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ABSTRACT
Relaxed concurrent data structures have become increasingly popu-
lar, due to their scalability in graph processing andmachine learning
applications ([14, 24]).

Despite considerable interest, there exist families of natural, high
performing randomized relaxed concurrent data structures, such
as the popular MultiQueue [27] pattern for implementing relaxed
priority queue data structures, for which no guarantees are known
in the concurrent setting [4].

Our main contribution is in showing for the� rst time that, un-
der a set of analytic assumptions, a family of relaxed concurrent
data structures, including variants of MultiQueues, but also a new
approximate counting algorithm we call the MultiCounter, pro-
vides strong probabilistic guarantees on the degree of relaxation
with respect to the sequential speci�cation, in arbitrary concurrent
executions. We formalize these guarantees via a new correctness
condition called distributional linearizability, tailored to concurrent
implementations with randomized relaxations. Our result is based
on a new analysis of an asynchronous variant of the classic power-of-
two-choices load balancing algorithm, in which placement choices
can be based on inconsistent, outdated information (this result may
be of independent interest). We validate our results empirically,
showing that the MultiCounter algorithm can implement scalable
relaxed timestamps.
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1 INTRODUCTION
Consider a system of n threads, which share a set of m distinct
atomic counters. We wish to implement a scalable approximate
counter, which we will call a MultiCounter, by distributing the con-
tention among thesem distinct instances: to increment the global
counter, a thread selects two atomic counters i and j uniformly at
random, reads their values, and (atomically) increments by 1 the
value of the one which has lower value according to the values it
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read. To read the global counter, the thread returns the value of a
randomly chosen counter i , multiplied bym. 1

The astute reader will have noticed that this process is similar
to the classic two-choice load balancing process [7], in which a
sequence of balls are placed into m initially empty bins, and, in
each step, a new ball is placed into the less loaded of two randomly
chosen bins. Here, the individual atomic counters are the bins,
and each increment corresponds to a new ball being added. This
sequential load balancing process is extremely well studied! [23, 26]:
a series of deep technical results established that the di�erence
between the most loaded bin and the average is O (log logm) in
expectation [7, 23], and that this di�erence remains stable as the
process executes for increasingly many steps [10, 25]. We would
therefore expect the above relaxed concurrent counter to have
relatively low and stable skew among the outputs at consecutive
operations, and to scale well, as contention is distributed among
them counters.

However, there are several technical issues when attempting to
analyze this natural process in a concurrent setting.
• First, concurrency interacts with classic two-choice load bal-
ancing process in non-trivial ways. The key property of the
two-choice processwhich ensures good load balancing is that
trials are biased towards less loaded bins—equivalently, oper-
ations are biased towards incrementing counters of lesser
value. However, this property may break due to concurrency:
at the time of the update, a thread may end up updating the
counter of higher value among its two choices if the counter
of smaller value is updated concurrently since it was read
by the thread, thus surpassing the other counter.
• Second, perhaps suprisingly, it is currently unclear how to
even specify such a concurrent data structure. Despite a sig-
ni�cant amount of work on specifying deterministic relaxed
data structures [1, 15, 17] , none of the existing frameworks
cover relaxed randomized data structures.
• Finally, assuming such a data structure can be analyzed and
speci�ed, it is not clear whether it would be in anyway useful:
many existing applications are built around data structures
with deterministic guarantees, and it is not obvious how
scalable, relaxed data structures can be leveraged in standard
concurrent settings.

One may� nd it surprising that analysing such a relatively simple
concurrent process is so challenging. Beyond this speci�c instance,
these di�culties re�ect wider issues in this area: although these
constructs are reasonably popular in practice due to their good
scalability, e.g. [8, 24, 27, 31], their properties are non-trivial to pin

1This multiplication serves to maintain the same magnitude as the total number of
updates to the distributed counter up to a point in time.
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down [4], and it is as of yet unclear how they interact with the
higher-order algorithmic applications they are part of [20].
Contribution. In this work, we take a step towards addressing
these challenges. Speci�cally:

• We provide the� rst analysis of a two-choice load balancing
process in an asynchronous setting, where operationsmay be
interleaved, and the interleaving is decided by an adversary.
We show that the resulting process is robust to concurrency,
and continues to provide strong balancing guarantees in
potentially in�nite executions, as long as the ratio between
the number of bins and the number of threads is above a
large constant threshold.
• We introduce a new correctness condition for randomized
relaxed data structures, called distributional linearizability.
Intuitively, a concurrent data structure D is distributionally
linearizable to a sequential random process R, de�ned in terms
of a sequential speci�cation S , a cost function cost measur-
ing the deviation from the sequential speci�cation, and a
distribution P on the values of the cost function, if every ex-
ecution of D can be mapped onto an execution of the relaxed
sequential process R, respecting the outputs and the costs
incurred, as well as the order of non-overlapping operations.
• We prove that the randomized MultiCounter data structure
introduced above is distributionally linearizable to a (sequen-
tial) variant of the classic two-choice load balancing process.
This allows us to formally de�ne the properties of Multi-
Counters. Moreover, we show that this analytic framework
also covers variants of MultiQueues [27], a popular family of
concurrent data structures implementing relaxed concurrent
priority queues. This yields the� rst analytical guarantees
for MultiQueues in concurrent executions.
• We implement the MultiCounters, and show that they can
provide a highly scalable approximate timestamping mecha-
nism, with relatively low skew.

Techniques. Our main technical contribution is the concurrent
analysis of the classic two-choice load balancing process, in an
asynchronous setting, where the interleaving of low-level steps is
decided by an oblivious adversary. The core of our analysis builds
on the elegant potential method of Peres, Talwar and Wieder [25],
which we render robust to asynchronous updates based on po-
tentially stale information. To achieve this, we overcome two key
technical challenges. The� rst is that, given an operation op, as
more and more other operations execute between the point where
it reads and the point where it updates, the more stale its infor-
mation becomes, and so the probability that op makes the “right"
choice at the time of update, inserting into the less loaded of its
two random choices, decreases. Moreover, operations updating with
stale information will “stampede" towards lower-weight bins, ef-
fectively skewing the distribution. The second technical issue we
overcome is that long-running operations, which experience a lot
of concurrency, may in fact be adversarially biased towards the
wrong choice, inserting into the more loaded of its two choices
with non-trivial probability.

In brief, our analysis circumvents this issues by showing that a
variant of the two-choice process where up to a constant fraction of
updates are corrupted, in the sense that they perform the “wrong"

update, will still have similar balance properties as the original pro-
cess. It is interesting to note that even the order in which corrupted
updates occur can be controlled by the adversary through increased
concurrency, which is not the case in standard analyses [25]. The
critical property which we leverage in our analysis is that, while
individual operations can be arbitrarily contended (and therefore bi-
ased), there is a bound of n on the average contention per operation,
which in turn bounds the average amount of bias the adversary
can induce over a period of time. Our argument formalizes this
intuition, and phrases it in terms of the evolution of the potential
function.

We show that this result has implications beyond “paralleliz-
ing" the classic two-choice process, as we can leverage it to obtain
probabilistic bounds on the skew of the MultiCounter. Using the
framework of [4], which connected two-choice load balancing with
MultiQueue data structures in the sequential case, we can obtain
guarantees for this popular data structure pattern in concurrent
executions.

2 RELATEDWORK
Randomized Load Balancing. The classic two-choice balanced
allocation process was introduced in [7], where the authors show
that, under two-choice insertion, the most loaded amongm bins is at
most O (log logm) above the average, both in expectation and with
high probability. The literature studying analyses and extensions of
this process is extremely vast, hence we direct the reader to [23, 26]
for in-depth surveys of these techniques. Considerable e�ort has
been dedicated to understanding guarantees in the “heavily-loaded"
case, where the number of insertion steps is unbounded [10, 25],
and in the “weighted" case, in which ball weights come from a
probability distribution [11, 30]. A tour-de-force by Peres, Talwar,
and Wieder [25] gave a potential argument characterizing a gen-
eral form of the heavily-loaded, weighted process on graphs. Our
analysis starts from their framework, and modi�es it to analyze a
concurrent, adversarial process. One signi�cant change from their
analysis is that, due to the adversary, changes in the potential are
only partly stochastic: most steps might be slightly biased away
from the better of the two choices, while a subset of choices might
be almost deterministically biased towards the wrong choice. Fur-
ther, the adversary can decide the order in which these di�erent
steps, with di�erent biases, occur.

Lenzen and Wattenhofer [21] analyzed parallel balls-into-bins
processes, in whichm balls need to be distributed amongm bins, un-
der a communicationmodel between the balls and the bins, showing
that almost-perfect allocation can be achieved in O (log⇤m) rounds
of communication. This setting is quite di�erent from the one we
consider here. Similar delayed information models, where outdated
information is given to the insertion process were considered by
Mitzenmacher [22] and by Berenbrink, Czumaj, Englert, Fridet-
zky, and Nagel [9]. The former reference proposes a bulletin board
model with periodic updates, in which information about the load
of the model is updated only periodically (every T seconds), and
various allocation mechanisms. The author provides an analysis of
this process in the asymptotic case (asm ! 1), supported by sim-
ulations. The latter reference [9] considers a similar model where
balls arrive in batches, and must perform allocations collectively
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based solely on the information available at the beginning of the
batch, without additional communication. The authors prove that
the greedy multiple-choice process preserves its strong load bal-
ancing properties in this setting: in particular, the gap between
min and max remains O (logm). The key di�erence between these
models and the one we consider is that our model is completely
asynchronous, and in fact the interleavings are chosen adversarially.
The technique we employ is fundamentally di�erent from those
of [9, 22]. In particular, we believe our techniques could be adapted
to re-derive the main result of [9], albeit with worse constants.

Recent work by a subset of the authors [4] analyzed the follow-
ing producer-consumer process: a set of balls labelled 1, 2, . . . ,b are
inserted sequentially at random intom bins; in parallel, balls are
removed from the bins by always picking the lower labelled (higher
priority) of two uniform random choices.2 This process sequen-
tially models a series of popular implementations of concurrent
priority queue data structures, e.g. [16, 27]. This process provides
the following guarantees: in each step t , the expected rank of the
label removed among labels still present in the system is O (m),
and O (m logm) with high probability inm. That is, this sequential
process provides a structured probabilistic relaxation of a standard
priority queue.
Relaxed Data Structures. The process considered in [4] is se-
quential, whereas the data structures implemented are concurrent.
Thus, there was a signi�cant gap between the theoretical guaran-
tees and the practical implementation. Our current work extends
to concurrent data structures, closing this gap. Under the oblivious
adversary assumption and given our parametrization, we show
for the� rst time that practical data structures such as [4, 16, 27]
provide guarantees in real executions.

Designing e�cient concurrent/parallel data structures with re-
laxed semantics was initiated by Karp and Zhang [19], with other
signi�cant early work by Deo and Prasad [12] and Sanders [28]. It
has recently become an extremely active research area, see e.g. [4,
5, 8, 16, 24, 27, 29, 31] for recent examples. To the best of our knowl-
edge, ours is the� rst analysis of randomized relaxed concurrent
data structures which works under arbitrary oblivious schedulers:
previous analyses such as [4, 5, 27] required strong assumptions
on the set of allowable interleavings. Dice et al. [13] considered
randomized data structures for scalable exact and approximate
counting. They consider the e�cient parallelization of sequential
approximate counting methods, and therefore have a signi�cantly
di�erent focus than our work.

3 SYSTEM MODEL
Asynchronous Shared Memory. We consider a standard asyn-
chronous shared-memory model, e.g. [6], in whichn threads (or pro-
cesses) P1, . . . , Pn , communicate through shared memory, on which
they perform atomic operations such as read,write, compare-and-swap
and fetch-and-increment. The fetch-and-increment operation takes
no arguments, and returns the value of the register before the in-
crement was performed, incrementing its value by 1.
The Oblivious Adversarial Scheduler. Threads follow an algo-
rithm, composed of shared-memory steps and local computation,

2Balls in each bin are sorted in increasing order of label, i.e. each bin corresponds to a
sequential priority queue.

including random coin� ips. The order of process steps is controlled
by an adversarial entity we call the scheduler. Time t is measured
in terms of the number of shared-memory steps scheduled by the
adversary. The adversary may choose to crash a set of at most n � 1
processes by not scheduling them for the rest of the execution. A
process that is not crashed at a certain step is correct, and if it never
crashes then it takes an in�nite number of steps in the execution. In
the following, we assume a standard oblivious adversarial scheduler,
which decides on the interleaving of thread steps independently of
the coin� ips they produce during the execution.
Shared Objects. The algorithms we consider are implementations
of shared objects. A shared object O is an abstraction providing a
set of methods, each given by a sequential speci�cation. In partic-
ular, an implementation of a methodM for an object O is a set of
n algorithms, one for each executing process. When thread Pi in-
vokes methodM of objectO , it follows the corresponding algorithm
until it receives a response from the algorithm. Upon receiving the
response, the process is immediately assigned another method in-
vocation. In the following, we do not distinguish between a method
M and its implementation. A method invocation is pending at some
point in the execution if has been initiated but has not yet received
a response. A pending method invocation is active if it is made
by a correct process (note that the process may still crash in the
future). For example, a concurrent counter could implement read
and increment methods, with the same semantics as those of the
sequential data structure.
Linearizability. The standard correctness condition for concur-
rent implementations is linearizability [18]: roughly, a linearizable
implementation ensures that each concurrent operation can be seen
as executing at a single instant in time, called its linearization point.
The mapping from method calls to linearization points induces a
global order on the method calls, which is guaranteed to be con-
sistent to a sequential execution in terms of the method outputs;
moreover, each linearization point must occur between the start
and end time of the corresponding method.

Recent work, e.g. [17], considers deterministic relaxed variants
of linearizability, in which operations are allowed to deviate from
the sequential speci�cation by a relaxation factor. Such relaxations
appear to be necessary in the case of data structures such as exact
counters or priority queues in order to circumvent strong linear
lower bounds on their concurrent complexity [2]. While specifying
such data structures in the concurrent case is well-studied [1, 15,
17], less is known about how to specify structured randomized
relaxations.
With High Probability. We say that an event occurs with high
probability in a parameter, e.g.m, if it occurs with probability at
least 1 � 1/mc , for some constant c � 1.

4 THE MULTICOUNTER ALGORITHM
Description. The algorithm implements an approximate counter
by distributing updates amongm distinct counters, each of which
supports atomic read and increment operations. Please see Algo-
rithm 1 for pseudocode. To read the counter value, a thread simply
picks one of them counters uniformly at random, and returns its
value multiplied bym. To increment the counter value, the thread
picks two counter indices i and j uniformly at random, and reads
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their current values sequentially. It then proceeds to update (in-
crement) the value of the counter which appeared to have a lower
value given its two reads. (In case of a tie, or when the two choices
are identical, the tie is broken arbitrarily.)

Algorithm 1 Pseudocode for the MultiCounter Algorithm.
Shared: Counters[m] // Array of integers representing set of m
distinct counters
function Read()
i  random(1,m)
returnm · Counters[i].read()

function Increment()
i  random(1,m)
j  random(1,m)
�i  Counters[i].read()
�j  Counters[j].read()
Counters[argmin(�i ,�j )].increment()

Relation to Load Balancing. A sequential version of the above
process, in which the counter is read or incremented atomically, is
identical to the classic two-choice balanced allocation process [7],
where each counter corresponds to a bin, and each increment cor-
responds to a new ball being inserted into the less loaded of two
randomly chosen bins.

In a concurrent setting, the critical departure from the sequential
model is that the values read can be inconsistent with respect to a
sequential execution: there may be no single point in time when
the two counters had the values �i and �j observed by the thread;
moreover, these values may change between the point where they
are read, and the point where the update is performed.

More technically, the sequential variant of the two-choice pro-
cess has the crucial property that, at each increment step, it is
“biased" towards incrementing the counter of lower value. This does
not necessarily hold for the concurrent approximate counter: for an
operation where a large number of updates occur between the read
and the update points, the read information is stale, and therefore
the thread’s increment choice may be no better than a perfectly
random one; in fact, as we shall see in the analysis, it is actually
possible for an adversary to engineer cases where the algorithm’s
choice is biased towards incrementing the counter of higher value.

5 DISTRIBUTIONAL LINEARIZABILITY
We generalize the classic linearizability correctness condition to
cover randomized relaxed concurrent data structures, such as the
MultiCounter. Intuitively, we will say that a concurrent data struc-
ture D is distributionally linearizable to a corresponding relaxed
sequential process R, de�ned in terms of a sequential speci�cation
S , a cost function cost measuring the deviation from the sequential
speci�cation, and a distribution P on the cost function values, such
that every execution of D can be mapped onto an execution of
the relaxed sequential process R, respecting the outputs and the
incurred costs, as well as the order of non-overlapping operations.
To formalize this de�nition, we introduce the following machinery,
part of which is adopted from [17].

Data Structures and Labeled Transition Systems. Let � be a set
of methods including input and output values. A sequential history
s is a sequence over �, i.e. an element in �⇤. A (sequential) data
structure is a sequential speci�cation S which is a pre�x-closed set
of sequential histories. For example, the sequential speci�cation of
a stack consists of all valid sequences for a stack, i.e. in which every
push places elements on top of the stack, and every pop removes
elements from the top of the stack.

Given a sequential speci�cation S , two sequential histories s, t 2
S are equivalent, written s ' t , if they correspond to the same
“state:" formally, for any sequence u 2 �⇤, su 2 S i� tu 2 S . Let [s]S
be the equivalence class of s 2 S .

D���������5.1. Let S be a sequential speci�cation. Its correspond-
ing labeled transition sequence (LTS) is an object LTS (S ) = (Q, �,!
,q0), with states Q = {[s]S |s 2 S }, set of labels �, transition relation
!✓ Q ⇥�⇥Q given by [s]S !m [sm]S i� sm 2 S, and initial state
q0 = [�]S .

Notice that the sequential speci�cation S can be alternatively
de�ned as the set of all traces of the initial state of LTS (S ): formally,
for any u 2 �⇤, we have u 2 S i� q0 !u .
Randomized Quantitative Relaxations. Let S 2 �⇤ be a data
structure with LTS (S ) = (Q, �,!,q0). To obtain a randomized
quantitative relaxation of S , we apply the following four steps. The
�rst three steps are identical to deterministic quantitative relax-
ations [17], whereas the fourth de�nes the probability distribution
on costs:

(1) Completion: We start from LTS (S ), and construct a com-
pleted labeled transition system, with transitions from any
state to any other state by any method:

LTSc (S ) = (Q, �,Q ⇥ � ⇥Q,q0).
(2) Cost function:We add a cost function cost : Q⇥�⇥Q ! R

to the LTS. The transition cost will satisfy

cost (q,m,q0) = 0 if and only if q !m q0 in LTS (S ).

A quantitative path is a sequence

� = q1 !m1,k1 q2 !m2,k2 . . . !mn,kn qn+1.

We call the sequence � = (m1,k1), . . . , (mn ,kn ) of transi-
tions and costs the quantitative trace of �, denoted by qtr (�).

(3) Path cost function: Given a quantitative path �, its path
cost is de�ned as pcost : qtr (S ) ! C . Path costs are mono-
tone with respect to pre�x order: if � is a pre�x of � 0, then
pcost (� )  pcost (� 0).

(4) Probability distribution: Given an arbitrary state [s] in
LTS (S ), we de�ne a probability space (�,F ,P) on the set of
possible transitions and their corresponding costs from this
state, where the sample space � is the set of all transitions in
Q ⇥ �⇥Q , the � -algebra F is de�ned in the straightforward
way based on the set of elementary events �, and P is a
probability measure P : F ! [0, 1].
Importantly, this allows us to de�ne, for any path, the notion
of probability for costs incurred at each step. This probability
space is readily extended for arbitrary� nite paths, where we
assume that the cost probabilities at each step are indepen-
dent of previous steps, i.e., historyless. This process induces
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a Markov chain, whose state at each step is given by the
state [s] of the corresponding LTS, and whose transitions
are LTS transitions, with costs and probabilities as above.

Distributional Linearizability.With this in place, we now de�ne
distributionally linearizable data structures:

D���������5.2. Let D be a randomized concurrent data structure,
and let R be a randomized quantitative relaxation R of a sequential
speci�cation S with respect to a cost function cost, and a probability
distribution P on costs. We say that D is distributionally linearizable
to R i� for every concurrent schedule � , there exists a mapping of com-
pleted operations in D under � to transitions in the quantitative path
of R, preserving outputs, and respecting the order of non-overlapping
operations. This mapping can be used to associate any schedule � to
a distribution of costs for D under the schedule � .

We now make a few important remarks on this de�nition.
(1) The main di�culty when formally de�ning the “costs" in-

curred by D in a concurrent execution is in dealing with the
execution history, and with the impact of pending operations
on these costs. The above de�nition allows us to de�ne costs,
given a schedule, only in terms of the sequential process R,
and bounds the incurred costs in terms of the probability
distribution de�ned in R. This de�nition ensures that the
probability distribution on costs incurred at each step only
depends on the current state of the sequential process.

(2) The second key question is how to use this de�nition. One
subtle aspect of this de�nition is that the mapping to the
sequential randomized quantitative relaxation is done per
schedule: intuitively, this is because an adversary might
change the schedule, and cause the distribution of costs
of the data structure to change. Thus, it is often di�cult to
specify a precise cost distribution, which covers all possible
schedules. However, for the data structures we analyze, we
will be able to provide tail bounds on the cost distributions
induced by all possible schedules.

The natural next question, which we answer in the following
section, is whether non-trivial such data structures exist and can
be analyzed.

6 ANALYSIS OF THE MULTICOUNTER
We will focus on proving the following result.

T������6.1. Fix a large constantC . Given an oblivious adversary,
m distributed counters and n threads withm � 8Cn, for any� xed
schedule, the MultiCounter algorithm is distributionally linearizable
to a randomized relaxed sequential counter process, which, at any
step t , returns a value that is at most O (m logm) away from the
number of increments applied up to t , both in expectation and with
high probability inm.

We emphasize that the relaxation guarantees are independent of
the time t at which the guarantee is examined, and that they would
thus hold in in�nite executions.

6.1 Modeling the Concurrent Process
In the following, we will focus on analyzing executions formed
exclusively of increment operations, whose lower-level steps may

be interleaved. (Adding read operations at any point during the
execution will be immediate.) We model the process as follows.
First, we assume a schedule that is� xed by the adversary. For each
thread Pj , and non-negative integers j, we consider a sequence
of increment operations (op(j )i ), each of which is de�ned by its
starting time s (j )i , corresponding to the time when its� rst read step
was scheduled, and completion time f (j )i , corresponding to the time
when its update time is scheduled, such that s (j )i+1 > f

(j )
i for all i, j.

(Recall that the scheduler de�nes a global order on individual steps.)
At most n operations may be active at a given time, corresponding
to the fact that we only have n parallel threads.

For each operation opi , we record its contention `i as the number
of distinct increment operations scheduled between its start and
end time. (Alternatively, we could de�ne this quantity as the number
of operations which complete in the time interval (si , fi ).) Note
that at most n � 1 distinct operations can be concurrent with opi
at any given time, but the contention for a speci�c operation is
potentially unbounded.

We can rephrase the original process as follows. For each oper-
ation opi , the adversary sets the time when it performs the�rst
and its second read of counter values / bin weights, as well as its
contention `i , by scheduling other operations concurrently. The
only constraint on the adversary is that not more than n operations
can be active at the same time.

Since the adversary is oblivious, we notice that the update pro-
cess is equivalent to the following: at the time when the update
is scheduled, the thread executing the operation generates two
uniform random indices i and j, and is given values �i and �j for
the two corresponding counters / bin weights, read at previous
(possibly di�erent) points in time. We will stick to the bin weight
formulation from now on, with the understanding that the two are
equivalent.

The thread will then increment the weight of the bin with the
smaller value read (among �i and �j ) by 1. This formulation has
the slight advantage that it makes the update process sequential, by
moving the random choices to the time when the update is made,
using the principle of deferred decisions. Critically, the bin weights
on which the update decision is based are potentially stale. We will
focus on this simpli�ed variant of the process in the following.
Discussion. The key di�erence between the above process and the
classic power-of-two-choices process is the fact that the choice of
bin / counter which the thread updates is based on stale, poten-
tially invalid information. Recall that key to the strong balancing
properties of the classic process is the fact that it is biased towards
inserting in less loaded bins; the process which inserts into ran-
domly chosen bins is known to diverge [25]. In particular, notice it
is possible that, by the time when the thread performs the update,
the order of the bins’ load may have changed, i.e. the thread in fact
inserts into the more loaded bin among its two choices at the time
of the update.

Since the oblivious adversary decides its schedule independently
of the threads’ random choices, it cannot deterministically cause a
speci�c update to insert into the more loaded bin. However, it can
signi�cantly bias an update towards inserting into the more loaded
bin:
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Assume for example an execution su�x where all n threads read
concurrently at some time tR3 and then proceed to perform updates,
one after another. Pick an operation op for which the gap between
the two values read �i and �j (at the time of the read) is 1, say
�i = �j + 1. So op will increment �j . At the same time, notice that
all the other operations which read concurrently with op are biased
towards inserting in �j rather than �i , since its rank (in increasing
order of weight) is lower than that of bin i . Hence, as the adversary
schedules more and more operations between tR at op’s update
time, it is increasingly likely to invert the relation between i and j
by the time of op’s update, causing it to insert into the “wrong" bin.

The previous example suggests that the adversary is able to bias
some subset of the operations towards picking the wrong bin at
the time of the update. Another issue is that operations which
experience high contention, for which there are many updates
between the read point and the update point, the read values�i and
�j become meaningless: for example, if the weights of bin i and j
become equal at some time t0 between tR and op’s update, then from
this point in time these two bins appear completely symmetrical to
the algorithm, and op’s choice given the information that �i > �j
at tR may be no better than uniform random.

One issue which further complicates this last example is that,
at t0, there may be a non-zero number of other operations which
already made their reads (for instance, at tR ), but have not updated
yet. Since these operations read at a point where �i > �j , they are
in fact biased towards inserting in �j . So, looking at the event that
op updates the less loaded of its two random choices at update time,
we notice that its probability in this example is strictly worse than
uniform random choice.

We summarize this somewhat lengthy discussionwith two points,
which will be useful in our analysis:

(1) As they experience concurrent updates, operations may ac-
crue bias towards inserting into the more loaded of their two
random choices.

(2) Long-running operations may in fact have a higher prob-
ability of inserting into the more loaded bin than into the
less loaded one, i.e. may become biased towards making the
“wrong" choice at the time of the update.

6.2 Notation and Background
The (1 + � ) Process. In the following, it will be useful to consider
the following sequential relaxation of the two-choice process, in-
troduced by [25], called the (1 + � )-choice process: We are given
m bins, initially empty. In each step t , we� ip a biased coin: with
probability � > 0 we will insert a ball into the less loaded of two
randomly chosen bins; otherwise, we insert the ball into a randomly
chosen bin. This process is analyzed in [25], which shows that, at
any time t in its execution, the gap between the maximum and
minimum value of a bin is O (logm/� ), with high probability inm,
irrespective of t .

We now introduce some notation, which will be common be-
tween our analysis and that of [25]. For simplicity, we will assume
that, at the beginning of each step in this sequential process, bins

3Technically, since we count time in terms of shared-memory operations, these reads
occur at consecutive times after tR . However, all their read values are identical to the
read value at tR , and hence we choose to simplify notation in this way.

are always ranked in increasing order of their weight. If pi is the
probability that we pick the ith ranked bin for insertion, and � is
the two-choice probability, then it is easy to see that the (1 + � )
process guarantees

pi = (1 � � )
1
m
+ �

 2
m

✓
1 � i � 1

m

◆
� 1
m2

�
.

Further, notice that, for any 1  k  m, we have, ignoring the
negligible O (1/m2) factor, that

kX

i=1
pi '

k

m

 
1 + � � k

m
�

!
.

For any bin j and time t , let x j (t ) be the weight of bin j at time t .
Let µ (t ) =

Pm
j=1 x j (t )/m be the average weight at time t over the

bins. Let �i (t ) = xi (t ) � µ (t ), and let � < 1 be a parameter to be
�xed later. De�ne

�(t ) =
nX

j=1
exp (��i (t )) , and�(t ) =

nX

j=1
exp (���i (t )) .

Finally, de�ne the potential function

�(t ) = �(t ) + �(t ).

The main technical result of [25] can be phrased as:

T������6.2. Let � , � be parameters as given above, and let
� =

�
16 . Then there exists a constant C (� ) = poly( 1� ) such that, for

any time t � 0, we have E[�(t )]  C (� )m.

In turn, this implies that the maximum gap between the most
loaded and the least loaded bin at a step is O (logm) in expectation
and with high probability inm.

6.3 Main Argument
Analysis Overview. Throughout the analysis, we will� x a large
constantC such thatm � 8Cn. The analysis proceeds in the follow-
ing technical steps.
• We de�ne an operation opt as good (� ) for � > 0 if, with
probability at least 1/2+� , the bin opt adds to is not accessed
by another operation at any point during the execution of
opt . We will identify a constant� > 0 such that all operations
with contention  Cn are good (� ).
• We lower bound the expected decrease in potential caused
by a step that is good (� ).
• We upper bound the expected increase in potential caused
by a step that is not good (� ).
• We argue that, for any adversarial strategy, out of any group
of Cn consecutive operations, at least (C � 1)n have to be
good (� ). We then upper bound the change in potential over
any stretch of Cn operations, showing that it has to stay in
O (m).

We will prove the following simple claim as starting point for the
analysis:

L����6.3. If for opt we have that its contention `t  Cn, then
the step (operation) t is �ood ( 15 ).
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P����. Let i and j be two random bins chosen by opt , w.l.o.g we
assume that i is chosen to add to by opt . Considering that `t  Cn
and for any operation, the probability of accessing bin i is at most
2
m , we get:

Pr [bin i untouched] �
✓
1 � 2

m

◆Cn
� 2�

1
2 � 7

10
.

where we used inequalities 1 � x
2 � 2�x andm � 8Cn. ⇤

Next we try to bound the expected decrease in potential if operation
t is �ood (� ).

L����6.4. If opt is �ood (� ), then :

E[�(t + 1) |� (t )]  �(t )
✓
1 � ��

4m

◆
+ c,

for � = �/6 and c = c (� ) = pol� (1/� ).
(1)

P����. First notice that if opt chooses to delete from bin i after
looking at bins i, j and bin i is not accessed by any other operation
during execution of opt , then bin i must have been less loaded than
bin j for the entire interval between the second read of opt and the
write of opt .

Now, we will use Theorem 3.1 from [25], stated below. Assume
that we are given a weight vector � (t ), in increasing order of
weight, and two probability vectors p = (p1,p2, ...,pm ) and q =
(q1,q2, ..,qm ), where we assume that probability vectors are sorted
in decreasing order. We say that p majorizes q if for any 1  k  m:

kX

i=1
pi �

kX

i=1
qi

Let E[�p (t + 1) |� (t )] be expected potential function if we choose
bin according to probability vector p (that is, i-th less loaded bin
is chosen with probability pi ) and let E[�q (t + 1) |� (t )] be expected
potential function if we choose bin according to probability vector q
(that is, the i-th least loaded bin is chosen with probability qi ). Then
Theorem 3.1 from [25] implies that E[�p (t + 1) |� (t )]  E[�q (t +
1) |� (t )], because probability vector p is more biased towards lesser
loaded bins than probability vector q.

What we need to show is that probability vector of opt which is
�ood (� ) majorizes the probability vector of 1+ � choice process for
some � = 2� . That is, for any 1  k :

kX

i=1
pi �

kX

i=1
qi .

We do exactly that in the following. Let q be the probability
vector for the bin choice of the fully sequential process. As we
know, for any 1  i  m, qi = �

2(m�i )+1
m2 +

1��
m . Recall that if bin i

is not accessed by another operation during the execution of opt ,
then opt must add to the bin which is the lesser loaded at the time
of writing. Thus, if � � 1/2+� is the probability that opt adds to the
lesser loaded bin, we have that pi = �

2(m�i )
m2 + 1

m2 + (1 � �) 2(i�1)m2 .

Then:

kX

i=1
pi =

kX

i=1

✓
�
2(m � i )

m2 +
1
m2 + (1 � �) 2(i � 1)

m2

◆

= �
2mk � k (k + 1)

m2 +
k

m2 + (1 � �)k (k � 1)
m2

= �
2mk � 2k2

m2 +
k2

m2 = 2�
mk � k2

m2 +
k2

m2 .

On the other hand:

kX

i=1
qi =

kX

i=1

✓ 1 � �

m
+ �

2(m � i ) + 1
m2

◆

=
k

m
+ �

mk � k2
m2 = �

mk � k2
m2 +

mk � k2
m2 +

k2

m2

= (1 + � )
mk � k2

m2 +
k2

m2 .

From the equations above, it is easy to see that for any k and � = 2� :

kX

i=1
pi �

kX

i=1
qi .

Theorem 2.9 from [25] gives us that :

E[�q (t + 1) |� (t )]  �(t )
✓
1 � ��

4m

◆
+ c,

for � = �/12 = �/6 and c = c (� ) = pol� (1/� ).
(2)

The fact that E[�(t + 1) |�t ] = E[�p (t + 1) |� (t )]  E[�q (t + 1) |� (t )]
gives us the lemma. ⇤

If opt inserts into the lesser loaded bin with probability at most 1
2 ,

we assume the worst scenario. That is, we assume that opt always
inserts into the more loaded bin and we try to bound the expected
potential increase for that case. For this, again let us assume that the
weight vector � (t ) is ordered such that �1 (t )  �2 (t )  ...  �m (t )
and let pi , 1  i  m be a probability that bin i is chosen. In this
case, pi = 2i�1

m2 .
We now� x some constants: let � = 1 and S = 1, so that for

every z < �/2 we have ez < 2S . Also, to be consistent with the
above lemma we�x � = �/12 = �/6. At this point, we also�x
� = min( �2 ,

�
6S ). This allows us to prove the following lemma:

L����6.5. If opt is a bad operation, then:

E[�(t + 1) |� (t )]  *
,1 +

2
m

✓
� +

�

6

◆+
-�(t ). (3)

P����. First, we consider what is expected change in �. Let
�i (t ) = exp (��i (t )). We have two cases here. If bin i is chosen,

Session 3  SPAA’18, July 16-18, 2018, Vienna, Austria

139



then the change is:
��i = �i (t + 1) � �i (t ) =

= exp *,�
✓
�i (t ) + (1 � 1

m
)
◆+
- � exp

✓
��i (t ))

◆

= exp
✓
��i (t ))

◆*
, exp

✓
� (1 � 1

m
)
◆
� 1+-

⇤
= exp

✓
��i (t ))

◆*
,1 + � (1 �

1
m
) + e�

✓
� (1 � 1

m
)
◆2
/2 � 1+-

 exp
✓
��i (t ))

◆ ✓
� (1 � 1

m
) + S�2

◆
.

(4)

where in (⇤) we used the Taylor expansion of the exponential
around 0 and the fact that since � 2 [0,� (1 � 1

m )], we have that
e� < 2. Using similar arguments we can prove that, when some
other bin j , i is chosen:

��i  e��i (t )
✓
� �

m
+ S

�2

m2

◆
. (5)

Therefore, we get that:

E

��i |� (t )

�
= pi

✓
� (1 � 1

m
) + S�2

◆
e��i (t )

+ (1 � pi )
✓
� �

m
+ S

�2

m2

◆
e��i (t )

 e��i (t )*,pi
✓
� + S�2

◆
� �

m
+ S (

�

m
)2+-

 e��i (t )*,pi
✓
� + S�2

◆+
-  e��i

2
m

✓
� +

�

6

◆
,

(6)

where we used that pi  2
m and S�  �

6 . This gives us that:

E[��|� (t )] =
mX

i=1
E[��i |� (t )] 

2
m

✓
� +

�

6

◆
�(t ). (7)

In a similar way, we can prove that:

E[��|� (t )] 
mX

i=1

*
,pi

✓
� � + S�2

◆
+

✓ �
m
+ S

�2

m2

◆+
-e
���i . (8)

Since �S  1, we get that E[��|� (t )]  2
m��(t ). Combining this

with inequality 7 gives us the Lemma. ⇤

Now we considerCn consecutive operations and prove that at most
n of them can be bad:

L����6.6. For any t , we have that:
|t 0 : t  t 0  t +Cn � 1, `t 0 > Cn | < n.

P����. We argue by contradiction. Let us assume that the num-
ber of bad operations is at least n. By the pigeonhole principle, there
exist bad operations opi and opj , t  i < j  t +Cn � 1, which are
performed by the same thread. This means that since these opera-
tions are not concurrent, we have that sj > fi = i . Thus, we get a
contradiction: Cn  `j = |t 0 : sj  t 0 < fj = j |  j � i < Cn. ⇤

Endgame.With all this machinery in place, we proceed to prove
the following.

L����6.7. Given any time t , we have

E[�(t )]  e2
8c
��

m.

P����. We will proceed by induction on t . We will� rst prove
that, if �(t )  e 8c

�� , then E[�(t +Cn) |�(t )]  e 8c
�� .

We have two cases. The� rst is if there exists a time � 2 [t , t +
Cn] such that �(� )  7c

��m. Let us now focus on bounding the
maximum expected value of �(t + 3n) in this case. First notice that
the maximum expected increase of � because of a good step is
an additive c factor. The expected value of � after a bad step is
upper bounded a multiplicative (1 + 2

m (� + �
6 )) factor. Hence, by

Lemma 6.6 and using the fact that C � 3, the expected maximum
value of � at t +Cn is at most

✓ 7c
��

m + c (C � 1)n
◆ ✓

1 +
2
m

✓
� +

�

6

◆◆n
 e

8c
��

m.

The second case is if there exists no such time in [t , t + Cn],
meaning that �(� ) > 7c

��m,8� 2 [t , t +Cn]. Then, by Lemma 6.4,
we have that, at each good step,

E[�(t + 1) |� (t )]  �(t )
✓
1 � ��

12m

◆
. (9)

Hence, we can expand the recursion to upper bound the change in
� between t and t +Cn as

E[�(t +Cn) |� (t )]  �(t )
✓
1� ��

12m

◆ (C�1)n ✓
1+

2
m

✓
� +

�

6

◆◆n
. (10)

This last expression is upper bounded by �(t ) ifC � 1+36/� , which
concludes the proof of our� rst claim above. Hence, at the end of
each interval of Cn additional operations, the expected potential
cannot exceed e 8c

�� . To complete the proof, we notice that the value
that � attains inside the interval of sizeCn occurs ifn bad steps occur
in succession immediately after its start. However, the maximum
value that � can attain is upper bounded as

E[�(t + n) |� (t )]  �(t )
✓
1 +

2
m

✓
� +

�

6

◆◆n
 e2

8c
��

m. (11)

This concludes the proof of the Lemma. ⇤

The Constant C. A su�cient setting for C for the analysis to hold
is C � 1024, yieldingm � 8192n.
The following claim completes the proof of Theorem 6.1.

L����6.8. Fix a large constant C . Given an oblivious adversary,
m distributed counters and n threads withm � 8Cn, for any time t
in the execution of the approximate counter algorithm the counter
returns a value that is at most O (m logm) away from the number of
increment operations which completed up to time t , in expectation.
Moreover, for any t and all R su�ciently large, we have

Pr
f
9j : ���m · x j (t ) �m · µ j (t )��� > Rm logm

g
 m��(R ) .

P����. The proof is similar to [25] (the main di�culty was to
reach asymptotically the same potential upper bound). We aim to
bound Gap(t ), the maximum gap between the weight of two bins
at a step.

By choosing C su�ciently large, we have that ��1, ��1 = �(1)
in Lemma 6.7. We� rst prove the bound in expectation. Note that
Lemma 6.7 implies that E[�(t )] = O (m) and E[�(t )] = O (m) for
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all t . Let max(t ) denote the maximum weight of any bin at time t ,
and let min(t ) be the minimum weight of any bin. Then, we have

� E[max(t ) � µ (t )] = log exp (E[� (max(t ) � µ (t ))])
(a)
 logE[exp(� (max(t ) � µ (t )))]
(b )
 logE[�(t )]  O (logm) ,

where (a) follows from Jensen’s inequality, and (b) follows from
the de�nition of �. Similarly, we have E[µ (t ) �min(t )]  O (logm).
Since the true value of the counter at time t ism · µ (t ), these two
statements imply that for all j, we have E[|m · x j (t ) �m · µ (t ) |] 
O (m logm), as desired.

We nowprove the high probability bound. Observe that if max(t )�
µ (t ) > R logm, then we have �(t ) � �(t ) � e�R logm . Hence,

Pr[max(t ) � µ (t ) > R logm]  Pr[�(t ) � e�R logm]

 O (m)

e�R logm

 m�O (R ) .

Similarly, Pr[µ (t ) �min(t ) > R logm]  m��(R ) .
Combining these two guarantees with a union bound immedi-

ately yields the desired guarantee. ⇤

6.4 Application to Concurrent Relaxed Queues
We now provide an overview of how to extend the analysis to imply
distributional linearizability guarantees in concurrent executions
for a variant of the MultiQueue process analyzed by [4]. This pro-
cess peforms concurrent Enqueue () and Dequeue () operations on
the relaxed concurrent queue. We assume that we are given a set
ofm linearizable priority queues such that each supports Add(e,p),
where p is the priority of the element e , and DeleteMin, which
deletes the element with the highest priority. We also assume that
each processor i has access to the clock which gives an absolute
time, and which is consistent amongst all the processors, that is, if
processor i reads the clock in the linearization before processor j,
then processor i’s value is smaller. Such an assumption is realistic;
recent Intel processors support the RDTSC hardware operation,
which provides this functionality for cores on the same socket.

To enqueue, a thread reads the wall clock, chooses a random
priority queue, and adds the element to that priority queue with pri-
ority given by the time. To dequeue, we choose two random priority
queues,� nd the one having a higher priority element on top, and
delete from that priority queue. In case two processes enqueue to
the same priority queue concurrently, their clock values will ensure
a consistent ordering, handled by the internal implementation of
the priority queues.

Following [4], we make the additional assumption that every exe-
cution is pre�xed, intuitively implying that no Dequeue () operation
ever observes an empty priority queue.

We sketch the analysis of this process for m = 8Cn. Initially,
as in [4], we couple this process with an exponential process,
where if Dequeue () removes element with timestamp t from prior-
ity queue i , the new head element of i has timestamp t + Exp (1/m).
Here, Exp (1/m) is an exponentially distributed random variable
with meanm. Notice that if we divide timestamps bym, we have

that timestamps increase by 1 in expectation. Next ,we can show
that Lemmas 6.4 and 6.5, hold even if instead of incrementing
counter(timestamp) by 1, we increment it by a random variable
with mean 1 (the proof is given in the full version of the paper [3]).
Lemma 6.7 yields that the potential � de�ned for the exponential
process above (after we divide timestamps bym) is linear in expec-
tation. This allows us to use Theorem 4 in [4], which states that in
this case expected rank gap between the smallest timestamp head
element of any queue and the largest timestamp head element of
any queue in the original process is at mostO (m logm). A complete
proof of this claim is given in the full version of this paper [3].

7 EXPERIMENTAL RESULTS
Setup. Our experiments were run on an Intel E7-4830 v3 with 12
cores per socket and 2 hyperthreads (HTs) per core, for a total of 24
threads, and 128GB of RAM. In all of our experiments, we pinned
threads to avoid unnecessary context switches. Hyperthreading is
only used with more than 12 threads. The machine runs Ubuntu
14.04 LTS. All code was compiled with the GNUC++ compiler (G++)
6.3.0 with compilation options -std=c++11 -mcx16 -O3.
Synthetic Benchmarks.We implemented and benchmarked the
MultiCounter algorithm on a multicore machine. To test the behav-
ior under contention, threads continually increment the counter
value using the two-choice process. We use no synchronization
other than the atomic fetch and increment instruction for the up-
date. Figure 1(a) shows the scalability results, while Figure 1(b)
shows the “quality" guarantees of the implementation in terms of
values returned by the counter over time, as well as maximum gap
between bins over time. Quality is measured in a single-threaded
execution, for 64 counters. (Recording quality accurately in a con-
current execution appears complicated, as it is not clear how to
order the concurrent read steps.)

8 CONCLUSIONS AND FUTUREWORK
We have presented the� rst concurrent analysis of the two-choice
load-balancing process, showing that this classic randomized algo-
rithm is in fact robust to asynchrony under an oblivious adversary.
Our analysis extends existing tools, namely [25], in non-trivial
ways, in particular by showing that the potential analysis can with-
stand adversarially corrupted updates. Our results have non-trivial
practical applications, as they show that a popular set of random-
ized concurrent data structures in fact provide strong probabilistic
guarantees in arbitrary executions, which we express via a new cor-
rectness condition called distributional linearizability. This inspires
a scalable approximate counting mechanism, trading o�contention
and exactness guarantees.

An immediate direction of future work is to reduce the large con-
stant gap between the number of binsm and the number of threads
n. We did not speci�cally optimize for this gap in the current ver-
sion. It is interesting to also ask whether the process will preserve
its properties even under high contention, e.g.m <= n. The main
reason for which we assume thatm � 8Cn is to withstand adver-
sarial executions in which the adversary schedules whole “blocks"
of updates, which e�ectively reset the distribution of bin loads.
Threads acting with stale information after such a block perform
choices which are e�ectively random (or worse than random).
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(a) Scalability of the concurrent counter for di�erent values of the ratio C
between counters and # threads.

(b) Quality results for the concurrent counter in a single-threaded execution.
The x axis is # increments.

Figure 1: Experimental Results for the Concurrent Counter
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