriptor. (Other nodes have a NIL pointer.) A
descriptor can be implemented to use only three machine
words after the update it describes has finished. The imple-
mentation of LLX and SCX in [10] assumes garbage col-
lection, and we do the same in this work. This assumption
can be eliminated by using, for example, the new efficient
memory reclamation scheme of Aghazadeh et al. [2].

4. Tree Update Template
Our tree update template implements updates that atomi-
cally replace an old connected subgraph in a down-tree by
a new connected subgraph. Such an update can implement
any change to the tree, such as an insertion into a BST or
a rotation used to rebalance a RBT. The old subgraph in-
cludes all nodes with a field (including a child pointer) to
be modified. The new subgraph may have pointers to nodes
in the old tree. Since every node in a down-tree has inde-
gree one, the update can be performed by changing a single
child pointer of some node parent. (See Figure 1.) How-
ever, problems could arise if a concurrent operation changes
the part of the tree being updated. For example, nodes in the
old subgraph, or even parent, could be removed from the
tree before parent’s child pointer is changed. Our template

N

new

R

parent

old

FN

parent

R

FN

Replace

N ∪ FN

R ∪ FN by

Figure 1. Example of the tree update template. R is the
set of nodes to be removed, N is a tree of new nodes that
have never before appeared in the tree, and FN is the set of
children of N (and of R). Nodes in FN may have children.
The shaded nodes (and possibly others) are in the sequence
V of the SCX that performs the update. The darkly shaded
nodes are finalized by the SCX.

(a)

(b)

parent

parent

N

Replace
∅ by N

new

old

parent

R = ∅
FN = ∅

R = ∅

old
N

new

parent

FN 6= ∅

N ∪ FN

Replace
FN by

FN FN

Figure 2. Examples of two special cases of the tree update
template when no nodes are removed from the tree. (a)
Replacing a NIL child pointer: In this case, R = FN = ∅.
(b) Inserting new nodes in the middle of the tree: In this case,
R = ∅ and FN consists of a single node.

takes care of the process coordination required to prevent
such problems.

Each tree node is represented by a Data-record with a
fixed number of child pointers as its mutable fields (but
different nodes may have different numbers of child fields).
Each child pointer points to a Data-record or contains NIL
(denoted by ( in our figures). For simplicity, we assume
that any other data in the node is stored in immutable fields.
Thus, if an update must change some of this data, it makes a
new copy of the node with the updated data.

Our template for performing an update to the tree is
fairly simple: An update first performs LLXs on nodes in a
contiguous portion of the tree, including parent and the set



1 TEMPLATE(args)
2 follow zero or more pointers from entry to reach a node n0

3 i := 0
4 loop
5 si := LLX(ni)
6 i f si ∈ {FAIL, FINALIZED} then return FAIL
7 s′i := immutable fields of ni

8 e x i t loop when CONDITION(s0, s′0, . . . , si, s
′
i, args)

. CONDITION must eventually return TRUE
9 ni+1 := NEXTNODE(s0, s′0, . . . , si, s

′
i, args)

. returns a non-NIL child pointer from one of s0, . . . , si
10 i := i+ 1
11 end loop
12 i f SCX(SCX-ARGUMENTS(s0, s′0, . . . , si, s

′
i, args)) then

return RESULT(s0, s′0, . . . , si, s
′
i, args)

13 e l s e re turn FAIL

Figure 3. Tree update template. CONDITION, NEXTNODE,
SCX-ARGUMENTS and RESULT can be filled in
with any locally computable functions, provided that
SCX-ARGUMENTS satisfies postconditions PC1 to PC8.

R of nodes to be removed from the tree. Then, it performs
an SCX that atomically changes the child pointer as shown
in Figure 1 and finalizes nodes in R. Figure 2 shows two
special cases where R is empty. An update that performs
this sequence of steps is said to follow the template.

We now describe the tree update template in more detail.
An update UP(args) that follows the template shown in Fig-
ure 3 takes any arguments, args, that are needed to perform
the update. UP first reads a sequence of child pointers start-
ing from entry to reach some node n0. Then, UP performs
LLXs on a sequence σ = 〈n0, n1, . . .〉 of nodes starting with
n0. For maximal flexibility of the template, the sequence σ
can be constructed on-the-fly, as LLXs are performed. Thus,
UP chooses a non-NIL child of one of the previous nodes to
be the next node of σ by performing some deterministic local
computation (denoted by NEXTNODE in Figure 3) using any
information that is available locally, namely, the snapshots of
mutable fields returned by LLXs on the previous elements
of σ, values read from immutable fields of previous elements
of σ, and args. (This flexibility can be used, for example, to
avoid unnecessary LLXs when deciding how to rebalance
a BST.) UP performs another local computation (denoted
by CONDITION in Figure 3) to decide whether more LLXs
should be performed. To avoid infinite loops, this function
must eventually return TRUE in any execution of UP. If any
LLX in the sequence returns FAIL or FINALIZED, UP also
returns FAIL, to indicate that the attempted update has been
aborted because of a concurrent update on an overlapping
portion of the tree. If all of the LLXs successfully return
snapshots, UP invokes SCX and returns a result calculated
locally by the RESULT function (or FAIL if the SCX fails).

The full version of this paper describes an optimization
to the template which does not require invocations of UP
to always begin at entry. For example, an operation may
backtrack from n0 to try again from a nearby node after an
invocation of UP returns FAIL.

UP applies the function SCX-ARGUMENTS to use lo-
cally available information to construct the arguments V , R,
fld and new for the SCX. The postconditions that must be
satisfied by SCX-ARGUMENTS are somewhat technical, but
intuitively, they are meant to ensure that the arguments pro-
duced describe an update as shown in Figure 1 or Figure 2.
The update must remove a connected setR of nodes from the
tree and replace it by a connected set N of newly-created
nodes that is rooted at new by changing the child pointer
stored in fld to point to new. In order for this change to oc-
cur atomically, we include R and the node containing fld in
V . This ensures that if any of these nodes has changed since
it was last accessed by one of UP’s LLXs, the SCX will fail.
The sequence V may also include any other nodes in σ.

More formally, we require SCX-ARGUMENTS to satisfy
nine postconditions. The first three are basic requirements of
SCX.

PC1: V is a subsequence of σ.
PC2: R is a subsequence of V .
PC3: The node parent containing the mutable field fld

is in V .
Let GN be the directed graph (N ∪ FN , EN ), where EN
is the set of all child pointers of nodes in N when they are
initialized, and FN = {y : y 6∈ N and (x, y) ∈ EN for
some x ∈ N}. Let old be the value read from fld by the
LLX on parent.

PC4: GN is a non-empty down-tree rooted at new.
PC5: If old = NIL then R = ∅ and FN = ∅.
PC6: If R = ∅ and old 6= NIL, then FN = {old}.
PC7: UP allocates memory for all nodes in N, including

new.
Postcondition PC7 requires new to be a newly-created node,
in order to satisfy Constraint 1. There is no loss of generality
in using this approach: If we wish to change a child y of
node x to NIL (to chop off the entire subtree rooted at y)
or to a descendant of y (to splice out a portion of the tree),
then, instead, we can replace x by a new copy of x with
an updated child pointer. Likewise, if we want to delete the
entire tree, then entry can be changed to point to a new,
empty Data-record.

The next postcondition is used to guarantee Constraint 2,
which is used to prove progress.

PC8: The sequences V constructed by all updates that
take place entirely during a period of time when
no SCXs change the tree structure must be ordered
consistently according to a fixed tree traversal al-
gorithm (for example, an in-order traversal or a
breadth-first traversal).

Stating the remaining postcondition formally requires
some care, since the tree may be changing while UP per-
forms its LLXs. If R 6= ∅, let GR be the directed graph
(R ∪ FR, ER), where ER is the union of the sets of edges
representing child pointers read from each r ∈ R when it
was last accessed by one of UP’s LLXs and FR = {y :



y 6∈ R and (x, y) ∈ ER for some x ∈ R}. GR represents
UP’s view of the nodes in R according to its LLXs, and
FR is the fringe of GR. If other processes do not change
the tree while UP is being performed, then FR contains
the nodes that should remain in the tree, but whose parents
will be removed and replaced. Therefore, we must ensure
that the nodes in FR are reachable from nodes in N (so
they are not accidentally removed from the tree). Let Gσ be
the directed graph (σ ∪ Fσ, Eσ), where Eσ is the union of
the sets of edges representing child pointers read from each
r ∈ σ when it was last accessed by one of UP’s LLXs and
Fσ = {y : y 6∈ σ and (x, y) ∈ Eσ for some x ∈ σ}. Since
Gσ , GR and GN are not affected by concurrent updates,
the following postcondition can be proved using purely se-
quential reasoning, ignoring the possibility that concurrent
updates could modify the tree during UP.

PC9: If Gσ is a down-tree and R 6= ∅, then GR is a non-
empty down-tree rooted at old and FN = FR.

4.1 Correctness and Progress
For brevity, we only sketch the main ideas of the proof here.
The full version of this paper, containing a complete proof,
is available from http://www.cs.utoronto.ca/∼tabrown. Con-
sider a data structure in which all updates follow the tree
update template and SCX-ARGUMENTS satisfies postcon-
ditions PC1 to PC9. We prove, by induction on the sequence
of steps in an execution, that the data structure is always a
tree, each call to LLX and SCX satisfies its preconditions,
Constraints 1 to 3 are satisfied, and each successful SCX
atomically replaces a connected subgraph containing nodes
R ∪ FN with another connected subgraph containing nodes
N ∪ FN , finalizing and removing the nodes in R from the
tree, and adding the new nodes in N to the tree. We also
prove no node in the tree is finalized, every removed node is
finalized, and removed nodes are never reinserted.

We linearize each update UP that follows the template
and performs an SCX that modifies the data structure at
the linearization point of its SCX. We prove the following
correctness properties.

C1: If UP were performed atomically at its lineariza-
tion point, then it would perform LLXs on the same
nodes, and these LLXs would return the same val-
ues.

This implies that UP’s SCX-ARGUMENTS and RESULT
computations must be the same as they would be if UP were
performed atomically at its linearization point, so we obtain
the following.

C2: If UP were performed atomically at its linearization
point, then it would perform the same SCX (with the
same arguments) and return the same value.

Additionally, a property is proved in [10] that allows some
query operations to be performed very efficiently using only
READs, for example, GET in Section 5.

C3: If a process p follows child pointers starting from a
node in the tree at time t and reaches a node r at time

t′ ≥ t, then r was in the tree at some time between t
and t′. Furthermore, if p reads v from a mutable field
of r at time t′′ ≥ t′ then, at some time between t and
t′′, node r was in the tree and this field contained v.

The following properties, which come from [10], can be
used to prove non-blocking progress of queries.

P1: If LLXs are performed infinitely often, then they
return snapshots or FINALIZED infinitely often.

P2: If VLXs are performed infinitely often, and SCXs
are not performed infinitely often, then VLXs return
TRUE infinitely often.

Each update that follows the template is wait-free. Since up-
dates can fail, we also prove the following progress property.

P3: If updates that follow the template are performed
infinitely often, then updates succeed infinitely often.

A successful update performs an SCX that modifies the tree.
Thus, it is necessary to show that SCXs succeed infinitely
often. Before an invocation of SCX(V,R, fld, new) can
succeed, it must perform an LLX(r) that returns a snapshot,
for each r ∈ V . Even if P1 is satisfied, it is possible for
LLXs to always return FINALIZED, preventing any SCXs
from being performed. We prove that any algorithm whose
updates follow the template automatically guarantees that,
for each Data-record r, each process performs at most one
invocation of LLX(r) that returns FINALIZED. We use this
fact to prove P3.

5. Application: Chromatic Trees
Here, we show how the tree update template can be used
to implement an ordered dictionary ADT using chromatic
trees. Due to space restrictions, we only sketch the algorithm
and its correctness proof. All details of the implementation
and its correctness proof are in the full version of the pa-
per. The ordered dictionary stores a set of keys, each with an
associated value, where the keys are drawn from a totally
ordered universe. The dictionary supports five operations.
If key is in the dictionary, GET(key) returns its associated
value. Otherwise, GET(key) returns ⊥. SUCCESSOR(key)
returns the smallest key in the dictionary that is larger than
key (and its associated value), or ⊥ if no key in the dictio-
nary is larger than key. PREDECESSOR(key) is analogous.
INSERT(key, value) replaces the value associated with key
by value and returns the previously associated value, or⊥ if
key was not in the dictionary. If the dictionary contains key,
DELETE(key) removes it and returns the value that was as-
sociated immediately beforehand. Otherwise, DELETE(key)
simply returns ⊥.

A RBT is a BST in which the root and all leaves are
coloured black, and every other node is coloured either red
or black, subject to the constraints that no red node has a
red parent, and the number of black nodes on a path from
the root to a leaf is the same for all leaves. These properties
guarantee that the height of a RBT is logarithmic in the
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Figure 4. (a) empty tree, (b) non-empty tree.

number of nodes it contains. We consider search trees that
are leaf-oriented, meaning the dictionary keys are stored in
the leaves, and internal nodes store keys that are used only to
direct searches towards the correct leaf. In this context, the
BST property says that, for each node x, all descendants of
x’s left child have keys less than x’s key and all descendants
of x’s right child have keys that are greater than or equal to
x’s key.

To decouple rebalancing steps from insertions and dele-
tions, so that each is localized, and rebalancing steps can
be interleaved with insertions and deletions, it is necessary
to relax the balance properties of RBTs. A chromatic tree
[27] is a relaxed-balance RBT in which colours are replaced
by non-negative integer weights, where weight zero corre-
sponds to red and weight one corresponds to black. As in
RBTs, the sum of the weights on each path from the root to
a leaf is the same. However, RBT properties can be violated
in the following two ways. First, a red child node may have
a red parent, in which case we say that a red-red violation
occurs at this child. Second, a node may have weight w > 1,
in which case we say that w− 1 overweight violations occur
at this node. The root always has weight one, so no violation
can occur at the root.

To avoid special cases when the chromatic tree is empty,
we add sentinel nodes at the top of the tree (see Figure 4).
The sentinel nodes and entry have key ∞ to avoid special
cases for SEARCH, INSERT and DELETE, and weight one
to avoid special cases for rebalancing steps. Without hav-
ing a special case for INSERT, we automatically get the two
sentinel nodes in Figure 4(b), which also eliminate special
cases for DELETE. The chromatic tree is rooted at the left-
most grandchild of entry. The sum of weights is the same
for all paths from the root of the chromatic tree to its leaves,
but not for paths that include entry or the sentinel nodes.

Rebalancing steps are localized updates to a chromatic
tree that are performed at the location of a violation. Their
goal is to eventually eliminate all red-red and overweight
violations, while maintaining the invariant that the tree is
a chromatic tree. If no rebalancing step can be applied to
a chromatic tree (or, equivalently, the chromatic tree con-
tains no violations), then it is a RBT. We use the set of re-
balancing steps of Boyar, Fagerberg and Larsen [7], which
have a number of desirable properties: No rebalancing step
increases the number of violations in the tree, rebalancing

steps can be performed in any order, and, after sufficiently
many rebalancing steps, the tree will always become a RBT.
Furthermore, in any sequence of insertions, deletions and re-
balancing steps starting from an empty chromatic tree, the
amortized number of rebalancing steps is at most three per
insertion and one per deletion.

5.1 Implementation
We represent each node by a Data-record with two mutable
child pointers, and immutable fields k, v and w that contain
the node’s key, associated value, and weight, respectively.
The child pointers of a leaf are always NIL, and the value
field of an internal node is always NIL.

GET, INSERT and DELETE each execute an auxiliary pro-
cedure, SEARCH(key), which starts at entry and traverses
nodes as in an ordinary BST search, using READs of child
pointers until reaching a leaf, which it then returns (along
with the leaf’s parent and grandparent). Because of the sen-
tinel nodes shown in Figure 4, the leaf’s parent always ex-
ists, and the grandparent exists whenever the chromatic tree
is non-empty. If it is empty, SEARCH returns NIL instead of
the grandparent. We define the search path for key at any
time to be the path that SEARCH(key) would follow, if it
were done instantaneously. The GET(key) operation simply
executes a SEARCH(key) and then returns the value found in
the leaf if the leaf’s key is key, or ⊥ otherwise.

At a high level, INSERT and DELETE are quite similar
to each other. INSERT(key, value) and DELETE(key) each
perform SEARCH(key) and then make the required update
at the leaf reached, in accordance with the tree update tem-
plate. If the modification fails, then the operation restarts
from scratch. If it succeeds, it may increase the number of
violations in the tree by one, and the new violation occurs
on the search path to key. If a new violation is created, then
an auxiliary procedure CLEANUP is invoked to fix it before
the INSERT or DELETE returns.

Detailed pseudocode for GET, SEARCH, DELETE and
CLEANUP is given in Figure 5. (The implementation of
INSERT is similar to that of DELETE, and its pseudocode is
omitted due to lack of space.) Note that an expression of the
form P ? A : B evaluates to A if the predicate P evaluates
to true, and B otherwise. The expression x.y, where x is a
Data-record, denotes field y of x, and the expression &x.y
represents a pointer to field y.

DELETE(key) invokes TRYDELETE to search for a leaf
containing key and perform the localized update that ac-
tually deletes key and its associated value. The effect of
TRYDELETE is illustrated in Figure 6. There, nodes drawn
as squares are leaves, shaded nodes are in V , ⊗ denotes a
node in R to be finalized, and ⊕ denotes a new node. The
name of a node appears below it or to its left. The weight of
a node appears to its right.

TRYDELETE first invokes SEARCH(key) to find the
grandparent, n0, of the leaf on the search path to key. If
the grandparent does not exist, then the tree is empty (and



1 GET(key)
2 〈−,−, l〉 := SEARCH(key)
3 re turn (key = l.k) ? l.v : NIL

4 SEARCH(key)
5 n0 := NIL;n1 := entry;n2 := entry.left
6 whi le n2 is internal
7 n0 := n1;n1 := n2

8 n2 := (key < n1.k) ? n1.left : n1.right
9 re turn 〈n0, n1, n2〉

10 DELETE(key)
11 do
12 result := TRYDELETE(key)
13 whi le result = FAIL
14 〈value, violation〉 := result
15 i f violation then CLEANUP(key)
16 re turn value

17 TRYDELETE(key)
18 . If successful, returns 〈value, violation〉, where value is the

value associated with key, or NIL if key was not in the
dictionary, and violation indicates whether the deletion
created a violation. Otherwise, FAIL is returned.

19 〈n0,−,−〉 := SEARCH(key)
20 . Special case: there is no grandparent of the leaf reached
21 i f n0 = NIL then return 〈NIL, FALSE〉
22 . Template iteration 0 (grandparent of leaf)
23 s0 := LLX(n0)
24 i f s0 ∈ {FAIL, FINALIZED} then return FAIL
25 n1 := (key < s0.left.k) ? s0.left : s0.right
26 . Template iteration 1 (parent of leaf)
27 s1 := LLX(n1)
28 i f s1 ∈ {FAIL, FINALIZED} then return FAIL
29 n2 := (key < s1.left.k) ? s1.left : s1.right
30 . Special case: key is not in the dictionary
31 i f n2.k 6= key then return 〈⊥, FALSE〉
32 . Template iteration 2 (leaf)
33 s2 := LLX(n2)
34 i f s2 ∈ {FAIL, FINALIZED} then return FAIL
35 n3 := (key < s1.left.k) ? s1.right : s1.left
36 . Template iteration 3 (sibling of leaf)
37 s3 := LLX(n3)
38 i f s3 ∈ {FAIL, FINALIZED} then return FAIL
39 . Computing SCX-ARGUMENTS from locally stored values
40 w := (n1.k =∞ or n0.k =∞) ? 1 : n1.w + n3.w
41 new := new node with weight w, key n3.k, value n3.v, and

children s3.left, s3.right
42 V := (key < s1.left.k) ? 〈n0, n1, n2, n3〉 : 〈n0, n1, n3, n2〉
43 R := (key < s1.left.k) ? 〈n1, n2, n3〉 : 〈n1, n3, n2〉
44 fld := (key < s0.left.k) ? &n0.left : &n0.right
45 i f SCX(V,R, fld, new) then return 〈n2.v, (w > 1)〉
46 e l s e re turn FAIL

47 CLEANUP(key)
48 . Eliminates the violation created by an INSERT or DELETE of key
49 whi le TRUE
50 . Save four last nodes traversed
51 n0 := NIL;n1 := NIL;n2 := entry;n3 := entry.left
52 whi le TRUE
53 i f n3.w > 1 or (n2.w = 0 and n3.w = 0 ) then
54 . Found a violation at node n3

55 TRYREBALANCE(n0, n1, n2, n3) . Try to fix it
56 e x i t loop . Go back to entry and search again
57 e l s e i f n3 is a leaf then return
58 . Arrived at a leaf without finding a violation
59 i f key < n3.k then
60 n0 := n1;n1 := n2;n2 := n3;n3 := n3.left
61 e l s e n0 := n1;n1 := n2;n2 := n3;n3 := n3.right

Figure 5. GET, SEARCH, DELETE and CLEANUP.

it looks like Figure 4(a)), so TRYDELETE returns success-
fully at line 21. TRYDELETE then performs LLX(n0), and
uses the result to obtain a pointer to the parent, n1, of the
leaf to be deleted. Next, it performs LLX(n1), and uses
the result to obtain a pointer to the leaf, n2, to be deleted.
If n2 does not contain key, then the tree does not contain
key, and TRYDELETE returns successfully at line 31. So,
suppose that n2 does contain key. Then TRYDELETE per-
forms LLX(n2). At line 35, TRYDELETE uses the result of
its previous LLX(n1) to obtain a pointer to the sibling, n3,
of the leaf to be deleted. A final LLX is then performed
on n3. Over the next few lines, TRYDELETE computes
SCX-ARGUMENTS. Line 40 computes the weight of the
node new in the depiction of DELETE in Figure 4, ensur-
ing that it has weight one if it is taking the place of a sen-
tinel or the root of the chromatic tree. Line 41 creates new,
reading the key, and value directly from n3 (since they are
immutable) and the child pointers from the result of the
LLX(n3) (since they are mutable). Next, TRYDELETE uses
locally stored values to construct the sequences V andR that
it will use for its SCX, ordering their elements according
to a breadth-first traversal, in order to satisfy PC8. Finally,
TRYDELETE invokes SCX to perform the modification. If
the SCX succeeds, then TRYDELETE returns a pair contain-
ing the value stored in node n2 (which is immutable) and the
result of evaluating the expression w > 1.

DELETE can create an overweight violation (but not a
red-red violation), so the result of w > 1 indicates whether
TRYDELETE created a violation. If any LLX returns FAIL
or FINALIZED, or the SCX fails, TRYDELETE simply re-
turns FAIL, and DELETE invokes TRYDELETE again. If
TRYDELETE creates a new violation, then DELETE invokes
CLEANUP(key) (described in Section 5.2) to fix it before
DELETE returns.

A simple inspection of the pseudocode suffices to prove
that SCX-ARGUMENTS satisfies postconditions PC1 to
PC9. TRYDELETE follows the template except when it re-
turns at line 21 or line 31. In these cases, not following the
template does not impede our efforts to prove correctness or
progress, since TRYDELETE will not modify the data struc-
ture, and returning at either of these lines will cause DELETE
to terminate.

We now describe how rebalancing steps are implemented
from LLX and SCX, using the tree update template. As an
example, we consider one of the 22 rebalancing steps, named
RB2 (shown in Figure 6), which eliminates a red-red viola-
tion at node n3. The other 21 are implemented similarly. To
implement RB2, a sequence of LLXs are performed, start-
ing with node n0. A pointer to node n1 is obtained from the
result of LLX(n0), pointers to nodes n2 and f3 are obtained
from the result of LLX(n1), and a pointer to node n3 is ob-
tained from the result of LLX(n2). Since node n3 is to be re-
moved from the tree, an LLX is performed on it, too. If any
of these LLXs returns FAIL or FINALIZED, then this update
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Figure 6. Examples of chromatic tree updates.

fails. For RB2 to be applicable, n1 and f3 must have posi-
tive weights and n2 and n3 must both have weight 0. Since
weight fields are immutable, they can be read any time af-
ter the pointers to n1, f3, n2, and n3 have been obtained.
Next, new and its two children are created. N consists of
these three nodes. Finally, SCX(V,R, fld, new) is invoked,
where fld is the child pointer of n0 that pointed to n1 in the
result of LLX(n0).

If the SCX modifies the tree, then no node r ∈ V has
changed since the update performed LLX(r). In this case,
the SCX replaces the directed graph GR by the directed
graphGN and the nodes inR are finalized. This ensures that
other updates cannot erroneously modify these old nodes
after they have been replaced. The nodes in the set FR =
FN = {f0, f1, f2, f3} each have the same keys, weights, and
child pointers before and after the rebalancing step, so they
can be reused. V = 〈n0, n1, n2, n3〉 is simply the sequence
of nodes on which LLX is performed, and R = 〈n1, n2, n3〉
is a subsequence of V , so PC1, PC2 and PC3 are satisfied.
Clearly, we satisfy PC4 and PC7 when we create new and its
two children. It is easy to verify that PC5, PC6 and PC9 are
satisfied. If the tree does not change during the update, then
the nodes in V are ordered consistently with a breadth-first
traversal of the tree. Since this is true for all updates, PC8 is
satisfied.

One might wonder why f3 is not in V , since RB2 should
be applied only if n1 has a right child with positive weight.
Since weight fields are immutable, the only way that this can
change after we check f3.w > 0 is if the right child field of
n1 is altered. If this happens, the SCX will fail.

5.2 The rebalancing algorithm
Since rebalancing is decoupled from updating, there must
be a scheme that determines when processes should perform

rebalancing steps to eliminate violations. In [7], the authors
suggest maintaining one or more problem queues which con-
tain pointers to nodes that contain violations, and dedicating
one or more rebalancing processes to simply perform rebal-
ancing steps as quickly as possible. This approach does not
yield a bound on the height of the tree, since rebalancing
may lag behind insertions and deletions. It is possible to ob-
tain a height bound with a different queue based scheme, but
we present a way to bound the tree’s height without the (sig-
nificant) overhead of maintaining any auxiliary data struc-
tures. The linchpin of our method is the following claim con-
cerning violations.

VIOL: If a violation is on the search path to key before a
rebalancing step, then the violation is still on the
search path to key after the rebalancing step, or it
has been eliminated.

While studying the rebalancing steps in [7], we realized that
most of them satisfy VIOL. Furthermore, any time a rebal-
ancing step would violate VIOL another rebalancing step
that satisfies VIOL can be applied instead. Hence, we always
choose to perform rebalancing so that each violation created
by an INSERT(key) or DELETE(key) stays on the search
path to key until it is eliminated. In our implementation,
each INSERT or DELETE that increases the number of vi-
olations cleans up after itself. It does this by invoking a pro-
cedure CLEANUP(key), which behaves like SEARCH(key)
until it finds the first node n3 on the search path where a
violation occurs. Then, CLEANUP(key) attempts to elimi-
nate or move the violation at n3 by invoking another pro-
cedure TRYREBALANCE which applies one localized re-
balancing step at n3, following the tree update template.
(TRYREBALANCE is similar to DELETE, and pseudocode is
omitted, due to lack of space.) CLEANUP(key) repeats these
actions, searching for key and invoking TRYREBALANCE to
perform a rebalancing step, until the search goes all the way
to a leaf without finding a violation.

In order to prove that each INSERT or DELETE cleans
up after itself, we must prove that while an invocation of
CLEANUP(key) searches for key by reading child pointers,
it does not somehow miss the violation it is responsible for
eliminating, even if a concurrent rebalancing step moves the
violation upward in the tree, above where CLEANUP is cur-
rently searching. To see why this is true, consider any rebal-
ancing step that occurs while CLEANUP is searching. The
rebalancing step is implemented using the tree update tem-
plate, and looks like Figure 1. It takes effect at the point
it changes a child pointer fld of some node parent from
a node old to a node new. If CLEANUP reads fld while
searching, we argue that it does not matter whether fld con-
tains old or new. First, suppose the violation is at a node that
is removed from the tree by the rebalancing step, or a child
of such a node. If the search passes through old, it will def-
initely reach the violation, since nodes do not change after
they are removed from the tree. If the search passes through



new, VIOL implies that the rebalancing step either elimi-
nated the violation, or moved it to a new node that will still
be on the search path through new. Finally, if the violation is
further down in the tree, below the section modified by the
concurrent rebalancing step, a search through either old or
new will reach it.

Showing that TRYREBALANCE follows the template
(i.e., by defining the procedures in Figure 3) is compli-
cated by the fact that it must decide which of the chro-
matic tree’s 22 rebalancing steps to perform. It is more con-
venient to unroll the loop that performs LLXs, and write
TRYREBALANCE using conditional statements. A help-
ful technique is to consider each path through the condi-
tional statements in the code, and check that the proce-
dures CONDITION, NEXTNODE, SCX-ARGUMENTS and
RESULT can be defined to produce this single path. It is suf-
ficient to show that this can be done for each path through the
code, since it is always possible to use conditional statements
to combine the procedures for each path into procedures that
handle all paths.

5.3 Proving a bound on the height of the tree
Since we always perform rebalancing steps that satisfy
VIOL, if we reach a leaf without finding the violation that
an INSERT or DELETE created, then the violation has been
eliminated. This allows us to prove that the number of viola-
tions in the tree at any time is bounded above by c, the num-
ber of insertions and deletions that are currently in progress.
Further, since removing all violations would yield a red-
black tree with height O(log n), and eliminating each vio-
lation reduces the height by at most one, the height of the
chromatic tree is O(c+ log n).

5.4 Correctness and Progress
As mentioned above, GET(key) invokes SEARCH(key),
which traverses a path from entry to a leaf by reading child
pointers. Even though this search can pass through nodes
that have been removed by concurrent updates, we prove by
induction that every node visited was on the search path for
key at some time during the search. GET can thus be lin-
earized when the leaf it reaches is on the search path for key
(and, hence, this leaf is the only one in the tree that could
contain key).

Every DELETE operation that performs an update, and
every INSERT operation, is linearized at the SCX that per-
forms the update. Other DELETE operations (that return at
line 21 or 31) behave like queries, and are linearized in the
same way as GET. Because no rebalancing step modifies the
set of keys stored in leaves, the set of leaves always repre-
sents the set of dictionary entries.

The fact that our chromatic tree is non-blocking follows
from P1 and the fact that at most 3i+d rebalancing steps can
be performed after i insertions and d deletions have occurred
(proved in [7]).

5.5 SUCCESSOR queries
SUCCESSOR(key) runs an ordinary BST search algorithm,
using LLXs to read the child fields of each node visited,
until it reaches a leaf. If the key of this leaf is larger than
key, it is returned and the operation is linearized at any
time during the operation when this leaf was on the search
path for key. Otherwise, SUCCESSOR finds the next leaf.
To do this, it remembers the last time it followed a left
child pointer and, instead, follows one right child pointer,
and then left child pointers until it reaches a leaf, using
LLXs to read the child fields of each node visited. If any
LLX it performs returns FAIL or FINALIZED, SUCCESSOR
restarts. Otherwise, it performs a validate-extended (VLX),
which returns TRUE only if all nodes on the path connecting
the two leaves have not changed. If the VLX succeeds, the
key of the second leaf found is returned and the query is
linearized at the linearization point of the VLX. If the VLX
fails, SUCCESSOR restarts.

5.6 Allowing more violations
Forcing insertions and deletions to rebalance the chromatic
tree after creating only a single violation can cause unneces-
sary rebalancing steps to be performed, for example, because
an overweight violation created by a deletion might be elim-
inated by a subsequent insertion. In practice, we can reduce
the total number of rebalancing steps that occur by modify-
ing our INSERT and DELETE procedures so that CLEANUP
is invoked only once the number of violations on a path from
entry to a leaf exceeds some constant k. The resulting data
structure has height O(k + c+ log n). Since searches in the
chromatic tree are extremely fast, slightly increasing search
costs to reduce update costs can yield significant benefits for
update-heavy workloads.

6. Experimental Results
We compared the performance of our chromatic tree (Chro-
matic) and the variant of our chromatic tree that invokes
CLEANUP only when the number of violations on a path
exceeds six (Chromatic6) against several leading data struc-
tures that implement ordered dictionaries: the non-blocking
skip-list (SkipList) of the Java Class Library, the non-
blocking multiway search tree (SkipTree) of Spiegel and
Reynolds [29], the lock-based relaxed-balance AVL tree
with non-blocking searches (AVL-D) of Drachsler et al. [14],
and the lock-based relaxed-balance AVL tree (AVL-B) of
Bronson et al. [9]. Our comparison also includes an STM-
based red-black tree optimized by Oracle engineers (RB-
STM) [19], an STM-based skip-list (SkipListSTM), and the
highly optimized Java red-black tree, java.util.TreeMap,
with operations protected by a global lock (RBGlobal). The
STM data structures are implemented using DeuceSTM
1.3.0, which is one of the fastest STM implementations
that does not require modifications to the Java virtual ma-
chine. We used DeuceSTM’s offline instrumentation ca-
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Figure 7. Multithreaded throughput (millions of operations/second) for 2-socket SPARC T2+ (128 hardware threads) on y-axis
versus number of threads on x-axis.

pability to eliminate any STM instrumentation at running
time that might skew our results. All of the implementa-
tions that we used were made publicly available by their
respective authors. For a fair comparison between data
structures, we made slight modifications to RBSTM and
SkipListSTM to use generics, instead of hardcoding the
type of keys as int, and to store values in addition to keys.
Java code for Chromatic and Chromatic6 is available from
http://www.cs.utoronto.ca/∼tabrown.

We tested the data structures for three different operation
mixes, 0i-0d, 20i-10d and 50i-50d, where xi-yd denotes x%
INSERTs, y% DELETEs, and (100− x− y)% GETs, to rep-
resent the cases when all of the operations are queries, when
a moderate proportion of the operations are INSERTs and
DELETEs, and when all of the operations are INSERTs and
DELETEs. We used three key ranges, [0, 102), [0, 104) and
[0, 106), to test different contention levels. For example, for
key range [0, 102), data structures will be small, so updates
are likely to affect overlapping parts of the data structure.

For each data structure, each operation mix, each key
range, and each thread count in {1, 32, 64, 96, 128}, we ran
five trials which each measured the total throughput (oper-
ations per second) of all threads for five seconds. Each trial
began with an untimed prefilling phase, which continued un-
til the data structure was within 5% of its expected size in the
steady state. For operation mix 50i-50d, the expected size is
half of the key range. This is because, eventually, each key in
the key range has been inserted or deleted at least once, and
the last operation on any key is equally likely to be an inser-
tion (in which case it is in the data structure) or a deletion
(in which case it is not in the data structure). Similarly, 20i-
10d yields an expected size of two thirds of the key range
since, eventually, each key has been inserted or deleted and
the last operation on it is twice as likely to be an insertion as
a deletion. For 0i-0d, we prefilled to half of the key range.

We used a Sun SPARC Enterprise T5240 with 32GB of
RAM and two UltraSPARC T2+ processors, for a total of 16
1.2GHz cores supporting a total of 128 hardware threads.
The Sun 64-bit JVM version 1.7.0 03 was run in server



mode, with 3GB minimum and maximum heap sizes. Dif-
ferent experiments run within a single instance of a Java
virtual machine (JVM) are not statistically independent, so
each batch of five trials was run in its own JVM instance.
Prior to running each batch, a fixed set of three trials was
run to cause the Java HotSpot compiler to optimize the run-
ning code. Garbage collection was manually triggered be-
fore each trial. The heap size of 3GB was small enough that
garbage collection was performed regularly (approximately
ten times) in each trial. We did not pin threads to cores, since
this is unlikely to occur in practice.

Figure 7 shows our experimental results. Our algorithms
are drawn with solid lines. Competing handcrafted imple-
mentations are drawn with dotted lines. Implementations
with coarse-grained synchronization are drawn with dashed
lines. Error bars are not drawn because they are mostly too
small to see: The standard deviation is less than 2% of the
mean for half of the data points, and less than 10% of the
mean for 95% of the data points. The STM data structures
are not included in the graphs for key range [0, 106), be-
cause of the enormous length of time needed just to perform
prefilling (more than 120 seconds per five second trial).

Chromatic6 nearly always outperforms Chromatic. The
only exception is for an all query workload, where Chro-
matic performs slightly better. Chromatic6 is prefilled with
the Chromatic6 insertion and deletion algorithms, so it has
a slightly larger average leaf depth than Chromatic; this ac-
counts for the performance difference. In every graph, Chro-
matic6 rivals or outperforms the other data structures, even
the highly optimized implementations of SkipList and Skip-
Tree which were crafted with the help of Doug Lea and
the Java Community Process JSR-166 Expert Group. Un-
der high contention (key range [0, 102)), Chromatic6 outper-
forms every competing data structure except for SkipList in
case 50i-50d and AVL-D in case 0i-0d. In the former case,
SkipList approaches the performance of Chromatic6 when
there are many INSERTs and DELETEs, due to the simplicity
of its updates. In the latter case, the non-blocking searches of
AVL-D allow it to perform nearly as well as Chromatic6; this
is also evident for the other two key ranges. SkipTree, AVL-
D and AVL-B all experience negative scaling beyond 32
threads when there are updates. For SkipTree, this is because
its nodes contain many child pointers, and processes modify
a node by replacing it (severely limiting concurrency when
the tree is small). For AVL-D and AVL-B, this is likely be-
cause processes waste time waiting for locks to be released
when they perform updates. Under moderate contention (key
range [0, 104)), in cases 50i-50d and 20i-10d, Chromatic6
significantly outperforms the other data structures. Under
low contention, the advantages of a non-blocking approach
are less pronounced, but Chromatic6 is still at the top of each
graph (likely because of low overhead and searches that ig-
nore updates).

Figure 8. Single threaded throughput of the data structures
relative to Java’s sequential RBT for key range [0, 106).

Figure 8 compares the single-threaded performance of the
data structures, relative to the performance of the sequen-
tial RBT, java.util.TreeMap. This demonstrates that the
overhead introduced by our technique is relatively small.

Although balanced BSTs are designed to give perfor-
mance guarantees for worst-case sequences of operations,
the experiments are performed using random sequences. For
such sequences, BSTs without rebalancing operations are
balanced with high probability and, hence, will have better
performance because of their lower overhead. Better experi-
ments are needed to evaluate balanced BSTs.

7. Conclusion
In this work, we presented a template that can be used
to obtain non-blocking implementations of any data struc-
ture based on a down-tree, and demonstrated its use by im-
plementing a non-blocking chromatic tree. To the authors’
knowledge, this is the first provably correct, non-blocking
balanced BST with fine-grained synchronization. Proving
the correctness of a direct implementation of a chromatic
tree from hardware primitives would have been completely
intractable. By developing our template abstraction and our
chromatic tree in tandem, we were able to avoid introducing
any extra overhead, so our chromatic tree is very efficient.

Given a copy of [23], and this paper, a first year un-
dergraduate student produced our Java implementation of
a relaxed-balance AVL tree in less than a week. Its perfor-
mance was slightly lower than that of Chromatic. After al-
lowing more violations on a path before rebalancing, its per-
formance was indistinguishable from that of Chromatic6.

We hope that this work sparks interest in developing more
relaxed-balance sequential versions of data structures, since
it is now easy to obtain efficient concurrent implementations
of them using our template.
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