A General Technique for Non-blocking
Trees

Trevor Brown, University of Toronto, Canada
Faith Ellen, University of Toronto, Canada
Eric Ruppert, York University, Canada

PPoPP 2014

Trevor Brown A General Technique for Non-blocking Trees

Problem

Balanced binary search trees (BSTs) are important, but there
has been little success implementing them without locks.

@ Coarse-grained transactions. Limited concurrency, high
abort rates, code needs fallback paths.

@ Single-word CAS. Extremely complex algorithms and
proofs or lack of rigorous proofs.

@ Multi-word compare-and-swap (CAS). Inefficiency.

Trevor Brown A General Technique for Non-blocking Trees

Previous Frameworks for Tree Updates

@ Tsay and Li (1994): wait-free trees using LL/SC.
e Every update or search must copy an entire path from root
to leaf.
@ Natarajan et al. (2013): extends Tsay and Li’s framework.
@ Searches no longer copy nodes.
e Updates can avoid copying some nodes in special cases.

e Updates must “lock” each node on a root to leaf path with
CAS (similar to lock-coupling).

Trevor Brown A General Technique for Non-blocking Trees

Goals of This Work

A template for efficient non-blocking implementation of
down-trees that are:

@ Linearizable

@ Non-blocking

@ Relatively simple to prove correct, and

@ Allow disjoint updates to succeed concurrently.

V.

A practical, provably correct, non-blocking balanced BST.

Trevor Brown A General Technique for Non-blocking Trees

LLX and SCX

The LLX and SCX primitives:
@ can be implemented from CAS, and
@ work on data records, which contain some mutable fields

and some immutable fields
LLX(r) returns a snapshot of the mutable fields of r

SCX(V, R, field, new) by process p

@ writes value new into field,
which is a mutable field of a data record in V

@ finalizes all data records in R
@ only if no record in V has changed since p’s LLX on it

After a data record is finalized, no further changes allowed.

Trevor Brown A General Technique for Non-blocking Trees

Template

We give a template using LLX/SCX to make local changes to a
down-tree.

root

Any data structure based on a down-tree that follows our
template for all its updates is automatically linearizable and
non-blocking.

Trevor Brown A General Technique for Non-blocking Trees

Representing a Tree Using Data Records

@ Represent each node as a data record.
@ Child pointers are mutable fields.

@ Other data stored in a node is immutable.
(To change any of this data, a new copy of the node is
made.)

Trevor Brown A General Technique for Non-blocking Trees

Tree Update Template

@ read child pointers, from root to

rof’;? some node top
-

i

Trevor Brown A General Technique for Non-blocking Trees

Tree Update Template

@ read child pointers, from root to

root some node top
© LLX top and a contiguous set of its
descendants
top

Trevor Brown A General Technique for Non-blocking Trees

Tree Update Template

@ read child pointers, from root to

root some node top
© LLX top and a contiguous set of its
descendants
top © Select subgraph R to replace and

create replacement subgraph N

Trevor Brown A General Technique for Non-blocking Trees

Tree Update Template

@ read child pointers, from root to
some node top

© LLX top and a contiguous set of its
descendants

top © Select subgraph R to replace and
create replacement subgraph N
par © Use SCX to change child pointer of
par:
N e replaces Rby N

e and finalizes R
e only if LLXed nodes unchanged

root

Trevor Brown A General Technique for Non-blocking Trees

Tree Update Template

@ read child pointers, from root to
some node top

© LLX top and a contiguous set of its
descendants

top © Select subgraph R to replace and
create replacement subgraph N
par © Use SCX to change child pointer of
par:
N e replaces Rby N

e and finalizes R
e only if LLXed nodes unchanged

root

Requirements
@ Children of R = Children of /V

@ Must LLX par and all nodes in R

Trevor Brown A General Technique for Non-blocking Trees

Linearizing the Tree Updates

Linearization point of each update: its successful SCX.

Tree is the same as it would be if tree updates were done in
order by linearization points.

Trevor Brown A General Technique for Non-blocking Trees

Fast Queries

Some queries can be done quickly by reads only.

Example: SEARCH(k) in a BST

@ Just read sequence of pointers from root to leaf.
@ Ignore concurrent updates along the path

Leaf reached was on the search path to k at some time during
the SEARCH.
This is sufficient to linearize the SEARCH

Trevor Brown A General Technique for Non-blocking Trees

Non-blocking Balanced Trees

@ Braginsky and Petrank, SPAA 2012: B+tree.

@ Natarajan, Savoie and Mittal, SSS 2013: red-black tree
using wait-free tree framework.

Trevor Brown A General Technique for Non-blocking Trees

Red-Black Trees

@ Each node is red or black.

@ Root is black.

@ Leaves are black.

@ Red nodes have black parents.
°

Every root to leaf path contains the same number of black
nodes.

Trevor Brown A General Technique for Non-blocking Trees

Red-Black Trees

@ Each node is red or black.

@ Root is black.

@ Leaves are black.

@ Red nodes have black parents.
°

Every root to leaf path contains the same number of black
nodes.

Search, Insert, Delete take O(log n) steps.

Trevor Brown A General Technique for Non-blocking Trees

Red-Black Trees

@ Each node is red or black.

@ Root is black.

@ Leaves are black.

@ Red nodes have black parents.
°

Every root to leaf path contains the same number of black
nodes.

Search, Insert, Delete take O(log n) steps.

amortized O(1) rebalancing steps per update

Trevor Brown A General Technique for Non-blocking Trees

Concurrent Red-Black Trees

Each update and its necessary rebalancing steps must be
performed atomically.

@ Limits concurrency.

Trevor Brown A General Technique for Non-blocking Trees

Concurrent Red-Black Trees

Each update and its necessary rebalancing steps must be
performed atomically.

@ Limits concurrency.

Solution: decouple reblancing from updating, so they can be
interleaved.

Trevor Brown A General Technique for Non-blocking Trees

Chromatic Tree

Relaxed version of red-black tree designed for use with locks.
@ allow red node to have a red parent (red-red violation).

@ allow a black node to count more than others (overweight
violation).

@ a chromatic tree with no violations is a red-black tree.

Trevor Brown A General Technique for Non-blocking Trees

Chromatic Tree

Relaxed version of red-black tree designed for use with locks.
@ allow red node to have a red parent (red-red violation).

@ allow a black node to count more than others (overweight
violation).

@ a chromatic tree with no violations is a red-black tree.

@ rebalancing steps can be deferred and interleaved with
inserts and deletes.

Trevor Brown A General Technique for Non-blocking Trees

Chromatic Tree

Relaxed version of red-black tree designed for use with locks.

allow red node to have a red parent (red-red violation).

allow a black node to count more than others (overweight
violation).

a chromatic tree with no violations is a red-black tree.

rebalancing steps can be deferred and interleaved with
inserts and deletes.

amortized O(1) rebalancing steps per insert or delete.

Trevor Brown A General Technique for Non-blocking Trees

Chromatic Tree

Relaxed version of red-black tree designed for use with locks.
@ allow red node to have a red parent (red-red violation).

@ allow a black node to count more than others (overweight
violation).

@ a chromatic tree with no violations is a red-black tree.

@ rebalancing steps can be deferred and interleaved with
inserts and deletes.

@ amortized O(1) rebalancing steps per insert or delete.
@ 22 different rebalancing steps.

Trevor Brown A General Technique for Non-blocking Trees

Representing a Chromatic Tree

Leaf oriented: every value is stored in a leaf.
Internal nodes store keys that are only used to direct searches

towards a leaf.

Each node is represented by a data record.
@ immutable fields: key, weight, value
@ mutable fields: left, right

key

weight

left

right

key

weight

Internal node

Trevor Brown

value

Leaf

A General Technique for Non-blocking Trees

Search

Same as in a sequential binary search tree
Can completely ignore concurrent updates

Trevor Brown A General Technique for Non-blocking Trees

Insert(k,v)

repeat
Search for leaf uy where k should be inserted
If ux.key = k then return
try to apply INSERT using tree update template
if successful then
if a violation was created then Cleanup(k)

return
UE INSERT ¢
new Uy w-1

Uy
101

Trevor Brown A General Technique for Non-blocking Trees

Delete(k)

repeat
Search for leaf n, where k should be located
If no.key # k then return
try to apply DELETE using tree update template
if successful then
if a violation was created then Cleanup(k)

return
no DELETE nq
ny new ni.w+ng.w
%) ns
O/ 6 fo f1

fo f

Trevor Brown A General Technique for Non-blocking Trees

Cleanup(k)

repeat
Search for leaf with key k until a violation is found
If no violation found then return
Choose which rebalancing step to apply
Try to apply the rebalancing step using tree update template

INVARIANT: If a violation is on the search path for k before a
rebalancing step, then it is eliminated or it remains on this path.

When contention is ¢, chromatic tree has height O(c + log n).

Trevor Brown A General Technique for Non-blocking Trees

Applying a Rebalancing Step

no

ni

Trevor Brown A General Technique for Non-blocking Trees

Applying a Rebalancing Step

Apply RB2 to fix violation at C:
@ Read path from root to C

Trevor Brown A General Technique for Non-blocking Trees

Applying a Rebalancing Step

Apply RB2 to fix violation at C:
@ Read path from root to C
© LLXA DB, C

Trevor Brown A General Technique for Non-blocking Trees

Applying a Rebalancing Step

Apply RB2 to fix violation at C:
@ Read path from root to C
@ LLX A D,B,C

© Create new nodes B, C', D’
to replace R = (D, B, C)

Trevor Brown A General Technique for Non-blocking Trees

Applying a Rebalancing Step

Apply RB2 to fix violation at C:
@ Read path from root to C
@ LLX A D,B,C
© Create new nodes B',C', D

to replace R = (D, B, C)
Q SCX((A,D,B,C),(D,B,C),
A.right, B')
e changes A.rightto 5" and

o finalizes D, B, C
e onlyif A, D, B, C unchanged

N

Trevor Brown A General Technique for Non-blocking Trees

Using the Tree Update Template

Makes application of rebalancing steps easy:
@ atomically replace the left side with the right side
@ specific details of rebalancing steps are unimportant

Makes proofs of correctness and proofs of progress much
easier:

data structure correctness progress
unbalanced binary search tree 19 pages 4 pages
B+ Tree 27 pages 6 pages
chromatic tree 4 pages 1 page

Trevor Brown A General Technique for Non-blocking Trees

Improving Practical Performance

Count violations as you search for the leaf to update
After updating, invoke Cleanup if at least b violations seen

Tree has height O(c + b + log n)

Trevor Brown A General Technique for Non-blocking Trees

Other Non-blocking Balanced Trees

Relaxed balance data structures:

@ decouple rebalancing from other updates to the data
structure

@ allow updates to be interleaved arbitrarily

@ many relaxed balance versions of sequential data
structures exist in the literature

@ are well suited for non-blocking implementations using the
tree update template

Relaxed AVL tree: non-blocking implementation took a
first-year undergraduate student one week

Trevor Brown A General Technique for Non-blocking Trees

Experiments

Measured the throughput (number of operations/second) for
@ Chromatic tree
@ Chromatic tree allowing 5 violations (Chromatic 6)
@ Non-blocking multiway search tree (SkipTree)
@ Non-blocking skip list (SkipList)
@ lock-based AVL tree (AVL-B)
@ lock-based AVL tree with non-blocking search (AVL-D)
@ STM-based skiplist (SkipListSTM)
@ STM-based red-black tree (RBSTM)
@ lock-based red-black tree (RBGlobal)

Trevor Brown A General Technique for Non-blocking Trees

Experiments

50% INs, 50% DEL, 0% GET 20% 1INs, 10% DEL, 70% GET 0% INS, 0% DEL, 100% GET

10

key range [0,10°%)

< a0f
=
@
4
10
z
=
ol
10}
o
2 s
g
g
2
ol

LF Chromatic6 A= Chromatic -O- SkipTree
gy SkipList - AVL-D -B- AVL-B
-A- RBGlobal -0 SkipListSTM -x- RBSTM

Trevor Brown A General Technique for Non-blocking Trees

20% Ins, 10% Del, 70% Get, Key Range [0, 10%)

40

20

T Chromatic6 &~ Chromatic -~ SkipTree
- SkipList ~d- AVL-D -B- AVL-B
-A- RBGlobal - SkipListSTM -x- RBSTM

Trevor Brown A General Technique for Non-blocking Trees

How Performance Changes with Contention

key range [0,10°)

20

15

10

4 Chromatic6 & Chromatic O~ SkipTree
O SkipList ~d- AVL-D ~B- AVL-B
-A- RBGlobal - SkipListSTM -x- RBSTM

Trevor Brown A General Technique for Non-blocking Trees

How Performance Changes with Contention

key range [0,10°) key range [0,10?)

20

15

10

4 Chromatic6 & Chromatic O~ SkipTree
O SkipList ~d- AVL-D ~B- AVL-B
-A- RBGlobal - SkipListSTM -x- RBSTM

Trevor Brown A General Technique for Non-blocking Trees

Summary

@ Template for building non-blocking trees
vastly simplifies proof of correctness, proof of progress.

@ Very efficient, provably correct implementation of
non-blocking chromatic tree.

@ Searches are invisible, and extremely fast.

@ Cleanup algorithm allows tree invariants to be relaxed for
better concurrency without losing the height bound. (ldea
can be applied to many relaxed data structures.)

Future work:
@ Investigating HTM implementation of LLX/SCX

Trevor Brown A General Technique for Non-blocking Trees

