
A General Technique for Non-blocking
Trees

Trevor Brown, University of Toronto, Canada
Faith Ellen, University of Toronto, Canada

Eric Ruppert, York University, Canada

PPoPP 2014

Trevor Brown A General Technique for Non-blocking Trees



Problem

Balanced binary search trees (BSTs) are important, but there
has been little success implementing them without locks.

Coarse-grained transactions. Limited concurrency, high
abort rates, code needs fallback paths.
Single-word CAS. Extremely complex algorithms and
proofs or lack of rigorous proofs.
Multi-word compare-and-swap (CAS). Inefficiency.

Trevor Brown A General Technique for Non-blocking Trees



Previous Frameworks for Tree Updates

Tsay and Li (1994): wait-free trees using LL/SC.
Every update or search must copy an entire path from root
to leaf.

Natarajan et al. (2013): extends Tsay and Li’s framework.
Searches no longer copy nodes.
Updates can avoid copying some nodes in special cases.
Updates must “lock” each node on a root to leaf path with
CAS (similar to lock-coupling).

Trevor Brown A General Technique for Non-blocking Trees



Goals of This Work

Goal 1
A template for efficient non-blocking implementation of
down-trees that are:

Linearizable
Non-blocking
Relatively simple to prove correct, and
Allow disjoint updates to succeed concurrently.

Goal 2
A practical, provably correct, non-blocking balanced BST.

Trevor Brown A General Technique for Non-blocking Trees



LLX and SCX

The LLX and SCX primitives:
can be implemented from CAS, and
work on data records, which contain some mutable fields
and some immutable fields

LLX(r) returns a snapshot of the mutable fields of r

SCX(V, R, field, new) by process p
writes value new into field,
which is a mutable field of a data record in V
finalizes all data records in R
only if no record in V has changed since p’s LLX on it

After a data record is finalized, no further changes allowed.

Trevor Brown A General Technique for Non-blocking Trees



Template

We give a template using LLX/SCX to make local changes to a
down-tree.

root

Any data structure based on a down-tree that follows our
template for all its updates is automatically linearizable and
non-blocking.

Trevor Brown A General Technique for Non-blocking Trees



Representing a Tree Using Data Records

Represent each node as a data record.
Child pointers are mutable fields.
Other data stored in a node is immutable.
(To change any of this data, a new copy of the node is
made.)

Trevor Brown A General Technique for Non-blocking Trees



Tree Update Template

top

root
1 read child pointers, from root to

some node top
2 LLX top and a contiguous set of its

descendants
3 Select subgraph R to replace and

create replacement subgraph N
4 Use SCX to change child pointer of

par :
replaces R by N
and finalizes R
only if LLXed nodes unchanged

Requirements
Children of R = Children of N
Must LLX par and all nodes in R

Trevor Brown A General Technique for Non-blocking Trees



Tree Update Template

top

root
1 read child pointers, from root to

some node top
2 LLX top and a contiguous set of its

descendants
3 Select subgraph R to replace and

create replacement subgraph N
4 Use SCX to change child pointer of

par :
replaces R by N
and finalizes R
only if LLXed nodes unchanged

Requirements
Children of R = Children of N
Must LLX par and all nodes in R

Trevor Brown A General Technique for Non-blocking Trees



Tree Update Template

NR

top

root
1 read child pointers, from root to

some node top
2 LLX top and a contiguous set of its

descendants
3 Select subgraph R to replace and

create replacement subgraph N
4 Use SCX to change child pointer of

par :
replaces R by N
and finalizes R
only if LLXed nodes unchanged

Requirements
Children of R = Children of N
Must LLX par and all nodes in R

Trevor Brown A General Technique for Non-blocking Trees



Tree Update Template

par

NR

top

root
1 read child pointers, from root to

some node top
2 LLX top and a contiguous set of its

descendants
3 Select subgraph R to replace and

create replacement subgraph N
4 Use SCX to change child pointer of

par :
replaces R by N
and finalizes R
only if LLXed nodes unchanged

Requirements
Children of R = Children of N
Must LLX par and all nodes in R

Trevor Brown A General Technique for Non-blocking Trees



Tree Update Template

par

NR

top

root
1 read child pointers, from root to

some node top
2 LLX top and a contiguous set of its

descendants
3 Select subgraph R to replace and

create replacement subgraph N
4 Use SCX to change child pointer of

par :
replaces R by N
and finalizes R
only if LLXed nodes unchanged

Requirements
Children of R = Children of N
Must LLX par and all nodes in R

Trevor Brown A General Technique for Non-blocking Trees



Linearizing the Tree Updates

Linearization point of each update: its successful SCX.

Invariant
Tree is the same as it would be if tree updates were done in
order by linearization points.

Trevor Brown A General Technique for Non-blocking Trees



Fast Queries

Some queries can be done quickly by reads only.

Example: SEARCH(k ) in a BST
Just read sequence of pointers from root to leaf.
Ignore concurrent updates along the path

Leaf reached was on the search path to k at some time during
the SEARCH.
This is sufficient to linearize the SEARCH

Trevor Brown A General Technique for Non-blocking Trees



Non-blocking Balanced Trees

Braginsky and Petrank, SPAA 2012: B+tree.
Natarajan, Savoie and Mittal, SSS 2013: red-black tree
using wait-free tree framework.

Trevor Brown A General Technique for Non-blocking Trees



Red-Black Trees

Each node is red or black.
Root is black.
Leaves are black.
Red nodes have black parents.
Every root to leaf path contains the same number of black
nodes.

Search, Insert, Delete take O(log n) steps.

amortized O(1) rebalancing steps per update

Trevor Brown A General Technique for Non-blocking Trees



Red-Black Trees

Each node is red or black.
Root is black.
Leaves are black.
Red nodes have black parents.
Every root to leaf path contains the same number of black
nodes.

Search, Insert, Delete take O(log n) steps.

amortized O(1) rebalancing steps per update

Trevor Brown A General Technique for Non-blocking Trees



Red-Black Trees

Each node is red or black.
Root is black.
Leaves are black.
Red nodes have black parents.
Every root to leaf path contains the same number of black
nodes.

Search, Insert, Delete take O(log n) steps.

amortized O(1) rebalancing steps per update

Trevor Brown A General Technique for Non-blocking Trees



Concurrent Red-Black Trees

Each update and its necessary rebalancing steps must be
performed atomically.

Limits concurrency.

Solution: decouple reblancing from updating, so they can be
interleaved.

Trevor Brown A General Technique for Non-blocking Trees



Concurrent Red-Black Trees

Each update and its necessary rebalancing steps must be
performed atomically.

Limits concurrency.

Solution: decouple reblancing from updating, so they can be
interleaved.

Trevor Brown A General Technique for Non-blocking Trees



Chromatic Tree

Relaxed version of red-black tree designed for use with locks.
allow red node to have a red parent (red-red violation).
allow a black node to count more than others (overweight
violation).
a chromatic tree with no violations is a red-black tree.
rebalancing steps can be deferred and interleaved with
inserts and deletes.
amortized O(1) rebalancing steps per insert or delete.
22 different rebalancing steps.

Trevor Brown A General Technique for Non-blocking Trees



Chromatic Tree

Relaxed version of red-black tree designed for use with locks.
allow red node to have a red parent (red-red violation).
allow a black node to count more than others (overweight
violation).
a chromatic tree with no violations is a red-black tree.
rebalancing steps can be deferred and interleaved with
inserts and deletes.
amortized O(1) rebalancing steps per insert or delete.
22 different rebalancing steps.

Trevor Brown A General Technique for Non-blocking Trees



Chromatic Tree

Relaxed version of red-black tree designed for use with locks.
allow red node to have a red parent (red-red violation).
allow a black node to count more than others (overweight
violation).
a chromatic tree with no violations is a red-black tree.
rebalancing steps can be deferred and interleaved with
inserts and deletes.
amortized O(1) rebalancing steps per insert or delete.
22 different rebalancing steps.

Trevor Brown A General Technique for Non-blocking Trees



Chromatic Tree

Relaxed version of red-black tree designed for use with locks.
allow red node to have a red parent (red-red violation).
allow a black node to count more than others (overweight
violation).
a chromatic tree with no violations is a red-black tree.
rebalancing steps can be deferred and interleaved with
inserts and deletes.
amortized O(1) rebalancing steps per insert or delete.
22 different rebalancing steps.

Trevor Brown A General Technique for Non-blocking Trees



Representing a Chromatic Tree

Leaf oriented: every value is stored in a leaf.
Internal nodes store keys that are only used to direct searches
towards a leaf.

Each node is represented by a data record.
immutable fields: key, weight, value
mutable fields: left, right

key weight

left right

key weight

value

Internal node Leaf

Trevor Brown A General Technique for Non-blocking Trees



Search

Same as in a sequential binary search tree
Can completely ignore concurrent updates

Trevor Brown A General Technique for Non-blocking Trees



Insert(k,v)

repeat
Search for leaf ux where k should be inserted
If ux .key = k then return
try to apply INSERT using tree update template
if successful then

if a violation was created then Cleanup(k )
return

+

u u

ux

ux.w-1new

+ +11

Insert

Trevor Brown A General Technique for Non-blocking Trees



Delete(k )

repeat
Search for leaf n2 where k should be located
If n2.key 6= k then return
try to apply DELETE using tree update template
if successful then

if a violation was created then Cleanup(k )
return

+

n0
n0

n1 n1.w+n3.wnew

f1f0

f1f0
n3

Delete

n2

Trevor Brown A General Technique for Non-blocking Trees



Cleanup(k )

repeat
Search for leaf with key k until a violation is found
If no violation found then return
Choose which rebalancing step to apply
Try to apply the rebalancing step using tree update template

INVARIANT: If a violation is on the search path for k before a
rebalancing step, then it is eliminated or it remains on this path.

When contention is c, chromatic tree has height O(c + log n).

Trevor Brown A General Technique for Non-blocking Trees



Applying a Rebalancing Step

n0 n0

n1 >0

>0 00

n1.w

0

0

n′
3

n2

n3

RB2

n′
2 n′

1

Trevor Brown A General Technique for Non-blocking Trees



Applying a Rebalancing Step

>0

>00

0

A

C

B

D

E

root

Apply RB2 to fix violation at C:
1 Read path from root to C
2 LLX A,D,B,C
3 Create new nodes B′,C′,D′

to replace R = 〈D,B,C〉
4 SCX(〈A,D,B,C〉, 〈D,B,C〉,

A.right ,B′)
changes A.right to B′ and
finalizes D,B,C
only if A,D,B,C unchanged

Trevor Brown A General Technique for Non-blocking Trees



Applying a Rebalancing Step

>0

>00

0

A

B

D

E

root

C

Apply RB2 to fix violation at C:
1 Read path from root to C
2 LLX A,D,B,C
3 Create new nodes B′,C′,D′

to replace R = 〈D,B,C〉
4 SCX(〈A,D,B,C〉, 〈D,B,C〉,

A.right ,B′)
changes A.right to B′ and
finalizes D,B,C
only if A,D,B,C unchanged

Trevor Brown A General Technique for Non-blocking Trees



Applying a Rebalancing Step

>0

>00

0

A

B

D

E

root

C

R
C ′

B′

D′

N

0 0

D.w

Apply RB2 to fix violation at C:
1 Read path from root to C
2 LLX A,D,B,C
3 Create new nodes B′,C′,D′

to replace R = 〈D,B,C〉
4 SCX(〈A,D,B,C〉, 〈D,B,C〉,

A.right ,B′)
changes A.right to B′ and
finalizes D,B,C
only if A,D,B,C unchanged

Trevor Brown A General Technique for Non-blocking Trees



Applying a Rebalancing Step

>0

>00

0

A

B

D

E

root

C

R
C ′

B′

D′

N

0 0

D.w

Apply RB2 to fix violation at C:
1 Read path from root to C
2 LLX A,D,B,C
3 Create new nodes B′,C′,D′

to replace R = 〈D,B,C〉
4 SCX(〈A,D,B,C〉, 〈D,B,C〉,

A.right ,B′)
changes A.right to B′ and
finalizes D,B,C
only if A,D,B,C unchanged

Trevor Brown A General Technique for Non-blocking Trees



Using the Tree Update Template

Makes application of rebalancing steps easy:
atomically replace the left side with the right side
specific details of rebalancing steps are unimportant

Makes proofs of correctness and proofs of progress much
easier:

data structure correctness progress
unbalanced binary search tree 19 pages 4 pages
B+ Tree 27 pages 6 pages
chromatic tree 4 pages 1 page

Trevor Brown A General Technique for Non-blocking Trees



Improving Practical Performance

Count violations as you search for the leaf to update
After updating, invoke Cleanup if at least b violations seen

Tree has height O(c + b + log n)

Trevor Brown A General Technique for Non-blocking Trees



Other Non-blocking Balanced Trees

Relaxed balance data structures:
decouple rebalancing from other updates to the data
structure
allow updates to be interleaved arbitrarily
many relaxed balance versions of sequential data
structures exist in the literature
are well suited for non-blocking implementations using the
tree update template

Relaxed AVL tree: non-blocking implementation took a
first-year undergraduate student one week

Trevor Brown A General Technique for Non-blocking Trees



Experiments

Measured the throughput (number of operations/second) for
Chromatic tree
Chromatic tree allowing 5 violations (Chromatic 6)
Non-blocking multiway search tree (SkipTree)
Non-blocking skip list (SkipList)
lock-based AVL tree (AVL-B)
lock-based AVL tree with non-blocking search (AVL-D)
STM-based skiplist (SkipListSTM)
STM-based red-black tree (RBSTM)
lock-based red-black tree (RBGlobal)

Trevor Brown A General Technique for Non-blocking Trees



Experiments

Trevor Brown A General Technique for Non-blocking Trees



20% Ins, 10% Del, 70% Get, Key Range [0,104)

1 32 64 96 128

0

20

40

d

d

d
d

d

B

B

B B
B

k
e
y
ra

n
g
e
[0
,1
04
)

1

Trevor Brown A General Technique for Non-blocking Trees



How Performance Changes with Contention

Trevor Brown A General Technique for Non-blocking Trees



How Performance Changes with Contention

Trevor Brown A General Technique for Non-blocking Trees



Summary

Template for building non-blocking trees
vastly simplifies proof of correctness, proof of progress.
Very efficient, provably correct implementation of
non-blocking chromatic tree.
Searches are invisible, and extremely fast.
Cleanup algorithm allows tree invariants to be relaxed for
better concurrency without losing the height bound. (Idea
can be applied to many relaxed data structures.)

Future work:
Investigating HTM implementation of LLX/SCX

Trevor Brown A General Technique for Non-blocking Trees


