
The Fence Complexity of Persistent Sets

Gaetano Coccimiglio1, Trevor Brown2, and Srivatsan Ravi3

1 University of Waterloo, Waterloo ON N2L 3G1, Canada
gccoccim@uwaterloo.ca

2 University of Waterloo, Waterloo ON N2L 3G1, Canada
trevor.brown@uwaterloo.ca

3 University of Southern California, Los Angeles CA 90007, USA
srivatsr@usc.edu

Abstract. We study the psync complexity of concurrent sets in the
non-volatile shared memory model. Flush instructions are used in non-
volatile memory to force shared state to be written back to non-volatile
memory and must typically be accompanied by the use of expensive
fence instructions to enforce ordering among such flushes. Collectively
we refer to a flush and a fence as a psync. The safety property of strict
linearizability forces crashed operations to take effect before the crash
or not take effect at all; the weaker property of durable linearizability
enforces this requirement only for operations that have completed prior
to the crash event. We consider lock-free implementations of list-based
sets and prove two lower bounds. We prove that for any durable lin-
earizable lock-free set there must exist an execution where some process
must perform at least one redundant psync as part of an update oper-
ation. We introduce an extension to strict linearizability specialized for
persistent sets that we call strict limited effect (SLE) linearizability. SLE
linearizability explicitly ensures that operations do not take effect after a
crash which better reflects the original intentions of strict linearizability.
We show that it is impossible to implement SLE linearizable lock-free
sets in which read-only (or search) operations do not flush or fence. We
undertake an empirical study of persistent sets that examines various
algorithmic design techniques and the impact of flush instructions in
practice. We present concurrent set algorithms that provide matching
upper bounds and rigorously evaluate them against existing persistent
sets to expose the impact of algorithmic design and safety properties on
psync complexity in practice as well as the cost of recovering the data
structure following a system crash.

Keywords: Strict linearizability · Durable linearizability · Lower bounds
· Persistent sets · Non-volatile memory.

1 Introduction

Byte-addressable Non-Volatile Memory (NVM) is now commercially available,
thus accelerating the need for efficient persistent concurrent data structure algo-
rithms. We consider a model in which systems can experience full system crashes.

2 Coccimiglio, Brown, Ravi

When a crash occurs the contents of volatile memory are lost but the contents
of NVM remain persistent. Following a crash a recovery procedure is used to
bring the data structure back to a consistent state using the contents of NVM.
In order to force shared state to be written back to NVM the programmer is
sometimes required to explicitly flush shared objects to NVM by using explicit
flush and persistence fence primitives, the combination of which is referred to
as a psync [21]. While concurrent sets have been extensively studied for volatile
shared memory [14], they are still relatively nascent in non-volatile shared mem-
ory. This paper presents a detailed study of the psync complexity of concurrent
sets in theory and practice.
Algorithmic design choices for persistent sets. The recent trend is to
persist less data structure state to minimize the cost of writing to NVM. For
example, the Link-Free and SOFT [21] persistent list-based sets do not persist
any pointers in the data structure. Instead they persist the keys along with
some other metadata used after a crash to determine if the key is in the data
structure. This requires at most a single psync for update operations; however,
not persisting the structure results in a more complicated recovery procedure.

A manuscript by Israelevitz and nine other authors presented a seminal in
depth study of the performance characteristics of real NVM hardware [16]. Their
results may have played a role in motivating the trend to persist as little as
possible and reduce the number of fences. In particular, they found (Figure 8
of [16]) that the latency to write 256 bytes and then perform a psync is at
least 3.5x the latency to write 256 bytes and perform a flush but no persistence
fence. Moreover, they found that NVM’s write bandwidth could be a severe
bottleneck, as a write-only benchmark (Figure 9 of [16]) showed that NVM write
bandwidth scaled negatively as the number of threads increased past four, and
was approximately 9x lower than volatile write bandwidth with 24 threads. A
similar study of real NVM hardware was presented by Peng et al. [17].

While these results are compelling, it is unclear whether these latencies and
bandwidth limitations are a problem for concurrent sets in practice. As it turns
out, the push for persistence-free operations and synchronization mechanisms
that minimize the amount of data persisted, and/or the number of psyncs, has
many consequences, and the balance may favour incurring increased psyncs in
some cases.
Contributions. Concurrent data structures in volatile shared memory typically
satisfy the linearizability safety property, NVM data structures must consider the
state of the persistent object following a full system crash. The safety property
of durable-linearizability satisfies linearizability and following a crash, requires
that the object state reflect a consistent operation subhistory that includes op-
erations that had a response before the crash [15]. (i) We prove that for any
durable-linearizable lock-free set there must exist an execution in which some
process must perform at least one redundant psync as part of an update opera-
tion (§ 2). Informally, a redundant psync is one that does not change the contents
of NVM. Our result is orthogonal to the lower bound of Cohen et al. who showed
that the minimum number of psyncs per update for a durable-linearizable lock-

The Fence Complexity of Persistent Sets 3

free object is one [7]. However, Cohen et al. did not consider redundant psyncs.
We show that redundant psyncs cannot be completely avoided in all concurrent
executions: there exists an execution where n processes are concurrently per-
forming update operations and n− 1 processes perform a redundant psync. (ii)
Our first result also applies to SLE linearizability, which we define to serve as
a natural extension of the safety property of strict linearizability specifically for
persistent sets. Originally defined by Aguilera and Frølund [1], strict linearizabil-
ity forces crashed operations to be linearized before the crash or not at all. Strict
linearizability was not originally defined for models in which the system can re-
cover following a crash. To better capture the intentions of strict linearizability
in the context of persistent concurrent sets, we introduce SLE linearizability to
realize the intuition of Aguilera and Frølund for persistent concurrent sets. SLE
linearizability is defined to explicitly enforce limited effect for persistent sets.

(iii) We prove that it is impossible to implement SLE linearizable lock-free
sets in which read-only operations neither flush nor execute persistence fences,
but it is possible to implement strict linearizable and durable linearizable lock-
free sets with persistence-free reads (§ 2). (iv) We study the empirical costs of
persistence fences in practice. To do this, we present matching upper bounds
to our lower bound contributions (i) and (ii). Specifically, we describe a new
technique for implementing persistent concurrent sets with persistence-free read-
only operations called the extended link-and-persist technique and we utilize this
technique to implement several persistent sets (§ 3). (v) We evaluate our upper
bound implementations against existing persistent sets in a systemic empirical
study of persistent sets. This study exposes the impact of algorithmic design
and safety properties on persistence fence complexity in practice and the cost of
recovering the data structure following a crash (§ 4).

The relationship between performance, psync complexity, recovery complex-
ity and the correctness condition is subtle, even for seemingly simple data types
like sorted sets. In this paper, we delve into the details of algorithmic design
choices in persistent data structures to begin to characterize their impact.

2 Lower Bounds

Persistency Model and Safety Properties . We assume a full system crash-
recovery model (all processes crash together). When a crash occurs all processes
are returned to their initial states. After a crash a recovery procedure is invoked,
and only after that can new operations begin.

Modifications to base objects first take effect in the volatile shared memory.
Such modifications become persistent only once they are flushed to NVM. Base
objects in volatile memory are flushed asynchronously by the processor (without
the programmer’s knowledge) to NVM arbitrarily. We refer to this as a back-
ground flush. We consider background flushes to be atomic. The programmer can
also explicitly flush base objects to NVM by invoking flush primitives, typically
accompanied by persistence fence primitives. An explicit flush is a primitive on
a base object and is non-blocking, i.e., it may return before the base object has

4 Coccimiglio, Brown, Ravi

been written to persistent memory. An explicit flush by process p is guaranteed
to have taken effect only after a subsequent persistence fence by p. An explicit
flush combined with a persistence fence is referred to as a psync. We assume
that psync events happen independently of RMW events and that psyncs do
not change the configuration of volatile shared memory (other than updating
the program counter). Note that on Intel platforms a RMW implies a fence,
however, a RMW does not imply a flush before that fence, and therefore does
not imply a psync.

In this paper, we consider the set type: an object of the set type stores a
set of integer values, initially empty, and exports three operations: insert(v),
remove(v), contains(v) where v ∈ Z. A history is a sequence of invocations
and responses of operations on the set implementation. We say a history is
well-formed if no process invokes a new operation before the previous operation
returns. Histories H and H ′ are equivalent if for every process pi, H|i = H ′|i.

A history H is durable linearizable, if it is well-formed and if ops(H) is
linearizable where ops(H) is the subhistory of H containing no crash events [15].

Aguilera and Frølund defined strict linearizability for a model in which in-
dividual processes can crash and did not allow for recovery [1]. Berryhill et al.
adapted strict linearizability for a model that allows for recovery following a sys-
tem crash [2]. A history H is strict linearizable with respect to an object type τ
if there exists a sequential history S equivalent to a strict completion of H, such
that (1) →Hc⊆→S and (2) S is consistent with the sequential specification of τ .
A strict completion of H is obtained from H by inserting matching responses for
a subset of pending operations after the operation’s invocation and before the
next crash event (if any), and finally removing any remaining pending operations
and crash events.
Psync Complexity. It is likely that an implementation of persistent object will
have many similarities to a volatile object of the same abstract data type. For
this reason, when comparing implementations of persistent objects we are mostly
interested in the overhead required to maintain a consistent state in persistent
memory. Specifically, we consider psync complexity.

Programmers write data to persistent memory through the use of psyncs. A
psync is an expensive operation. Cohen et al. [7] prove that update operations
in a durable linearizable lock-free algorithm must perform at least one psync.
In some implementations of persistent objects, reads also must perform psyncs.
There is a clear focus in existing literature on minimizing the number of psyncs
per data structure operation [9, 21, 11]. These factors suggest that psync com-
plexity is a useful metric for comparing implementations of persistent objects.
Lower Bounds for Persistent Sets. We now present the two main lower
bounds in this paper, but the full proofs are only provided in the full version of
the paper[5] due to space constraints.
Impossibility of persistence-free read-only searches. The key goal of the
original work of Aguilera and Frølund [1] was to enforce limited effect by re-
quiring operations to take effect before the crash or not at all. Limited effect
requires that an operation takes effect within a limited amount of time after it

The Fence Complexity of Persistent Sets 5

is invoked. The point at which an operation takes effect is typically referred to
as its linearization point and we say that the operation linearizes at that point.
Rephrasing the intuition, when crashes can occur, limited effect requires that
operations that were pending at the time of a crash linearize prior to the crash
or not at all.

Strict linearizability is defined in terms of histories, which abstract away the
real-time order of events. As a result, strict linearizability does not allow one
to argue anything about the ordering of linearization points of operations that
were pending at the time of a crash relative to the crash event. Thus, strict
linearizability cannot and does not prevent operations from taking effect during
the recovery procedure or even after the recovery procedure (which can occur
for example in implementations that utilize linearization helping [4]). Strict lin-
earizability only requires that at the time of a crash, pending operations appear
to take effect prior to the crash. Although we are not aware of a formal proof
of this, we conjecture in the full system crash-recovery model, durable lineariz-
able objects are strict linearizable for some suitable definition of the recovery
procedure. This is because we can always have the recovery procedure clean-up
the state of the object returning it to a state such that the resulting history of
any possible extension will satisfy strict linearizability. We note this conjecture
as further motivation towards re-examining the way in which the definition of
strict linearizability has been adapted for the full system crash-recovery model.

To this end, we define the concept of a key write to capture the intentions
of Aguilera and Frølund in the context of sets by defining Strict limited effect
(SLE) linearizability for sets as follows: a history satisfies SLE linearizability iff
the history satisfies strict linearizability and for all operations with a key write,
if the operation is pending at the time of a crash, the key write of the operation
must occur before the crash event. In the strict completion of a history this is
equivalent to requiring that the key write is always between the invocation and
response of the operation. This is because the order of key writes relative to a
crash event is fixed which means if the write occurs after the crash event then
a strict completion of the history could insert a response for the operation only
prior to the key write (at the crash) and this response cannot be reordered after
the key write.

We show that it is impossible to implement a SLE linearizable lock-free set
for which read-only searches do not perform any explicit flushes or persistence
fences.

Theorem 1. There exists no SLE linearizable lock-free set with persistence-free
read-only searches.

Redundant psync lower bound for durable linearizable sets. After mod-
ifying a base object only a single psync is required to ensure that it is written to
persistent memory. Performing multiple psyncs on the same base object is there-
fore unnecessary and wasteful. We refer to these unnecessary psyncs as redundant
psyncs. We show that for any durably linearizable lock-free set there must exist
an execution in which n concurrent processes are invoking n concurrent update
operations and n-1 processes each perform at least one redundant psync. At first

6 Coccimiglio, Brown, Ravi

glance one may think that this result is implied by the lower bound of Cohen
et al. [7]. Cohen et al. show that for any lock-free durable linearizable object,
there exists an execution wherein every update operation performs at least one
persistence fence. Cohen et al. make no claims regarding redundant psyncs. Our
result demonstrates that durable linearizable lock-free objects cannot completely
avoid redundant psyncs.

Theorem 2. In an n-process system, for every durable linearizable lock-free set
implementation I, there exists an execution of I wherein n processes are con-
currently performing update operations and n-1 processes perform a redundant
psync.

3 Upper Bounds

Briding the gap between theory and practice. The lower bounds presented
in the previous section offer insights into the theoretical limits of persistent sets
for both durable linearizability and SLE linearizability. While these lower bounds
demonstrate a clear separation between durable and SLE linearizability, it is
unclear whether or not we can observe any meaningful separation in practice.
In order to answer this question we would like to compare durable and SLE
linearizable variants of the same persistent set implementation. To this end, we
extended the Link-and-Persist technique [9] to allow for persistence-free searches
and use our extension to implement several persistent linked-list. We also add
persistence helping to SOFT [21]. We explain both in detail next.
Notable persistent set implementations. We briefly describe above men-
tioned existing implementations of persistent sets. We only focus on hand-crafted
implementations since they generally perform better in practice compared to
transforms or universal constructions [11, 12].

David et al. describe a technique for implementing durable linearizable link-
based data structures called the Link-and-Persist technique [9]. Using the Link-
and-Persist technique, whenever a link in the data structure is updated, a single
bit mark is applied to the link which denotes that it has not been written to
persistent memory. The mark is removed after the link is written to persistent
memory. We refer to this mark as the persistence bit. This technique was also
presented by Wang et al. in the same year [19]. Wei et al. presented a more
general technique which does not steal bits from data structure links [20].

The Link-Free algorithm of Zuriel et al. does not persist data structure links
[21]. Instead, the Link-Free algorithm persists metadata added to every node.

Zuriel et al. designed a different algorithm called SOFT (Sets with an Optimal
Flushing Technique) offering persistence-free searches. The SOFT algorithm does
not persist data structure links and instead persists metadata added to each
node. The major difference between the Link-Free algorithm and SOFT is that
SOFT uses two different representations for every key in the data structure where
only one representation is is explicitly flushed to persistent memory.
Recovery complexity. After a crash, a recovery procedure is invoked to re-
turn the objects in persistent memory back to a consistent state. Prior work

The Fence Complexity of Persistent Sets 7

has utilized a sequential recovery procedure [21, 9, 12, 8]. A sequential recovery
procedure is not required for correctness but it motivates the desire for efficient
recovery procedures. No new data structure operations can be invoked until the
recovery procedure has completed. Ideally we would like to minimize this period
of downtime represented by the execution of recovery procedure. For the upper
bounds in the this section, we use the asymptotic time complexity of the recovery
procedure as another metric for comparing durable linearizable algorithms.
Extended Link-and-Persist. We choose to extend the Link-and-Persist tech-
nique of David et al. because it is quite simple and it represents the state of the
art for hand-crafted algorithms that persist the links of a data structure. More-
over, unlike the algorithms in [21], the Link-and-Persist technique can be used to
implement persistent sets without compromising recovery complexity. We build
on the Link-and-Persist technique by extending it to allow for persistence-free
searches and improved practical performance. Cohen et al noted that persistence-
free searches rely on the ability to linearize successful update operations at some
point after the CPE of the operation [7]. In our case, this means that searches
must be able to determine if the pointer is not persistent because of an Insert
operation or a Remove operation. This is not possible with the original Link-and-
Persist technique. We address this with two changes.

First, we require that a successful update operation, πu, is linearized after its
Critical Persistence Event (or CPE). Intuitively, the CPE represents the point
after which the update will be recovered if a crash occurs. Specifically, if a volatile
data structure would linearize πu at the success of a RMW on a pointer v then we
require that πu is linearized at the success of the RMW that sets the persistence
bit in v. If a search traverses a pointer, v, marked as not persistent the search
can always be linearized prior to the concurrent update which modified v.

Secondly, since successful updates are linearized after their CPE, if the re-
sponse of search operation depends on data that is linked into the data structure
by a pointer marked as not persistent then the search must be able to access
the last persistent value of that pointer. To achieve this, we add a pointer field
to every node which we call the old field. A node will have both an old field
and a pointer to its successor (next pointer) which effectively doubles the size of
every data structure link. The old field will point to the last persistent value of
the successor pointer while the successor pointer is marked as not persistent. In
practice, the old field must be initialized to null then updated to a non-null
value when the corresponding successor pointer is modified to a new value that
needs to be persisted. Note that modifications like flagging or marking do not
always need to be persisted; this depends on the whether or not the update can
complete while the flagged or marked pointers are still reachable via a traversal
from the root of the data structure. The easiest way to correctly update the old
field is to update the successor pointer and the old field atomically using a hard-
ware implementation of double-wide compare-and-swap (DWCAS) namely the
cmpxchg16b instruction on Intel. Alternatively, a regular single-word compare-
and-swap (SWCAS) can be used but this requires adding extra volatile memory
synchronization to ensure correctness. For some data structures such as linked-

8 Coccimiglio, Brown, Ravi

lists using only SWCAS might also require adding an extra psync to updates. To
allow searches to distinguish between pointers that are marked as not persistent
because of a remove versus those that are not persistent because of an insert
we require that the old field is always updated to a non-null value whenever a
remove operation unlinks a node. Insert operations that modify the data struc-
ture must flag either the old field or the corresponding successor to indicate that
the pointer marked as not persistent was last updated by an insert. When using
SWCAS to update the old field this flag must be on the successor pointer.

With our extension if the response of a search operation depends on data
linked into the data structure via a pointer marked as not persistent it can be
linearized prior to the concurrent update operation that modified the pointer
and it can use the information in the old field to determine the correct response
which does not require performing any psyncs. If the search finds that the update
was an insert it simply returns false. If the update was a remove but the search
was able to find the value that it was looking for then it can return true since
that key will be in persistent memory. If the update was a remove but the search
was not able to find the value that it was looking for then it can check the if
the node pointed to by the old field contains the value. As with the original,
our extension still requires that an operation π will ensure that the CPE of any
other operation which π depends on has occurred. π must also ensure that its
own CPE has occurred before it returns. Another requirement which was not
explicitly stated by David et al. is that operations must ensure that any data
that a data structure link can point to is written to persistent memory before
the link is updated to point to that data.

Our extension can be used to implement several link-based sets including
trees and hash tables. Data structures implemented using our extension provide
durable linearizability, however the use of persistence-free searches is optional. If
the data structure does not utilize persistence-free searches then it would provide
SLE linearizability (requiring only a change in the correctness proof).
Augmenting LF and SOFT. SOFT represents the state of the art for
hand-crafted algorithms that do not persist the links of a data structure. The
SOFT algorithm provides durable linearizability. For comparison, we added per-
sistence helping for all operations of a persistent linked-list implemented using
SOFT (thereby removing persistence-free searches) to achieve a SLE linearizable
variant. We refer to this variant as SOFT-SLE. We also modified the implemen-
tation of the Link-Free algorithm. While the original Link-Free algorithm does
not explicitly persist data structure links, it still allocates the links from persis-
tent memory. We can achieve better performance by allocating the links from
volatile memory. To emphasize the difference we refer to this as LF-V2.

3.1 Our Persistent List Implementations

In order to compare our extension to existing work we provide several imple-
mentations of persistent linked-lists which utilize our extended-link-and-persist
approach. We choose to implement and study linked lists because they generally
do not require complicated volatile synchronization.

The Fence Complexity of Persistent Sets 9

1 def PersistenceFreeContains(key) :
2 p = head , pNext = p.next , curr = UnmarkPtr(pNext)
3 while true :
4 if curr.key ≤ key : break
5 p = curr , pNext = p.next
6 curr = UnmarkPtr(pNext)
7 hasKey = curr.key==key
8 if IsDurable(ptNext) : return hasKey
9 old1 = p.old , pNext2 = p.next , old2 = p.old

10 pDiff = pNext ̸=pNext2 , oldDiff = old1 ̸=old2
11 if pDiff or oldDiff or old1==null : return hasKey
12 if IsIFlagged(old1) : return false
13 if hasKey : return true
14 return UnmarkPtr(old1).key==key

Algorithm 1: Pseudocode for the persistence-free contains function of our
Physical-Delete (PD) list. The volatile synchronization is based on the list of
Fomitchev and Ruppert.

We refer to our implementations as PD (Physical-Delete), PD-S (SWCAS
implementation of PD), LD (Logical-Delete) and LD-S (SWCAS implementa-
tion of LD). The names refer to the synchronization approach and primitive.
Our implementations use two different methods for achieving synchronization in
volatile memory. Specifically we use one based on the Harris list [13] and an-
other based on the work of Fomitchev and Ruppert [10]. The former takes a lazy
approach to deletion that relies on marking for logical deletion and helping. As
a result, marked pointers must be written to persistent memory which requires
an extra psync. The latter does not take a lazy approach to deletions but still
relies on helping and requires extra volatile memory synchronization through
the use of marking and flagging. Fortunately, we do not need to persist marked
or flagged pointers with this approach. Figure 1 shows an example of an update
operation in the PD list implementation. We also implement separate variants
using 2 different synchronization primitives, DWCAS and SWCAS. Table 1 sum-
marizes some of the details of these approaches. We assume that the size of the
key and value fields allow a single node to fit on one cache line meaning a flush
on any field of the node guarantees that all fields are written to persistent mem-
ory. The assumption that the data we want to persist fits on a single cache line
is common. David et al., Zuriel et al. and several others have relied on similar
assumptions [21, 9, 8, 18]. It is possible that our persistent list could be modified
to allow for the case where nodes do not fit onto a single cache line by adopting
a strategy similar to [6].
Search Variants. As part of our persistent list, we implement 4 variants of
the contains operation: persist all, asynchronous persist all, persist last and
persistence free. We focus on the latter two since the others are naive approaches
that perform many redundant psyncs.
Persist Last (PL). If the pointer into the terminal node of the traversal is
marked as not persistent then write it to persistent memory and set its persis-

10 Coccimiglio, Brown, Ravi

125Head 30
Dflagged Marked

5Head 30

7

5Head 30

i)

ii) iii)

12
Old

iv) 5Head

30

7iv) 5Head

Insert
Flagged Old

30

Fig. 1: Steps to execute an insert(7) operation in our PD list implementation.
Blue pointers indicate non-durable pointers (with persistence bits set to 0). i)
Initially we have three nodes. The node containing 5 has a pending delete flag
(Dflagged) and the node containing 12 is marked for deletion. We traverse to find
a key ≥ 7. ii) Help finish the pending Remove via DWCAS to unlink marked node
and set old pointer. iii) Flush and set persistence bit via DWCAS (clearing old
pointer). iv) Via DWCAS insert 7 and set old pointer. The old pointer is flagged
to indicate a pending insert. v) Flush and set persistence bit via DWCAS.

tence bit via a CAS. This variant is the most similar to the searches in the linked
list implemented using the original Link-and-Persist technique.
Persistence Free (PF). If the pointer into the terminal node of the traversal
performed by the search is marked as not persistent then use the information
in the old field of the node’s predecessor to determine the correct return value
without performing any persistence events. Since we do not need to set the
durability bit of any link, this variant does not perform any writes and never
performs a psync. Algorithm 1 shows the pseudocode for the persistence-free
search of the PD list. For simplicity we abbreviate some of the bitwise operations
with named functions. Specifically, UnmarkPtr which removes any marks or
flags, IsDurable which checks if the pointer is marked as persistent and IsIflagged
which checks if the pointer was flagged by an insert.

Theorem 3. The PD, PD-S, LD, and LD-S lists are durable linearizable and
lock-free.

We prove Theorem 3 in the full version of the paper. We can also show
that our list implementations are durable linearizable by considering a volatile
abstract set (the keys in the list that are reachable in volatile memory) and a
persistent abstract set (the keys in the list that are reachable in persistent mem-
ory). By identifying, for each operation, the points at which these sets change,
we can show that updates change the volatile abstract set prior to changing the
persistent abstract set and that each update changes the the volatile abstract
set exactly once. It follows that the list is always consistent with some persistent
abstract set.

If we never invoke a persistence-free contains operation then we can prove
that the implementations are SLE linearizable and lock-free. Doing so simply
requires that we change our arguments regarding when we linearize update op-
erations such that the linearization point is not after the CPE. Note that of the

The Fence Complexity of Persistent Sets 11

Name Synch. Approach Synch. Primitive Min Psyncs Per Insert/Remove
PD Fomitchev DWCAS 1 1
PD-S Fomitchev SWCAS 2 1
LD Harris DWCAS 1 2
LD-S Harris SWCAS 2 2

Table 1: Our Novel Persistent List Details.

set implementations that we discuss, those that have persistence-free searches are
examples of implementations which are strict linearizable but not SLE lineariz-
able. These implementations require that the recovery procedure or operations
invoked after a crash take steps which effectively linearize operations. This is
because following a crash, one cannot tell the difference between an operation
that has progressed far enough to allow some future operation to help linearize
it and an operation that was already linearized.

4 Evaluation

We present an experimental analysis of our persistent list compared to existing
persistent lists on various workloads. We test our variants of the contains op-
eration separately meaning no run includes more than one of the variants.4 To
distinguish between our implementations of the contains operation we prefix
the names of our persistent list algorithms with the abbreviation of a contains
variant (for example PFLD refers to one of our persistent lists which utilized only
Persistence-Free searches and the Logical-Deletion algorithm). Due to space con-
straints we only present the best performing implementations of our persistent
list. We test the performance of these lists in terms of throughput (operations
per second). We also examine the psync behaviour of these algorithms. Specif-
ically, we track the number of psyncs that are performed by searches and the
number of psyncs that are performed by update operations.

All of the experiments were run on a machine with 48 cores across 2 Intel
Xeon Gold 5220R 2.20GHz processors which provides 96 available threads (2
threads per core and 24 cores per socket). The system has a 36608K L3 cache,
1024K L2 cache, 64K L1 cache and 1.5TB of NVRAM. The NVRAM modules
installed on the system are Intel Optane DCPMMs. We utilize the same bench-
mark as [3] for conducting the empirical tests. Keys are accessed according to a
uniform distribution. We prefill the lists to 50% capacity before collecting mea-
surements. Each test consisted of ten iterations where each individual test ran
for ten seconds. The graphs show the average of all iterations. Libvmmalloc was
the persistent memory allocator used for all algorithms.
Throughput. Figure 2 shows the throughput of our best persistent list variants
compared to the existing algorithms. Since the DWCAS implementation of our
list out performed the SWCAS implementation we compare only our DWCAS
implementations. SOFT performs best when there is high contention in read
dominant workloads and consistently best for non-read dominant workloads.

4 Source code: https://gitlab.com/Coccimiglio/setbench

12 Coccimiglio, Brown, Ravi

Legend for all plots in Section 4

(a) 99% Search
K=50

(b) 99% Search
K=500

(c) 50% Search
K=50

(d) 50% Search,
K=500

Fig. 2: Persistent list throughput. X-axis: number of concurrent threads. Y-axis:
operations/second. K is the list size.

Lesson learned: Persisting more information in update operations is generally
more costly but persistence free searches do not seem to provide major perfor-
mance improvements.
Psync Behaviour. The recent trend to persist less data structure state has in-
fluenced implementations of persistent objects focused on minimizing the amount
of psyncs required per operation. We know that SLE linearizable algorithms can-
not have persistence-free searches. From [7] we also know that update operations
require at least 1 psync. Of the persistent lists that we consider, the persistent
lists from [21] are unique in that the the maximum number of psyncs per up-
date operation is bounded. To better understand the cost incurred by psyncs, we
track the number of psyncs performed by read-only operations (searches) and
the number of psyncs performed by update operations. Note that for updates
this includes unsuccessful updates which might not need to perform a psync.
Figure 3 shows the average number of psyncs per search and the average num-
ber of psyncs per update operation. We observe that searches rarely perform a
psync in any of the algorithms that do not have persistence-free searches. On
average, update operations do not perform more than the minimum number of
required psyncs.
Lesson learned: Algorithmic techniques such as persistence bits for reducing
the number of psyncs are highly effective. On average, there are very few redun-
dant psyncs in practice.
Recovery. It is not practical to force real system crashes in order to test the
recovery procedure of any algorithm. It is possible that one could simulate a
system crash by running the recovery procedure as a standalone algorithm on
an artificially created memory configuration. This is problematic because the
recovery procedure of a durable linearizable algorithm is often tightly coupled
to some specific memory allocator (this is true of the existing algorithms that
we consider). This makes a fair experimental analysis of the recovery procedure
difficult. It is easier to describe the worst case scenario for recovering the data
structure for each of the algorithms. To be specific, we describe the worst case
persistent memory layout produced by the algorithm noting how this relates to
the performance of the recovery procedure.

The Link-Free list does not persist data structure links. As a result, there is no
way to efficiently discover all valid nodes meaning the recovery procedure might

The Fence Complexity of Persistent Sets 13

(a) 99% Search (b) 50% Search (c) 99% Search (d) 50% Search
Fig. 3: Psync Behaviour. X-axis: number of concurrent threads. (a), (b) Y-axis:
average psyncs/search, (c), (d) Y-axis: average psyncs/update. List size is 50.

need require traversing all of the memory. The allocator utilized by Zuriel et al
partitions memory into chunks. We can construct a worse case memory layout
for the recovery procedure as follows: Suppose that we completely fill persistent
memory by inserting keys into the list. Now remove nodes such that each chunk
of memory contains only one node at an unknown offset from the start of the
chunk. To discover all of the valid nodes the recovery procedure must traverse
the entire memory space. The SOFT list also does not persist data structure
links. The requirements of the recovery procedure for SOFT list is the same
as the Link-Free list. We can construct the worst case memory layout for the
recovery procedure in the same way as we did for the Link-Free list yielding the
same asymptotic time complexity. The Link-and-Persist list can utilize an empty
recovery procedure. The actual recovery procedure for the list implemented by
the authors of [9] does extra work related to memory reclamation.

We utilize DWCAS and asynchronous flush instructions to achieve a mini-
mum of one psync per insert operation. There are some subtleties with this
implementation that result in a recovery complexity which is O(N +n) for a list
containing N nodes and a maximum of n concurrent processes. Implementations
that use SWCAS (or DWCAS allowing for a minimum of two psyncs per insert)
can utilize an empty recovery procedure.
Lesson learned: If structure is persisted, recovery can be highly efficient. With-
out any persisted structure, recovery must traverse large regions (or even all) of
shared memory.
SLE linearizable vs. Durable linearizable Sets. We have seen that there
exists a theoretical separation between SLE linearizable and durable lineariz-
able objects. For persistent lists we observe that this separation does not lead
to significant performance differences in practice. 4 of the algorithms (Figure 2)
are SLE linearizable. Specifically, our PLPD list, the L&P list, LF list, and
SOFT-SLE. The SOFT list and our PFPD list which both use persistence-free
searches are durable linearizable. The high cost of a psync and the impossibility
of persistence-free searches in a SLE linearizable lock-free algorithm would sug-
gest that the SLE linearizable algorithms that we test should perform noticeably
worse. In practice, it is true that for most of the tested workloads, the algorithms
that have persistence-free searches perform best (primarily SOFT). However, for
many workloads, performance of SLE linearizable algorithms are comparable to
the durable linearizable algorithms. In fact, for some workloads, the SLE lin-
earizable lists perform better than the durable linearizable alternatives.
Lesson learned: SLE linearizable algorithms can be fast in practice, despite
theoretical tradeoffs.

14 Coccimiglio, Brown, Ravi

5 Discussion

We prove that update operations in durable linearizable lock-free sets will per-
form at least one redundant psync. We motivate the importance of ensuring
limited effect for sets and defined strict limited effect (SLE) linearizability for
sets. We prove that SLE linearizable lock-free sets cannot have persistence-free
reads. We implement several persistent lists and evaluate them rigorously. Our
experiments demonstrate that SLE linearizable lock-free sets can achieve com-
parable or better performance to durable linearizable lock-free sets despite the
theoretical separation. For the algorithms and techniques that we examined, sup-
porting persistence-free reads is what separates the durable linearizable sets from
the SLE linearizable. However, the SLE linearizable sets rarely perform a psync
during a read. For those researchers that value ensuring limited effect for sets but
are unsure about the performance implications, we recommend beginning with
SLE linearizable implementations since a SLE linearizable implementation may
not have much overhead and it may be sufficient for the application. Our work
also exposes that psync complexity is not a good predictor of performance in
practice, thus motivating need for better metrics to compare persistent objects.

In this work we focused specifically on sets because we wanted to understand
the psync complexity of a relatively simple data structure like sets. We think that
there is clear potential to generalize our theoretical results to other object types
or classes of object types and perform similar empirical analysis of persistent
algorithms for those objects, thus bridging the gap between theory and practice.

Acknowledgements This work was supported by: the Natural Sciences and
Engineering Research Council of Canada (NSERC) Collaborative Research and
Development grant: CRDPJ 539431-19, the Canada Foundation for Innovation
John R. Evans Leaders Fund with equal support from the Ontario Research
Fund CFI Leaders Opportunity Fund: 38512, NSERC Discovery Launch Sup-
plement: DGECR-2019-00048, NSERC Discovery Program grant: RGPIN-2019-
04227, and the University of Waterloo.

References

1. Aguilera, M.K., Frolund, S.: Strict linearizability and the power of aborting. Tech.
rep., HP Laboratories Palo Alto (2003)

2. Berryhill, R., Golab, W.M., Tripunitara, M.: Robust shared objects for non-volatile
main memory. In: 19th International Conference on Principles of Distributed Sys-
tems, OPODIS 2015, December 14-17, 2015, Rennes, France. pp. 20:1–20:17 (2015)

3. Brown, T., Prokopec, A., Alistarh, D.: Non-blocking interpolation search trees
with doubly-logarithmic running time. In: Proceedings of the 25th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming. pp. 276–291 (2020)

4. Censor-Hillel, K., Petrank, E., Timnat, S.: Help! In: Proceedings of the 2015 ACM
Symp. on Principles of Distributed Computing, PODC 2015, Donostia-San Se-
bastián, Spain, July 21 - 23, 2015. pp. 241–250 (2015)

The Fence Complexity of Persistent Sets 15

5. Coccimiglio, G., Brown, T., Ravi, S.: The fence complexity of persistent sets (2023),
https://mc.uwaterloo.ca/pubs/fence_complexity/fullpaper.pdf, full version of this
paper

6. Cohen, N., Friedman, M., Larus, J.R.: Efficient logging in non-volatile memory
by exploiting coherency protocols. Proceedings of the ACM on Programming Lan-
guages 1(OOPSLA), 1–24 (2017)

7. Cohen, N., Guerraoui, R., Zablotchi, I.: The inherent cost of remembering con-
sistently. In: Proceedings of the 30th on Symp. on Parallelism in Algorithms and
Architectures. pp. 259–269 (2018)

8. Correia, A., Felber, P., Ramalhete, P.: Persistent memory and the rise of universal
constructions. In: Proceedings of the Fifteenth European Conference on Computer
Systems. pp. 1–15 (2020)

9. David, T., Dragojevic, A., Guerraoui, R., Zablotchi, I.: Log-free concurrent data
structures. In: 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC}
18). pp. 373–386 (2018)

10. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: Proceedings of
the twenty-third annual ACM Symp. on Principles of distributed computing. pp.
50–59 (2004)

11. Friedman, M., Ben-David, N., Wei, Y., Blelloch, G.E., Petrank, E.: Nvtraverse:
in nvram data structures, the destination is more important than the journey. In:
Proceedings of the 41st ACM SIGPLAN Conf. on Programming Language Design
and Impl. pp. 377–392 (2020)

12. Friedman, M., Petrank, E., Ramalhete, P.: Mirror: making lock-free data structures
persistent. In: Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation. pp. 1218–1232 (2021)

13. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: DISC.
pp. 300–314 (2001)

14. Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann
(2008)

15. Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory ob-
jects under a full-system-crash failure model. In: International Symp. on Dis-
tributed Computing. pp. 313–327. Springer (2016)

16. Izraelevitz, J., Yang, J., Zhang, L., Kim, J., Liu, X., Memaripour, A., Soh,
Y.J., Wang, Z., Xu, Y., Dulloor, S.R., Zhao, J., Swanson, S.: Basic performance
measurements of the intel optane dc persistent memory module. arXiv preprint
arXiv:1903.05714 (2019)

17. Peng, I.B., Gokhale, M.B., Green, E.W.: System evaluation of the intel optane byte-
addressable nvm. In: Proceedings of the International Symp. on Memory Systems.
pp. 304–315 (2019)

18. Ramalhete, P., Correia, A., Felber, P.: Efficient algorithms for persistent transac-
tional memory. In: Proceedings of the 26th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming. pp. 1–15 (2021)

19. Wang, T., Levandoski, J., Larson, P.A.: Easy lock-free indexing in non-volatile
memory. In: 2018 IEEE 34th International Conference on Data Engineering
(ICDE). pp. 461–472. IEEE (2018)

20. Wei, Y., Ben-David, N., Friedman, M., Blelloch, G.E., Petrank, E.: Flit: A library
for simple and efficient persistent algorithms. arXiv preprint arXiv:2108.04202
(2021)

21. Zuriel, Y., Friedman, M., Sheffi, G., Cohen, N., Petrank, E.: Efficient lock-free
durable sets. Proceedings of the ACM on Programming Languages 3(OOPSLA),
1–26 (2019)

