
NBR: Neutralization Based Reclamation
Ajay Singh

University of Waterloo
Canada

ajay.singh1@uwaterloo.ca

Trevor Brown
University of Waterloo

Canada
trevor.brown@uwaterloo.ca

Ali Mashtizadeh
University of Waterloo

Canada
mashti@uwaterloo.ca

Abstract
Safe memory reclamation (SMR) algorithms suffer from a
trade-off between bounding unreclaimed memory and the
speed of reclamation. Hazard pointer (HP) based algorithms
bound unreclaimedmemory at all times, but tend to be slower
than other approaches. Epoch based reclamation (EBR) al-
gorithms are faster, but do not bound memory reclamation.
Other algorithms follow hybrid approaches, requiring spe-
cial compiler or hardware support, changes to record layouts,
and/or extensive code changes. Not all SMR algorithms can
be used to reclaim memory for all data structures.

We propose a new neutralization based reclamation (NBR)
algorithm that is often faster than the best known EBR al-
gorithms and achieves bounded unreclaimed memory. It is
non-blocking when used with a non-blocking operating sys-
tem (OS) kernel, and only requires atomic read, write and
CAS. NBR is straightforward to use with many different
data structures, and in most cases, requires similar reason-
ing and programmer effort to two-phased locking. NBR is
implemented using OS signals and a lightweight handshak-
ing mechanism between participating threads to determine
when it is safe to reclaim a record. Experiments on a lock-
based binary search tree and a lazy linked list show that NBR
significantly outperforms many state of the art reclamation
algorithms. In the tree, NBR is faster than next best algo-
rithm, DEBRA, by up to 38% and HP by up to 17%. And, in
the list, NBR is 15% and 243% faster than DEBRA and HP,
respectively.

CCS Concepts: •Computingmethodologies→Concur-
rent computing methodologies.

Keywords: safe memory reclamation, concurrency.

ACM Reference Format:
Ajay Singh, Trevor Brown, and Ali Mashtizadeh. 2021. NBR: Neu-
tralization Based Reclamation. In 26th ACM SIGPLAN Symposium

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8294-6/21/02.
https://doi.org/10.1145/3437801.3441625

on Principles and Practice of Parallel Programming (PPoPP ’21), Feb-
ruary 27-March 3, 2021, Virtual Event, Republic of Korea. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3437801.3441625

1 Introduction
Fundamentally, safe memory reclamation (SMR) is about an-
swering the question: When is it safe to free a record? Unlike
garbage collection, which is automatic, SMR requires a pro-
gram to invoke a retire operation on each record at some
point after it becomes garbage (i.e., is unlinked from the data
structure). The task of an SMR algorithm is to eventually
free an unlinked record once no thread holds a pointer to
it [7, 13, 35].

The challenge of SMR in concurrent data structures comes
from use-after-free conflicts between threads, where one
thread accesses a record that is concurrently freed by an-
other. For example, consider a lazy-list where one thread is
searching and another is deleting. The first thread obtains
a reference to a record and stores it in a local variable. The
other thread unlinks and frees. At this point the first thread’s
reference is no longer safe as the record it points to has been
freed.
Researchers have developed a rich variety of SMR al-

gorithms, with a diverse spectrum of desirable properties,
idiosyncrasies and limitations. After experimenting with
SMR algorithms and observing the state of art [2–7, 13–
16, 18, 19, 21, 27, 29, 32, 35, 37, 42, 46], we identified the
following set of desirable properties. [P1] Performance: recla-
mation operations should ideally offer both low latency and
high throughput. [P2] Bounded Garbage: The number of
records that are unlinked but not yet reclaimed should be
bounded, even if threads experience halting failures or long
delays. [P3]Usability: Intrusive changes to code, data, and the
build environment, should be minimized. [P4] Consistency:
Performance should not be drastically affected by changes
in the workload (e.g., when shifting between read-intensive
and update-intensive workloads). Additionally, there should
be minimal performance degradation when the system is
oversubscribed (with more threads than cores). [P5] Appli-
cability: The algorithm should be usable with as many data
structures as possible.

To set the stage for our contribution, we must first discuss
other approaches. We broadly categorize existing work into:
hazard pointer-based reclamation (HPBR), quiescent state-
based reclamation (QSBR), epoch-based reclamation (EBR),
reference counting based reclamation (RCBR), and hybrid al-
gorithms that combine the aforementioned approaches [29].

175

https://doi.org/10.1145/3437801.3441625
https://doi.org/10.1145/3437801.3441625
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Ajay Singh, Trevor Brown, and Ali Mashtizadeh

In general, QSBR and EBR are fast but do not bound garbage,
HPBR has bounded garbage but is not fast, and RCBR is nei-
ther fast nor does it bound garbage (in case retired nodes
have pointer cycles [18]). Hybrid approaches have generally
focused on achieving P1 and P2 simultaneously, usually by
combining EBR (for its speed) with some variant of HPBR
(to bound garbage), with varying levels of success.

The hybrid algorithm that most closely resembles our ap-
proach is DEBRA+ [13], a variant of EBR (with a restricted
form of HPBR) that is designed for lock-free data structures.
DEBRA+ is fast, and it achieves bounded garbage via a neu-
tralizing mechanism based on POSIX signals and data struc-
ture specific recovery code. A thread whose reclamation is
delayed by a slow thread will send a neutralizing signal to the
slow thread. Upon receipt of a neutralizing signal, a thread
executes its recovery code and then restarts its data struc-
ture operation, allowing reclamation to continue, ultimately
guaranteeing a bound on the number of unreclaimed records.
However, this bound on garbage comes at the cost of both us-
ability and applicability, as users need to write data structure
specific recovery code that is not always straightforward, or
even possible. Moreover, it is not clear how DEBRA+ could
be used for lock-based data structures, since neutralizing a
thread that holds a lock could cause deadlock.
Contribution: Existing SMR algorithms all have significant
shortcomings in their attempts at satisfying properties P1
through P5. This motivated us to propose a new Neutral-
ization Based Reclamation algorithm (NBR) that matches or
outperforms existing SMR algorithms [P1], bounds garbage
[P2], is simple to use [P3], exhibits consistent performance,
even on oversubscribed systems [P4], and is applicable to
a large class of data structures, some of which are not sup-
ported by popular SMR algorithms [P5].
NBR’s neutralization technique is similar to that of DE-

BRA+, with a few key differences. In NBR, each thread places
unlinked objects in a thread-local buffer, andwhen the buffer’s
size exceeds a predetermined threshold, the thread sends a
neutralizing signal to all other threads. Upon receipt of such
a signal, a thread checks whether its current data structure
operation has already done any writes to shared memory,
and if not, restarts its operation (using the C/C++ proce-
dures sigsetjmp and siglongjmp). Otherwise, it finishes
executing its operation. In contrast, to guarantee bounded
garbage in DEBRA+, a thread must restart even if it has
already written to shared memory—a design decision that
limits DEBRA+’s applicability to specific lock-free data struc-
tures, and necessitates data structure specific recovery code.
NBR does not require any recovery code, and can be used
with nearly all structures that DEBRA+ supports and many
others structures DEBRA+ does not, including some lock-
based algorithms, such as a lock-based binary search tree
with lock-free searches [17] (DGT).

We also present an optimized version of NBR called NBR+
in which threads send fewer signals, and yet reclaimmemory

more often. This is accomplished by allowing threads to infer
whenmemory can be freed simply by passively observing the
signals sent in the system. Finally, as our experiments show,
NBR+ is highly efficient, significantly outperforming the
state of the art in SMR in various data structure workloads
on a large-scale 4-socket Intel system.

The rest of the paper is structured as follows. Related work
is surveyed in Section 2. In Section 3, we introduce the model.
Section 4 describes our basic algorithm NBR, and character-
izes its applicability. We describe an optimized version NBR+
in Section 5, followed by a brief discussion on NBR’s correct-
ness in Section 5.4. Finally, experiments appear in Section 6,
followed by conclusions in Section 7.

2 Related Work
Although detailed surveys of safe memory reclamation al-
ready exist in earlier works [13, 29], we would like to study
existing techniques specifically through the lens of the de-
sirable properties defined above.
RCBR involves explicitly counting the number of incoming
pointers to a record, and typically storing this count along-
side the record. The inclusion of thismetadata in records com-
plicates any advanced pointer arithmetic or implicit pointers,
and can require changes to record layouts (or the use of a
custom allocator) as well as size. RCBR typically requires a
programmer to invoke a deref operation to dereference a
pointer (and sometimes to explicitly invoke operations for
read, write and CAS) [6, 18, 32, 37], adding significant over-
head and programmer effort [opposing P1, P3]. Programmer
intervention is also needed to identify and break pointer
cycles in garbage records.
HPBR incurs significant overhead every time a new record
is encountered, as a thread must first announce a hazard
pointer (HP) to it in a shared location, then issue a memory
fence (or use an atomic exchange instruction to announce
the hazard pointer) and then check whether the record has
already been unlinked [19, 32, 35] [opposing P1, P3]. If the
record has been unlinked, the data structure operation try-
ing to access it must be restarted (a data structure specific
action). Correctly dealing with such failure cases can require
extensive code changes. This may also require the program-
mer to reprove the data structure’s progress guarantees [13].
Additionally, it is not clear how HPs could be used with
data structures that allow threads to traverse pointers in un-
linked records [13], and there are many examples of such
data structures, e.g., [1, 8, 10, 20, 23, 25, 31, 36, 39, 43] [op-
posing P5]. (In such data structures, a search can potentially
pass through many unlinked records, and yet end up back
in the data structure, at the appropriate location.)

The latter limitationwas addressed by Beware and Cleanup—
a hybrid of RCBR and HPBR [27]. However, this algorithm
requires a programmer to write a data structure specific
cleanup procedure that changes all pointers in an unlinked
record to point to current records in the data structure. This

176

NBR: Neutralization Based Reclamation PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

cleanup code ensures bounded garbage for data structures
that allow traversing unlinked records, but the algorithm
has higher overhead than either RCBR or HPBR and requires
significant programmer effort [opposing P1, P3].
QSBR and EBR [26, 29, 34] both use the observation that,
in many data structures, threads do not carry pointers ob-
tained in one data structure operation forward for use in a
subsequent operation. QSBR and EBR each have a simple in-
terface in which the programmer need only invoke a specific
operation at the start and end of a data structure operation.
Unlike the approaches above, QSBR and EBR avoid all per-
record and per-access overheads. A thread can reclaim its
garbage records whenever it detects that all other threads
have started a new data structure operation (and hence for-
gotten all pointers to said garbage records). However, in the
event that a thread halts or is delayed, the amount of unre-
claimed garbage can grow unboundedly [opposing P2].
DEBRA+ (described above) was introduced by Brown in

2015 [13]. In the same paper, an algorithm called DEBRA
was proposed which, to the best of our knowledge, is the
fastest EBR algorithm. DEBRA does not bound the number
of unreclaimed records (garbage), but was shown to be faster
than DEBRA+. Note that our experiments show NBR+ often
outperforms DEBRA.

SinceDEBRA, numerous hybrid algorithms offering bounded
garbage have appeared, for example, Hyaline (HY) [37], Haz-
ard Eras (HE) [42], Interval Based Reclamation (IBR) [46],
and Wait Free Eras (WFE)[38]. All of these algorithms use
per-record metadata to encode the times at which a record is
allocated and unlinked, and the code instrumentation needed
is similar to HPs [opposing P3]. HPs require per-record re-
serve and unreserve calls and fallback code (to restart the
operation) in case the reservation fails (because the record is,
or might be, unlinked). It is unclear how HE, IBR and WFE
could be used with data structures that allow traversing
unlinked records [opposing P5]. As we will see in our ex-
periments, these algorithms also incur non-trivial overhead
[opposing P1].

Various other algorithms utilize operating system features
such as forced context switches [5], POSIX signals [3, 4],
and hardware transactional memory [2, 21]. QSense [5] is
a hybrid algorithm that uses QSBR as a fast code path, and
HPs with forced context switches as a slow code path to
bound garbage. However, in the event of long thread delays,
reclamation can only proceed on the slow path, which is as
slow as HPBR. QSense has been shown to be slower than
EBR [5] [opposing P1]. None of [2, 4, 5] can be used with data
structures that allow threads to traverse unlinked records
[opposing P5]. Forkscan (FS) [3] was succeeded by Thread-
Scan (TS) [4], which addressed this issue, but FS assumes
the programmer will not use advanced pointer arithmetic
techniques (or implicit pointers) [opposing P3]. Addition-
ally, FS has been shown to be slower than HPs in several
workloads [3] [opposing P1].

-� -�

...

... ..
.......................
................
.............
..............
..............
..............
...........

.............
.............
..............
..............
..............
...............
.........................

...

Quiescent
phase

Quiescent
phase

data-structure operation

endΦ𝑟𝑒𝑎𝑑beginΦ𝑟𝑒𝑎𝑑

neutralizable(Φ𝑟𝑒𝑎𝑑) (Φ𝑤𝑟𝑖𝑡𝑒)non-neutralizable

Figure 1. Visualizing the form of a data-structure operation
for which NBR can be used. The thread performing this oper-
ation can be neutralized in the read-phase (Φ𝑟𝑒𝑎𝑑). However,
it cannot be neutralized in the write-phase (Φ𝑤𝑟𝑖𝑡𝑒). endΦ𝑟𝑒𝑎𝑑

marks the beginning of the operation’s Φ𝑤𝑟𝑖𝑡𝑒 .

Optimistic Access (OA) and Automatic Optimistic Access
(AOA) [15, 16] proposed a particularly interesting approach:
they optimistically allow threads to accesses reclaimed nodes,
and verify after the fact that the access was safe. This requires
an assumption that either (a) memory will not be freed to
the OS, or (B) any resulting trap/exception (such as a seg-
mentation fault) will be caught and handled [opposing P3].
Additionally, OA requires the programmer to transform data
structures into a normalized form [45] (which is similar to,
but not the same as, the form we assume in this paper), and
instrument every read/write/CAS [opposing P3]. AOA auto-
mates this transformation with compiler support (for data
structures that have a normalized form). Unfortunately, it
doesn’t appear that AOA has been ported to modern compil-
ers. The need for a normalized form was eliminated in Free
Access (FA) [14], which used a compiler extension to perform
automatic instrumentation of writes and blocks of consecu-
tive independent reads. FA is a general technique that has
been shown to have comparable performance to HPBR [14]
[opposing P1]. In contrast, our work targets applications that
can benefit from the high performance handcrafted SMR.

3 Model
We consider an 𝑛 thread asynchronous shared memory sys-
tem. Threads can perform atomic read, write, compare-and-
swap (CAS) and fetch-and-add (FAA). A data structure con-
sists of a set of records which are accessible from a root
(e.g., the head of a list). A record can be viewed as a set of
fields. Each record can be in one of five states throughout its
lifecycle: (1) allocated: record allocated from heap but not
accessible through the root, (2) reachable: the record can be
reached by following references from the root, (3) unlinked:
is not reachable from (any) root but threads may still have
references to it in thread private memory, (4) safe: a record
is unlinked and no thread has a reference to it, and (5) re-
claimed (or freed): a record is returned to the OS. In states 3
and 4, a record is garbage.

4 NBR
4.1 Assumptions on the data structure
NBR requires a data structure’s operations to have (or be
restructured into) the following form. This form is needed
for the neutralization mechanism wherein an operation that

177

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Ajay Singh, Trevor Brown, and Ali Mashtizadeh

has not yet written to shared memory is forced to restart.
The required form is described as a sequence of phases (illus-
trated in Figure 1), with specific rules in each phase. Along
the way, we discuss potential pitfalls for readers unfamiliar
with the use of sigsetjmp and siglongjmp.

Phase 0: preamble. Accesses (reads/writes/CASs) to global
variables are permitted. System calls (heap allocation/deallo-
cation, file I/O, network I/O, etc.) are permitted. Access to
shared records, for example, nodes of a shared data structure,
is not permitted.
Phase 1: Φ𝑟𝑒𝑎𝑑 (read phase). Reading global variables is per-
mitted and reading shared records is permitted if pointers
to them were obtained during this phase (e.g., by traversing
a sequence of shared objects by following pointers starting
from a global variable—i.e., a root). Writes/CASs to shared
records, writes/CASs to shared globals, and system calls, are
not permitted.

To understand the latter restriction, suppose an operation
allocates a node using malloc during its Φ𝑟𝑒𝑎𝑑 , and before
it uses the node, the thread performing the operation is
neutralized. This would cause a memory leak.
Additionally, writes to thread local data structures are

not recommended. To see why, suppose a thread maintains
a thread local doubly-linked list, and also updates this list
as part of the Φ𝑟𝑒𝑎𝑑 of some operation on the shared data
structure. If the thread is neutralized in middle of its update
to this local list, it might corrupt the structure of the list. a
Phase 2: reservation. This is a conceptual stage that does not
necessarily correspond to any data structure code. However,
this is where a key NBR operation will be invoked. At this
point, one must be able to identify all shared objects that
will be modified by the operation in the next phase, so they
can be provided to NBR. We call these reserved records.
Phase 3: Φ𝑤𝑟𝑖𝑡𝑒 (write phase). Accesses (reads/writes/CASs)
to global variables, and system calls, are permitted. Accesses
(including write/CAS) to shared records are permitted only if
the records are reserved. To understand what could go wrong
if this restriction is violated, we need to better understand
NBR, so we will return to this restriction with an example in
Section 4.4.
Finally, threads not executing a data structure operation

are said to be in a quiescent phase (essentially the same as
phase 0).
4.2 Overview of NBR
In NBR, each thread accumulates records that it has unlinked
in a private buffer (or limbo bag). When the size of a thread
𝑇 ’s buffer exceeds a predetermined threshold, the thread
sends a neutralizing signal to all other threads. Upon receipt

aIn some cases it is safe to write to thread local storage (TLS). For example,
a thread could use TLS to maintain statistics that are supposed to persist
despite neutralization. Similarly, some idempotent or atomic changes to
TLS should remain correct even if one is neutralized. Proceed with caution.

of such a signal, the behaviour of a thread 𝑇 ′ depends on
which phase it is executing in.

If 𝑇 ′ is in a quiescent phase, or preamble (Phase 0), it
holds no pointers to shared records, and does not prevent
𝑇 from reclaiming records in its buffer. 𝑇 ′ simply continues
executing (effectively ignoring the signal).
On the other hand, if 𝑇 ′ is in Φ𝑟𝑒𝑎𝑑 , it may hold pointers

to records in 𝑇 ’s buffer. If 𝑇 ′ were to continue executing,
it would have to prevent 𝑇 from reclaiming records. Note,
however, that𝑇 ′ has not yet performed any modifications to
any shared records (since it is still in Φ𝑟𝑒𝑎𝑑). So,𝑇 ′ can simply
discard all of its pointers (that are in its private memory),
and jump back to the start of its Φ𝑟𝑒𝑎𝑑 , without leaving any
shared data structures in an inconsistent state. To implement
this jump, every data structure operation invokes sigsetjmp
at the start of its Φ𝑟𝑒𝑎𝑑 , which creates a checkpoint (saving
the values of all stack variables). A thread can subsequently
invoke siglongjmp to return to the last place it performed
sigsetjmp (and restore the values of all stack variables).b
It can then retry executing its Φ𝑟𝑒𝑎𝑑 , traversing a new se-
quence of records, starting from the root, without any risk of
accessing any records freed by 𝑇 (since those are no longer
reachable).
The subtlety in NBR arises when 𝑇 ′ is in Φ𝑤𝑟𝑖𝑡𝑒 . In this

case,𝑇 ′ may hold pointers to records in the buffer of𝑇 . Thus,
if it continues executing, 𝑇 ′ must prevent 𝑇 from reclaim-
ing these records. Moreover, since 𝑇 ′ may have modified
some shared records (but not completed its operation yet),
we cannot simply restart its data structure operation, or we
may leave the data structure in an inconsistent state. So, 𝑇 ′

will not restart its operation. Instead, it will simply continue
executing wherever it was when it received the signal (effec-
tively ignoring the signal). At this point, the reader might
wonder how we simultaneously avoid:

a. Blocking the reclamation of 𝑇 , and
b. The possibility that 𝑇 ′ continues executing and it ac-

cesses a record freed by 𝑇 .
The solution lies in the reservation phase (Phase 2) of 𝑇 ′.
During the reservation phase of 𝑇 ′, just before it begins its
Φ𝑤𝑟𝑖𝑡𝑒 , 𝑇 ′ reserves all of the shared records it will access in
its Φ𝑤𝑟𝑖𝑡𝑒 by announcing pointers to them in a shared array.
These reservations serve a similar purpose to hazard pointers,
but are quite different from HP in terms of performance and
safety guarantees. This is discussed further in Section 5.3. By
the time𝑇 ′ is in itsΦ𝑤𝑟𝑖𝑡𝑒 (so it will ignore any neutralization
signals), its reservations are visible to 𝑇 , and 𝑇 can refer to
these reservations to avoid reclaiming any of those records.
In short, operations in the Φ𝑟𝑒𝑎𝑑 discard their pointers

and restart, and operations in the Φ𝑤𝑟𝑖𝑡𝑒 must have reserved
them. This empowers the reclaimers to assume that readers
lose all of their pointers in response to neutralizing, and the

bTechnically sigsetjmp saves only the current stack frame. Stack variables
defined deeper on the stack will not necessarily be saved or restored.

178

NBR: Neutralization Based Reclamation PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Algorithm 1 NBR. Assumes, max number of reservations
are less than the limboBag size.

thread local variable:
1: int tid ⊲ current thread id
2: record *limboBag ⊲ per-thread list of unlinked records. Maxsize:S
3: bool restartable ⊲ local var to track Φ𝑟𝑒𝑎𝑑 /Φ𝑤𝑟𝑖𝑡𝑒

4: record *tail ⊲ Pointer to last record in limboBag

shared variable:
5: atomic<record*> reservations[N][R] ⊲ N:#threads, R:max

reserved records. |R| << |S|.

6: procedure beginΦ𝑟𝑒𝑎𝑑 ()
7: reservations[tid].clear();
8: CAS(&restartable, 0, 1);
9: end procedure
10: procedure endΦ𝑟𝑒𝑎𝑑 ({𝑟𝑒𝑐1, 𝑟𝑒𝑐2 · · · 𝑟𝑒𝑐𝑅 })
11: reservations[tid] = {𝑟𝑒𝑐1, 𝑟𝑒𝑐2 · · · 𝑟𝑒𝑐𝑅};
12: CAS(&restartable, 1, 0);
13: end procedure
14: procedure retire(rec)
15: if isLimboBagTooLarge() then
16: signalAll();
17: reclaimFreeable(tail);
18: end if
19: limboBag[tid].append(rec);
20: end procedure
21: procedure reclaimFreeable(tail)
22: 𝐴 = collectReservations();
23: 𝑅 = limboBag[tid].remove(A, tail);
24: free({𝑅});
25: end procedure

writers lose all pointers that are not reserved. As a result,
once a thread sends a neutralizing signal to all other threads,
it can scan all reservations, and free any records in its buffer
(limbo bag) that are not reserved.

4.3 Implementation of NBR
Algorithm 1 shows the pseudocode for NBR. Each thread col-
lects unlinked records in its limboBag (line 2), and maintains
a local restartable variable that indicates whether the thread
should jump back to the start of its Φ𝑟𝑒𝑎𝑑 in the event that it
receives a neutralization signal (line 3). We say the thread is
restartable if restartable is true (1), and non-restartable other-
wise. Additionally, each thread, before entering the Φ𝑤𝑟𝑖𝑡𝑒 ,
reserves all records it might access in a single-writer multi-
reader (SWMR) reservation array, (line 5). We assume the
maximum number 𝑅 of reserved records is strictly less than
maximum size 𝑆 of a limbo bag.

A thread in Φ𝑟𝑒𝑎𝑑 clears its reservations (if any), and then
changes restartable to true using a CAS (Line 8). This CAS
might initially seem strange, since it is performed on a single-
writer variable and cannot fail. The CAS prevents instruction

reordering on x86-64 architectures (additional fences may be
needed for more relaxed memory models). More specifically,
the goal of CAS at line 8 is to ensure that a thread𝑇 becomes
restartable before any subsequent reads of shared records. If
this CAS were simply an atomic write (rather than a read-
modify-write instruction), it would be possible for 𝑇 ’s reads
of shared records to be reordered before this write. In other
words some reads of shared records in Φ𝑟𝑒𝑎𝑑 may appear
to occur in preamble (or previous Φ𝑤𝑟𝑖𝑡𝑒) due to instruction
reordering. This could end up breaking the rule that says
access to shared records is not permitted in preamble (phase
0) as discussed in Section 4.1. As a result, the thread, which
is not yet restartable, might ignore a neutralization signal
and access a freed record.

Just before a thread𝑇 enters a Φ𝑤𝑟𝑖𝑡𝑒 , it announces a set of
reservations, and then changes restartable to false using CAS
(Line 12). This CAS is used to broadcast the reservations to
other threads. More specifically, a CAS by thread 𝑇 at line
12 implies a memory fence, which ensures that all of the
reservations (announced at the previous line 11) are visible
to other threads before 𝑇 changes restartable to false. If this
CAS were a simple write, it would be possible for a reclaimer
to miss some reservations of 𝑇 , and erroneously free those
recordsc
In other words, the following incorrect execution may

occur on x86/64 if a write is used instead of CAS: a thread
𝑇 reserves record 𝑟𝑒𝑐 and writes 0 to restartable. Suppose
the reservations of thread 𝑇 remain in the processor’s store
buffer, and are not visible to other threads yet. Then, another
thread 𝑇 ′ sends a neutralizing signal to 𝑇 , scans the reserva-
tions and does not see 𝑟𝑒𝑐 , and consequently frees 𝑟𝑒𝑐 . Upon
receiving the signal, 𝑇 ′ will not restart since it has already
written 0 to restartable.d Instead, it continues executing, and
dereferences 𝑟𝑒𝑐 (accessing a freed record).

The retire operation (line 14) begins by checkingwhether
the size of the limbo bag is above a predetermined threshold
(32k in our experiments), at line 15. If so, it sends a neutraliz-
ing signal to all threads using signalAll (line 16), and then
proceeds to reclaim all safe (i.e., unreserved) records (line 17).
Otherwise, it simply adds rec to limboBag.
The reclaimFreeable procedure frees all records (up to

the last record pointed to by thread local pointer, tail) in the
limboBag that are not reserved (line 21). It first scans reser-
vations array of all other threads and collects the reserved
records in set𝐴 (line 22). Then it removes the retired records,
which are not in 𝐴 (set of reserved records), up to the 𝑡𝑎𝑖𝑙 of
the limboBag using remove(A, tail) at line 23. Finally, it
frees the safe set of records 𝑅 at line 24.

cInstead of using CAS, on modern x86/64 machines we can use the more effi-
cient xchg instruction. See Section 11.5.1 of https://www.amd.com/system/
files/TechDocs/47414_15h_sw_opt_guide.pdf for further details.
dIf𝑇 and𝑇 ′ are executing on different processors, then𝑇 will not see the
effects of any pending writes in the store buffer of 𝑇 ′, but 𝑇 ′ will see the
effects its own pending writes in order to maintain sequential consistency.

179

https://www.amd.com/system/files/TechDocs/47414_15h_sw_opt_guide.pdf
https://www.amd.com/system/files/TechDocs/47414_15h_sw_opt_guide.pdf

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Ajay Singh, Trevor Brown, and Ali Mashtizadeh

After discussing the implementation of NBR we can now
elaborate on how readers, writers and reclaimers collaborate
to achieve safe memory reclamation.
4.3.1 Reader-reclaimer handshake Each thread 𝑇 ′ at
the time of beginΦ𝑟𝑒𝑎𝑑 saves its execution state (program
counter and stack frame) using sigsetjmp so that when it
becomes restartable it can jump back to this state upon re-
ceiving a neutralizing signal.When a reclaimer 𝑇 sends a neu-
tralization signal to thread 𝑇 ′, the operating system causes
the control flow of 𝑇 ′ to be interrupted, so that 𝑇 ′ will im-
mediately execute a signal handler if𝑇 ′ is currently running.
(Otherwise, if 𝑇 ′ is not currently running, the next time it
is scheduled to run it will execute the signal handler before
any other steps.) The signal handler determines whether
𝑇 ′ is restartable by reading the local restartable variable. If
the thread is restartable, then the signal handler will invoke
siglongjmp and jump back to the start of the Φ𝑟𝑒𝑎𝑑 (so it is
as if 𝑇 ′ never started the Φ𝑟𝑒𝑎𝑑).
This behaviour represents a sort of two-step handshake

between readers (threads in Φ𝑟𝑒𝑎𝑑) and reclaimers (threads
executing lines 16 and 17 in retire) to avoid scenarios where
a reader might access a freed record. A reclaimer guarantees
that before reclaiming any of its unlinked records it will
signal all threads, and all readers guarantee that they will
relinquish any reference to unsafe records when they receive
a neutralization signal.
4.3.2 Writers handshake (1) Each reclaimer signals all
threads before starting to reclaim any records. When a writer
receives a signal, it executes a signalHandler that determines
the thread is non-restartable, and immediately returns. The
reclaimer then goes on to reclaim its limboBag (line 17),
except for any reserved records contained therein, indepen-
dently from the actions of the writer .
This is safe because a writer , before entering into the

Φ𝑤𝑟𝑖𝑡𝑒 , reserves all of the shared records it might access in
its Φ𝑤𝑟𝑖𝑡𝑒 (line 11). Thus, (2) the writer guarantees to the
reclaimer that, although it will not restart its data structure
operation, it will only access reserved records. The (3) re-
claimer , in turn, guarantees it will scan all announcements
after signaling and before reclaiming the contents of its lim-
boBag, and will consequently avoid reclaiming any records
that will be accessed by the writer in its Φ𝑤𝑟𝑖𝑡𝑒 .

This three-step handshake formed by (1), (2) and (3) avoids
scenarios where a writer might access a freed record. Cru-
cially, allwriters atomically ensure that their reserved records
are visible to the reclaimer at the moment they become non-
restartable. In turn, reclaimers scan reservations after send-
ing neutralization signals (at which point any thread that
does not restart has already made its reservations visible).
4.4 Revisiting the Φ𝑤𝑟𝑖𝑡𝑒 restriction
In this section, wewill trace an incorrect execution that could
occur if a thread accesses any record that is not reserved
before entering the Φ𝑤𝑟𝑖𝑡𝑒 .

Suppose a thread 𝑇 is in a Φ𝑤𝑟𝑖𝑡𝑒 , and sleeps just before
it accesses a shared record 𝑟𝑒𝑐 , which it has not reserved.
Then, another thread 𝑇 ′ sends a neutralization signal to 𝑇
using signalAll. Next, 𝑇 ′ scans the reservations array of
the thread 𝑇 . 𝑇 did not reserve 𝑟𝑒𝑐 so 𝑇 ′ will not find 𝑟𝑒𝑐 in
𝑇 ’s reserved records (which violates the writers handshake,
Section 4.3.2). Therefore,𝑇 ′ will assume that 𝑟𝑒𝑐 can be freed
safely, and will do so. Finally,𝑇 wakes up and proceeds with
its unsafe access of 𝑟𝑒𝑐 .
Ensuring reclamation can occur. The total number of
records that can be reserved over all threads must be strictly
smaller than the limboBag capacity, in order to ensure that
threads can reclaim records whenever the limboBag is full. In
practice, most data structures require few reservations. For
example in our experiments, operations in the lazylist [31]
required at most 2 reservations, and the Harris list [28],
DGT [17], and (a,b)-trees [9] at most 3.

5 NBR+
Next, we explain a performance issue with NBR which moti-
vated us to design an improved version called NBR+. Signals
on linux trigger page-fault routines and a switch from user
to kernel mode that incurs significant overhead. Therefore,
it is desirable to send as few signals as possible (while main-
taining high reclamation throughput). However, every time
a thread reclaims records from its limboBag, NBR requires
the thread to send signals to all other threads. This induces
a relaxed grace period (RGP): A time interval [t, t’] during
which each thread is neutralized due to a reclamation event
triggered by some reclaimer thread. In NBR, every thread
induces a RGP every time it tries to reclaim its limboBag. As
a result, in order for all 𝑛 threads to reclaim their limboBags,
𝑛(𝑛−1) signals must be sent. The need to send𝑂 (𝑛2) signals
to allow all 𝑛 threads to reclaim memory can severely limit
performance. Naturally, we would like to improve this.
Suppose, in NBR, at some time 𝑡 , a thread sends 𝑛 − 1

signals to other threads so it can reclaim its limboBag. This
causes all of the other 𝑛 − 1 threads to discard any unre-
served references to shared records. Meaning, at time 𝑡 , the
(unreserved) records in the limbo bags of all threads are
safe to free. Therefore, if somehow we could propagate this
information that a RGP has occurred due to some thread 𝑇 ,
then all other threads could piggyback on 𝑇 to partially or
completely reclaim their own limbo bags without sending
signals of their own. In other words, in the best case, all 𝑛
participating threads could reclaim memory after detecting
exactly one RGP, induced by sending a total of 𝑛 − 1 signals.
Overview of NBR+ The key insight in NBR+ is that when
a reclaimer sends neutralization signals to all threads, all
threads discard their pointers to unreserved records, and
thus all threads can potentially reclaim some records in their
limboBags. This suggests a design wherein each thread (1)
passively detects a RGP by observing signals sent by another

180

NBR: Neutralization Based Reclamation PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Algorithm 2 NBR+: Only variables that differ from NBR are
shown here. NBR+ includes all variables and procedures of
Algorithm 1. The retire operation is different in NBR+.

thread local variable:
1: int scanTS[N]; ⊲ N = #threads. P = set of processes
2: bool firstLoWmEntryFlag = true;
3: record* bookmarkTail;

shared variable:
4: atomic<int> announceTS[N];

5: procedure retire(rec)
6: if isAtHiWm() then
7: FAA(&announceTS[tid],1); ⊲ RGP begin
8: signalAll()
9: FAA(&announceTS[tid],1); ⊲ RGP end
10: reclaimFreeable(tail);
11: cleanUp();
12: else if isAtLoWm() then
13: if firstLoWmEntryFlag then
14: bookmarkedTail = tail;
15: scanTS[tid] = 𝑠𝑐𝑎𝑛𝐴𝑛𝑛𝑜𝑢𝑛𝑐𝑒𝑇𝑆 ()
16: end if
17: for each otid ∈ P do ⊲ otid: other thread’s id in P.
18: if announceTS[otid]≥scanTS[tid][otid]+2 then
19: reclaimFreeable(bookmarkTail);
20: cleanUp();
21: break;
22: end if
23: end for
24: end if
25: limboBag[tid].append(rec);
26: end procedure
27: procedure cleanUp
28: firstLoWmEntryFlag = 1;
29: end procedure

thread, and (2) determines which records in its limboBag
were unlinked before the RGP (i.e., are safe to reclaim).
5.1 Implementation of NBR+
We explain the design of NBR+ by building our exposition
around three main design challenges.

(C1) When should a thread start tracking other threads’
signals to detect a RGP?

(C2) How can a thread recognize that a RGP has occurred?
(C3) Once a thread recognises that a RGP has occurred how

should it determine which records in its limboBag are
safe to reclaim?

As a solution to (C1), each thread in NBR+, in addition to
watching the limboBag size to determine when it becomes
too large (triggering neutralization), also determines when
the limboBag size crosses a predetermined threshold called
the LoWatermark (e.g., one half full or one quarter full). If

a thread’s limboBag is full, we say that thread is at the Hi-
Watermark. If a thread’s limboBag keeps growing without
reclamation it will first cross the LoWatermark and then
hit the HiWatermark. As shown in Algorithm 2, a thread
determines whether it has passed the HiWatermark or LoWa-
termark using procedures isAtHiWm (line 6) and isAtLoWm
(line 12). Once a thread has passed the LoWatermark, it be-
gins recording and analyzing information about signals sent
by other threads to detect RGPs.

To tackle (C2), a reclaimer at the LoWatermark (who wants
to detect a RGP) must perform a sort of handshake with
another reclaimer at the HiWatermark (who triggers a RGP).
NBR+ implements this handshake using per-thread single-
writer multi-reader timestamps (similar to vector clocks).

Whenever a reclaimer hits the HiWatermark, it first in-
crements its timestamp (to an odd value) to indicate that it
is currently broadcasting signals (line 7). This denotes the
beginning of a RGP . It then sends signals to all threads, and
increments its timestamp again (to an even value) to indicate
that it has finished broadcasting signals (line 9). This denotes
the end of the RGP .
Whenever a reclaimer 𝑇 passes the LoWatermark, it col-

lects and saves the current timestamps of all threads (line 15),
as well as the current tail pointer of its limboBag (line 14), so
it can remember precisely which records it had unlinked be-
fore it reached its LoWatermark. 𝑇 then periodically collects
the timestamps of all threads, comparing the new values it
sees to the original values it saw when it passed the LoWa-
termark (line 17 - line 23). (To obtain high performance, we
amortize the overhead of scanning announceTS over many
retire operations.) It continues to do this until it either de-
tects a RGP or hits the HiWatermark itself (and sends signals
to induce its own RGP). Observe that, after 𝑇 hits its LoWa-
termark, if the timestamp of any thread changes from one
even number to another even number, then that thread has
both begun and finished sending signals to all threads since
𝑇 hit the LoWatermark. Thus, 𝑇 can identify that a RGP has
occurred since it hit its LoWatermark, solving (C2).

Finally, to tackle (C3), observe that T saves the last record
(𝑡𝑎𝑖𝑙 of its limboBag) it had retired before entering the LoWa-
termark at line 14. If T successfully observes a RGP as ex-
plained in the solution to (C2), then all threads would either
have discarded or reserved all their private references to
the records in 𝑇 ’s limboBag up to the saved 𝑏𝑜𝑜𝑘𝑚𝑎𝑟𝑘𝑇𝑎𝑖𝑙 .
Thus,𝑇 can invoke reclaimFreeable to free all unreserved
records up to the 𝑏𝑜𝑜𝑘𝑚𝑎𝑟𝑘𝑇𝑎𝑖𝑙 (line 19). solving (C3).

cleanUp() (line 27) method is used to set firstLoWmEn-
tryFlag after a thread reclaims either at LoWatermark (line 20)
or at HiWatermark (line 11).
A thread that has not reached the LoWatermark or the

HiWatermark simply continues to append any retired records
to its limboBag (line 25).
At first it may appear that a thread 𝑇 can reclaim its lim-

boBag as soon as it receives a neutralizing signal from a

181

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Ajay Singh, Trevor Brown, and Ali Mashtizadeh

reclaimer thread𝑇 ′. However, the receipt of a single signal is
not enough for𝑇 to safely reclaim memory. To safely reclaim
the set 𝑅 of records in its limboBag up to its 𝑏𝑜𝑜𝑘𝑚𝑎𝑟𝑘𝑇𝑎𝑖𝑙 ,
𝑇 needs to know that all threads have been neutralized since
𝑇 retired the records in 𝑅. Otherwise, some other thread may
still have a pointer to a record in 𝑅.

Let us discuss an example of what can go wrong if a thread
reclaims its limboBag after it receives a single signal. Con-
sider a system with three threads𝑇 1,𝑇 2 and𝑇 3. Suppose𝑇 1
is at its HiWatermark,𝑇 2 is at its LoWatermark and𝑇 3 holds
a private reference to a record 𝑟𝑒𝑐 that is in 𝑇2’s limboBag.
𝑇 1, being at its HiWatermark, begins neutralizing all threads
one by one. First, it sends neutralizing signal to 𝑇 2 (starting
a RGP). 𝑇 2, upon receiving the signal, reclaims its limboBag
including 𝑟𝑒𝑐 . Note, that 𝑇 1 hasn’t neutralized 𝑇 3 yet, mean-
ing a RGP has not yet occurred. Now, if 𝑇3 accesses 𝑟𝑒𝑐 , a
use-after-free error would occur. To prevent this, 𝑇 2 should
not reclaim the contents of its limboBag unless 𝑇 1 completes
the RGP by neutralizing 𝑇3 (preventing 𝑇3 from doing this
unsafe access). The crucial point is that 𝑇2 must detect the
start and end of a RGP to know that it can safely reclaim
records in its limboBag.
5.2 Applicability
NBR (+)e naturally applies to many concurrent data struc-
tures that have synchronization-free searches followed by
update(s) because in such data structures searches and up-
dates correspond to the Φ𝑟𝑒𝑎𝑑 and the Φ𝑤𝑟𝑖𝑡𝑒 of NBR, respec-
tively (as shown in Figure 1). Thus, to apply NBR one just
needs to invoke beginΦ𝑟𝑒𝑎𝑑 before the start of the search
and endΦ𝑟𝑒𝑎𝑑 before starting the update(s). For example, in
the lazy-list of Heller et al. [31], the Φ𝑟𝑒𝑎𝑑 of an operation
would begin with the start of the search for target records
and the Φ𝑤𝑟𝑖𝑡𝑒 would consist of the locking and validation
of target records followed by any modifications to them.
Certain other lock-free data structures exhibit a pattern

where searches, in an operation, perform auxiliary update(s)
followed by intended update(s). Such an operation has a se-
quence of read-write phases. For example, in Harris’s lock-free
list [28], while searching the list towards a target location,
a thread may modify the list by unlinking any marked (log-
ically deleted) records it encounters. Then, once it arrives
at the target location, it performs the operation’s intended
modification.
Since NBR is designed for a single Φ𝑟𝑒𝑎𝑑 and Φ𝑤𝑟𝑖𝑡𝑒 , ap-

plying it carelessly to such a data structure could break the
requirement that, after entering a Φ𝑤𝑟𝑖𝑡𝑒 , no new records
are discovered. (This would be unsafe, because it breaks the
writers handshake.) For instance, in such a data structure, if
we enter a Φ𝑤𝑟𝑖𝑡𝑒 to perform an auxiliary update, NBR would
be stuck in the Φ𝑤𝑟𝑖𝑡𝑒 , unable to obtain new pointers (that
have not yet been reserved) to continue its traversal.

eWe will simply write NBR in this section with the understanding that the
entire discussion applies identically to NBR+.

Algorithm 3 Integration of NBR with Harris list[28] with
multiple read/write phases (Φ𝑟𝑒𝑎𝑑Φ𝑤𝑟𝑖𝑡𝑒)+.

1 bool insert(key) {
2 Node *right_node , *left_node;
3 do{
4 right_node = search (key , &left_node);
5 if((right_node !=tail) && (right_node.key==key))
6 return false;
7 Node *new_node = new Node(key);
8 new_node.next = right_node;
9 if (CAS(&(left_node.next), right_node , new_node))
10 return true;
11 }while (true)
12 }
13
14 Node* search(key , Node** left_node) {
15 Node *left_node_next , *right_node;
16 search_again:
17 do {
18 beginΦ𝑟𝑒𝑎𝑑();
19 Node *t = head;
20 Node *t_next = head.next;
21 do{
22 if(! is_marked_reference(t_next)){
23 (* left_node) = t;
24 left_node_next = t_next;
25 }
26 t = get_unmarked_reference(t_next);
27 if (t == tail) break;
28 t_next = t.next;
29 }while(is_marked_reference(t_next) or (t.key <

search_key));
30 right_node = t;
31 endΦ𝑟𝑒𝑎𝑑(left_node, right_node);
32
33 if (left_node_next == right_node)
34 if ((right_node != tail) && is_marked_reference(

right_node.next))
35 goto search_again;
36 else
37 return right_node;
38 if (CAS(&(left_node.next), left_node_next ,

right_node))
39 if ((right_node != tail) && is_marked_reference(

right_node.next))
40 goto search_again;
41 else
42 return right_node;
43 } while(true);
44 }

That said, NBR can be applied in some data structures
that would require multiple read/write phases, provided that
each consecutive pair of read and write phases obey the
requirements set out in Section 4.1.
Example: Harris list. Algorithm 3 shows how NBR can be
used with the Harris list [28], despite the fact that this list
has auxiliary updates. We hope the reader can follow our
exposition on the Harris list, and infer how NBR could be
applied to more sophisticated data structures with similar
design patterns (such as Brown’s ABTree [9], which appears
in our experiments).
To understand how NBR behaves when applied to the

Harris list, suppose the initial list configuration is 𝐿: 1𝑓 =⇒
2𝑓 =⇒ 3𝑡 =⇒ 4𝑓 =⇒ 6𝑓 =⇒ 10𝑓 , where each node is
represented as key𝑚𝑎𝑟𝑘𝑒𝑑 (where𝑚𝑎𝑟𝑘𝑒𝑑 is [𝑡]rue or [𝑓]alse).
Now, suppose a thread𝑇 performs Ins:insert(9), starting with
an invocation of search(). This invocation of search()

182

NBR: Neutralization Based Reclamation PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

starts a Φ𝑟𝑒𝑎𝑑 (line 18) and begins traversing 𝐿. Starting from
⟨𝑝𝑟𝑒𝑑, 𝑐𝑢𝑟𝑟 ⟩ = ⟨1𝑓 , 2𝑓 ⟩ the thread observes ⟨𝑝𝑟𝑒𝑑, 𝑐𝑢𝑟𝑟 ⟩ =

⟨2𝑓 , 3𝑡 ⟩, where 𝑐𝑢𝑟𝑟 = 3𝑡 is marked. To remove marked node
3𝑡 (an auxiliary helping update), 𝑇 enters a Φ𝑤𝑟𝑖𝑡𝑒 (line 31)
and changes the next pointer of 2𝑓 to 4𝑓 , yielding the list
configuration: 1𝑓 =⇒ 2𝑓 =⇒ 4𝑓 =⇒ 6𝑓 =⇒ 10𝑓 . Moving
forward,𝑇 ’s search()will enter a second Φ𝑟𝑒𝑎𝑑 (line 18), and
traverse the list again, starting from the root. As𝑇 now obtain
pointers to new nodes (whichwould be impossible with only a
single Φ𝑟𝑒𝑎𝑑 and Φ𝑤𝑟𝑖𝑡𝑒), we must argue that it doesn’t access
any freed nodes. However, this is straightforward, since it
is again traversing from the root discarding any references
from previous read-write phases. (From the perspective of
SMR, it is as if 𝑇 has simply started a new data structure
operation.)
Now, suppose 𝑇 is neutralized by a concurrent reclaimer

while it is in this second Φ𝑟𝑒𝑎𝑑 . Upon receipt of a neutral-
ization signal, 𝑇 will jump back to the beginning of its sec-
ond Φ𝑟𝑒𝑎𝑑 , and restart its search, once again, from the root.
Note that neutralizing does not affect the lock-free progress
guarantee, since a thread sends neutralization signals only
after performing many successful deletion operations. Sup-
pose 𝑇 eventually performs a Φ𝑟𝑒𝑎𝑑 that reaches the nodes
⟨𝑝𝑟𝑒𝑑, 𝑐𝑢𝑟𝑟 ⟩ = ⟨6𝑓 , 10𝑓 ⟩ where it should perform its modi-
fication. 𝑇 will then enter a final Φ𝑤𝑟𝑖𝑡𝑒 and insert 9𝑓 after
returning (line 37) from the search(), yielding 𝐿: 1𝑓 =⇒
2𝑓 =⇒ 4𝑓 =⇒ 6𝑓 =⇒ 9𝑓 =⇒ 10𝑓 .
Limitation: restarting from the root. In order for NBR to
be safe, it is crucial that Ins forgets all pointers and restarts
from the root every time it begins a new Φ𝑟𝑒𝑎𝑑 . Intuitively,
this is because each new read phase is effectively a new
data structure operation—all pointers are forgotten when
the new Φ𝑟𝑒𝑎𝑑 begins. If it attempts to continue searching
from somewhere in the middle of the list, perhaps by re-
suming its search from a shared node 𝑅 that was reserved
by the previous Φ𝑤𝑟𝑖𝑡𝑒 , then Ins could easily dereference a
freed node. To see why, note that, although 𝑅 cannot be
freed (since it is reserved), the nodes that it points to are
not necessarily reserved, and so they could be freed. Thus,
as soon as Ins follows any pointer starting from 𝑅, it could
access a freed node and crash.
Compatible data structures. There are numerous concur-
rent data structures in the literature with multiple read-write
phases that do restart from the root after any auxiliary up-
dates, and hence are natural candidates for pairing with
NBR. For example, Harris’ list [28], Brown’s lock-free AB-
Tree, chromatic tree and AVL tree (B17) [9], the lock-free
binary search tree of Natarajan et al. [36], and many more
[23, 30, 33, 43]. Among these, we used the lazylist and the
ABTree in our experiments. Due to space constraints, the
Harris list appears in longer version of the paper[44].
Semi-compatible data structures.The need to restart from
the root at the start of each Φ𝑟𝑒𝑎𝑑 suggests that NBR cannot
be used with the data structures like the Harris-Michael list

[35], and some search trees [8, 12, 20, 22, 40], wherein the
searches (Φ𝑟𝑒𝑎𝑑) after each auxiliary update (Φ𝑤𝑟𝑖𝑡𝑒) do not
start from the root. However, we could potentially use NBR
with such data structures if we were to modify the operations
so they restart from the root after any auxiliary updates. De-
pending on the data structure, this might break the progress
guarantee (for example changing a wait-free algorithm into
a lock-free one, or necessitating a new amortized complexity
analysis [22]), or it might simply add overhead.

For some data structures, the overhead of restarting from
the root may be quite low in practice, and forcing operations
to restart from the root may be a reasonable solution. (The
cost of restarting from the root is studied in our experiments.)
For example, in Harris-Michael list, in high contention sce-
narios where 𝑘 threads all contend on an auxiliary CAS to
unlink the same marked node, all threads except for the
one that succeeds this CAS would already restart from the
root [35] anyway! If we modify this list so threads always
restart from the root, in this high contention scenario, 𝑘
threads must restart instead of 𝑘 − 1. Incidentally, by do-
ing this, we essentially obtain the Harris list [28], in which
all threads contending on the auxiliary CAS already restart
from the root. (In low contention scenarios the waywe restart
should not affect performance significantly.)
Furthermore, in search trees, assuming a uniform distri-

bution of accesses, threads tend to spread out in the tree, so
average contention is quite low. This suggests that, when a
thread encounters contention, the performance difference
between restarting from the root and continuing a traversal
from an ancestor will be small in many workloads.
Incompatible data structures.We are aware of a few data
structures that are incompatible with (or would require exten-
sive code changes to work with) NBR. Two concurrent imple-
mentations of a relaxed-balance AVL tree appear in [8, 20].
In each of these implementations, after a key is inserted,
rotations must be performed to rebalance the tree. These
rotations are performed starting at the bottom of the tree,
possibly continuing all the way to the root (traversing up-
wards using parent pointers). In the process of performing
these rotations, a thread may encounter many new nodes
that were not traversed as part of the initial search in the
insert operation. In order to use NBR with these algorithms,
one would need to rewrite the implementations to perform
a new search from the root for each rotation.
A recent lock-free interpolation search tree [12] also ap-

pears to be incompatible. For example, in this algorithm,
entire subtrees are periodically rebuilt to maintain balance,
and during this process, threads mark all nodes in the sub-
tree, one by one, alternating between steps that mark a node
and discover a new node (without restarting from the root
in between). It is not clear how one could transform this
algorithm into the form required by NBR. (Note, however,
that neither DEBRA+ nor HPs can be used with this data

183

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Ajay Singh, Trevor Brown, and Ali Mashtizadeh

Source Data structure Sync. type NBR+ EBR DEBRA+ HP/TS/IBR/HE/WFE/HY/QSense
LL05[31] linked list opt. locks Yes Yes No No (similar to [13])
HL01[28] linked list lock-free Yes Yes * Yes
HM04[35] linked list lock-free No Yes * Yes
DVY14a[20] partially external BST locks ** Yes No No [13]
EFRB10[23] external BST lock-free Yes Yes * No [13]
NM14[36] external BST lock-free Yes Yes * No [13]
EFRB14[22] external BST lock-free No Yes * No [13]
DGT15[17] external BST ticket locks Yes Yes No No (no marks, cannot validate HP)
HJ12[33] internal BST lock-free Yes Yes * No (similar to [13])
RM15[41] internal BST lock-free No Yes No No (similar to [13])
BCCO10[8] partially external AVL opt. locks No Yes No Yes
DVY14b[20] partially external AVL locks No Yes No No [13]
HL17[30] external relaxed AVL tree lock-free Yes Yes Yes No (similar to [13])
B17b[9] external AVL lock-free Yes Yes Yes No [13]
S13[43] patricia trie lock-free Yes Yes * No [13]
BER14[11] external chromatic tree lock-free Yes Yes Yes No [13]
B17a[9] external (a,b)-tree lock-free Yes Yes Yes No [13]
BPA20[12] external interpolation tree lock-free No Yes No No (similar to [13])

Table 1. Applicability of SMR algorithms. Due to space constraints a detailed explanation of the contents of this table is
relegated to [44]. *It appears likely that DEBRA+ is compatible, but one must design non-trivial data structure specific recovery
code. **This is likely possible if code is restructured to reserve all relevant nodes before acquiring any locks.

structure, either. We are not aware of any SMR algorithm
with bounded garbage that is compatible with this tree.)
Comparing with other SMR algorithms. NBR can be
used with many data structures that other SMR algorithms
like DEBRA+ and HP (and variants of HPs, including HE,
IBR, WFE, ThreadScan, HY and QSense) are incompatible
with [17, 23, 31, 33, 36]. There are also some data struc-
tures that are compatible with other SMR algorithms but
not NBR [8, 35]. See Table 1 for an overview. Due to lack of
space, a detailed analysis of the table’s contents, and an ex-
position of how NBR can be applied to these data structures,
is relegated to the full version of this paper [44].
5.3 Ease of use
Figure 2 compares the difficulty of usingHP ,NBR andDEBRA
in the insert operation of the lazy list of Heller et al. [31]. As
Figure 2c demonstrates, HP is cumbersome to use because it
requires a programmer to protect every record by announcing
hazard pointers, using a store/load fence or 𝑥𝑐ℎ𝑔 instruction
to ensure that each announcement is visible in a timely man-
ner by other threads, validating that the announced record is
still safe before dereferencing it, and restarting if validation
fails. Programmers also need to unprotect records that they
will no longer dereference, further increasing the need for
intrusive code changes.
On the contrary, applying NBR to a data structure opera-

tion is, intuitively, similar to performing two-phased locking,
in the sense that the primary difficulty revolves around iden-
tifying where the Φ𝑤𝑟𝑖𝑡𝑒 should begin, and which records it
will access. The programmer just needs to invoke beginΦ𝑟𝑒𝑎𝑑

before the operation accesses its first shared record, in this

example, at the start of the traversal for target records. Then
s/he must invoke endΦ𝑟𝑒𝑎𝑑 before modifying any shared
records. In this example, the Φ𝑤𝑟𝑖𝑡𝑒 begins just before the
lock acquisition on pred. If there are no modifications to be
performed in an operation, for example, in the contains
operation of the lazy-list, then the programmer can simply
invoke endΦ𝑟𝑒𝑎𝑑 before returning from the operation.
DEBRA is simplest as it requires programmers to invoke

just two functions corresponding to the start and the end of
a data structure operation (Figure 2a).

In terms of programmer effort, NBR finds a middleground
between DEBRA and HPs. Although NBR is slightly more
involved than DEBRA, we believe that the benefits due to
NBR’s bounded garbage property and better performance
outweigh the extra effort of identifying which shared records
will be modified by the Φ𝑤𝑟𝑖𝑡𝑒 and where in the code to
invoke endΦ𝑟𝑒𝑎𝑑 .
Just to give readers a quantitative view of the amount of

programming effort needed to use HP and NBR we measured
number of extra reclamation related lines of code needed to
be written in our implementation of insert(), delete()
and contains() methods for the lazylist and DGT. We ob-
served that NBR required only 10 extra lines of code in com-
parison to 30 extra lines of code needed to use HP.
As mentioned earlier, in NBR, before a thread enters a

Φ𝑤𝑟𝑖𝑡𝑒 , it must reserve all the records that will be accessed in
the Φ𝑤𝑟𝑖𝑡𝑒 . In some data structures it might not be possible
to determine precisely which records will be accessed in
the Φ𝑤𝑟𝑖𝑡𝑒 . For example, in a tree, an operation may decide
during the write phase whether to modify the left or right
child pointer. To apply NBR in such a tree, one can simply

184

NBR: Neutralization Based Reclamation PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

void OP_DEBRA ()

{

recl_start_op

RETRY:

pred=head; curr=pred.next;

while (key ≤ curr.key) {

pred=curr;

curr=cur.next;

}

if (key == curr.key) {

return false;

}

lock(pred);

lock(curr);

if (! validate ()) {

unlock(pred); unlock(curr);

goto RETRY;

}

do update

unlock(pred); unlock(curr);

recl_end_op

}

(a) DEBRA

void OP_NBR +()

{

RETRY:

beginΦ𝑟𝑒𝑎𝑑

pred = head; curr = pred.next;

while(key ≤ curr.key) {

pred=curr;

curr=cur.next;

}

endΦ𝑟𝑒𝑎𝑑

if (key == curr.key) {

return false;

}

lock(pred); lock(curr);

if (! validate ()) {

unlock(pred); unlock(curr);

goto RETRY;

}

do update

unlock(pred); unlock(curr);

}

(b) NBR+

void OP_HP()

{

RETRY:

pred = head; curr = pred.next;

protect(curr) RETRY on fail ;

while (key ≤ curr.key) {

unprotect(pred) ;

pred=curr;

curr=cur.next;

protect(curr) RETRY on fail ;

}

if (key == curr.key) {

unprotect(pred) ; unprotect(curr) ;

return false;

}

lock(pred); lock(curr);

if (! validate ()) {

unprotect(pred) ; unprotect(curr) ;

unlock(pred);unlock(curr);

goto RETRY;

}

do update

unprotect(pred) ; unprotect(curr) ;

unlock(pred);unlock(curr);

}

(c) HP
Figure 2. Complexity of using DEBRA, NBR and HP on a lazy list. DEBRA << NBR << HP .

reserve both pointers. (Nevertheless there may be some data
structures where it is infeasible to reserve all of the records
that might be accessed in a Φ𝑤𝑟𝑖𝑡𝑒 .)
5.4 Correctness
NBR and NBR+ are both safe and have bounded garbage.
Proofs can be found in [44].

6 Experimental Evaluation
Setup: We used a quad-socket Intel Xeon Platinum 8160
machine running at 2.1GHz with 192 hardware threads and
384 GiB memory having shared L3 cache (33.79 MiB) on
Ubuntu 18.04 with GCC/G++ version 7.4.0.

All algorithms used in the experiments were implemented
in the Setbench [12] benchmark compiled with -O3 optimiza-
tion, and used jemalloc as the memory allocator [24]. We
perform four kinds of experiments:

(E1): Studies throughput over different thread counts and
workloads to understand NBR (+)’s performance and
scalability [P1].

(E2): Studies peak memory usage of NBR+ to show the ad-
vantage of bounded garbage [P2].

(E3): Studies the impact of contention on performance [P4].
(E4): Studies the impact of modifying a data structure to

restart from the root to make it work with NBR+.

For (E1) we picked the lazy-list [31] and DGT [17] as
representative of lists and trees, to evaluate NBR+ against
QSBR, RCU, DEBRA, and the 2geibr variant of interval based
reclamation (IBR) [46], hazard pointers (HP) and a leaky im-
plementation (none). (We adapted QSBR, RCU and 2geibr
(IBR) from the IBR benchmark, integrating them into Set-
bench to ensure a fair comparison.) For (E2) we compared

peak memory usage for each of the aforementioned recla-
mation algorithms using DGT. For (E3) we compared NBR
with DEBRA and the leaky implementation (none) using the
ABTree data structure [9, chapter 8] for very large and small
data structure size. Finally, for (E4), we modified the Harris-
Michael list (HMList) such that every Φ𝑟𝑒𝑎𝑑 restarts from the
root. This allowed us to use NBR+ to reclaim memory for
this list. To understand the impact of these restarts, we also
used DEBRA to reclaim memory for this modified HMList
(labeledDEBRA-restarts in our graphs), as well as the original
HMList (DEBRA-norestarts).
Reported results are obtained by averaging data over 3

timed trials, each lasting 5 seconds, for each thread count in
{24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 252}, and each data
structure. We used a key range size of 2 M and 20 K for trees
and lists, respectively. Each execution starts by prefilling the
data structure to half of the key range size, i.e., 1 M for trees
and 10 K for lists.

For each of (E1), (E2), and (E3) we subject NBR+ to exhaus-
tive evaluation by running it on three workload profiles, (1)
update-intensive 50% inserts and 50% deletes, (2) balanced
25% inserts, 25% deletes and 50% searches, and (3) search-
intensive 90% searches, 5% inserts and 5% deletes. (We also
run with oversubscription—i.e., more threads than logical
processors, to establish P4.)
Discussion (E1) results for the DGT tree and lazy linked list
appear in Figure 3. NBR+ matches or outperforms its com-
petitors for nearly all data points. In the tree, it surpasses the
next best algorithm, DEBRA, by up to 38% and 12% (Figure 3a,
update-intensive and balanced workloads, resp.) and is com-
parable to DEBRA in search-intensive workloads where it

185

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Ajay Singh, Trevor Brown, and Ali Mashtizadeh

(a) DGT-tree. Left: 50i-50d. Middle: 25i-25d. Right: 5i-5d. Key range size:2M.

(b) Lazy linked-list. Left: 50i-50d. Middle: 25i-25d. Right: 5i-5d. Key range size:20K.

Figure 3. Evaluation of throughput. Y axis: throughput in million operations per second. X axis: #threads.

outperforms the next best algorithm by up to 10% (Figure 3a
search-intensive workload).
In these graphs, DEBRA performs better than NBR+ for

low thread counts, but NBR+ outperforms it after 96 threads
in update intensive workloads (Figure 3a, leftmost plot), and
after 120 threads in the balanced workload (Figure 3a, center).
The two algorithms are comparable in the search-intensive
workload (Figure 3a, rightmost plot). The poor performance
of DEBRA at higher thread counts could be attributed to the
infrequent advancement of epochs by slow threads, which
leads to halting of regular reclamation of limbo bags. We call
this the delayed thread vulnerability. As a result, the limbo
bags of all threads keep on growing until the slow thread
finally catches up and announces the required epoch.
The delayed thread vulnerability leads to the accumu-

lation of a large number of retired records waiting to be
reclaimed. Once the current epoch is announced by the slow
thread, all threads reclaim their large limbo bags, which leads
to a reclamation burst. This harms the overall throughput,
as reclamation bursts can bottleneck the underlying alloca-
tor (jemalloc in our experiments) by increasing contention
and triggering slow/fallback code paths. The probability of
threads getting delayed increases with high thread counts
and update-intensive workloads.

Furthermore, one may notice that the thread count where
NBR+ overtakes DEBRA is different in the update intensive
and search-intensive workloads. This could be attributed to
the fact that the overhead of burst reclamation sets in at
lower thread counts for update-intensive workloads than in
workloads with infrequent updates.

HP outperforms the other EBR variants in update-intensive
workloads (Figure 3a, leftmost plot) but they appear to be
slow in the search-intensive workload (Figure 3a, rightmost
plot). This can be attributed to the fact that overhead due
to the delayed thread vulnerability dominates the overhead
of per-record fencing in HP for update-intensive workloads.
Whereas, for search-intensive workloads the overhead due
to delayed threads is lesser than that of per-record fences
in HPs. Also, as one can observe in Figure 3b, in the lazylist
NBR+ is comparable to RCU , QSBR, and DEBRA, and per-
forms better than HP (by 2x) and IBR (by more than 50%)
across all workloads when oversubscribed [P1, P4].f

In E2 (Figure 4c and 4d), we validate the bounded garbage
property of NBR+ [P2] by measuring the peak memory us-
age of all reclamation algorithms when a thread is stalled
(Figure 4c) and when no thread is stalled (Figure 4d). Each
trial is run for 25 seconds. During the entire length of the
experiment (25 seconds) one thread is made to begin a data
structure operation and then sleep. As expected, since DE-
BRA and RCU do not have bounded garbage, they exhibit
an increase in peak memory usage in presence of a stalled
thread (Figure 4c) whileNBR+,HP , and IBR variants maintain
approximately the same peak memory usage.
In E3 (Figure 4a) we evaluate throughput of NBR with a

data structure in which operations already restart from the
root whenever a new read phase would be started, namely
the Brown ABTree[9, chapter 8]. We design our experiments
fThe poor performance of HPs is partly due to the cost of mfence, which
could be replaced with the more efficient xchg (see Section 11.5.1 in https:
//www.amd.com/system/files/TechDocs/47414_15h_sw_opt_guide.pdf). We
tried this optimization in separate experiments, and while it did increase
throughput, HPs remained significantly slower than NBR+.

186

https://www.amd.com/system/files/TechDocs/47414_15h_sw_opt_guide.pdf
https://www.amd.com/system/files/TechDocs/47414_15h_sw_opt_guide.pdf

NBR: Neutralization Based Reclamation PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

(a) Brown’s ABTree. Left: 50i-50d. Key range size: 2M. Right: 50i-50d. Key range size:200.

(b) Lock-free Harris-Michael list. Left: 50i-50d. Key range size:20K. Right: 50i-50d. Key range
size:200. The debra-norestarts use HMlist[35] whereas NBR+, debra-restarts and none use
modified HMList that restarts from the root.

(c) With stalled threads.

(d) NO stalled threads.

Figure 4. Fig. (a), (b): Evaluation of throughput for data structures with multiple read-write phases. Y axis: millions of ops/sec.
Fig. (c), (d): Y axis: Max Resident Memory (MB), Workload: 50i-50d. DGT-tree. Key range size: 2M.

to explore two disparate usage scenarios. First, we want to
study reasonably large data structure (key range size 2 M)
wherein we hypothesize restarts would be inexpensive due
to low contention (leftmost in Figure 4). Second, we want to
study extremely small data structures (key range size 200)
where restarting from the head node will occur as frequently
as possible due to high contention (rightmost in Figure 4).
In the ABTree, NBR+ is faster than the other SMR algo-

rithms in the low contention scenario (especially at high
thread counts). Moreover, in the high contention scenario,
NBR+ is comparable to DEBRA, suggesting that NBR+ intro-
duces relatively little overhead in practice due to restarting
from the root in Φ𝑟𝑒𝑎𝑑 (Figure 4a).
In E4 (Figure 4b), for low contention, NBR+ (with forced

restarts from the root) is faster than both DEBRA-restarts and
DEBRA-norestarts. Shockingly, DEBRA-restarts is actually
slightly faster than DEBRA-norestarts. The only code differ-
ence between these two implementations is an extra restart
from the root in one case of DEBRA-restarts. It appears that
forced restarts actually have a backoff-like (contention man-
aging) effect. We found that adding restarts lowered L3 cache
misses slightly, which is what we would expect from con-
tention management. Under high contention, NBR+ is com-
parable to DEBRA-restarts and DEBRA-norestarts. This sug-
gests that the cost of added restarts should be reasonable in
practice.
Code: The latest version of our source code can be found on
gitlab (https://gitlab.com/aajayssingh/nbr_setbench).

7 Conclusions
In this paper, we presented NBR, a safe memory reclamation
algorithm that is a hybrid between EBR and a limited form of
HPBR, and which uses POSIX signals to bound unreclaimed
garbage. NBR is simpler to use than the most similar hybrid
algorithm, DEBRA+, while supporting a large class of data
structures, some of which are not supported by DEBRA+
(nor other popular SMR algorithms). We also developed an
optimized version of NBR called NBR+ that achieves similar
throughput with fewer signals by passively observing signals
being sent in the system to optimistically detect relaxed grace
periods. Our experiments demonstrate that NBR+ meets or
exceeds the performance of the state of the art in SMR algo-
rithms in typical benchmark conditions, while minimizing
performance degradation in oversubscribed workloads.

Acknowledgments
This work was supported by the Natural Sciences and En-
gineering Research Council of Canada (NSERC) under the
grants: CRDPJ 539431-19, DGECR-2019-00048, RGPIN-2019-
04227 and RGPIN-04512-2018. The John R. Evans Leaders
Fund and the Ontario Research Fund (CFI):38512, Waterloo
Huawei Joint Innovation Lab project “Scalable Infrastruc-
ture for Next Generation Data Management Systems”, and
the University of Waterloo. We would also like to thank the
reviewers for their insightful comments.

187

https://gitlab.com/aajayssingh/nbr_setbench

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Ajay Singh, Trevor Brown, and Ali Mashtizadeh

References
[1] Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam Morrison, and

Robert E Tarjan. 2014. The CB tree: a practical concurrent self-
adjusting search tree. Distributed computing 27, 6 (2014), 393–417.

[2] Dan Alistarh, Patrick Eugster, Maurice Herlihy, Alexander Matveev,
and Nir Shavit. 2014. Stacktrack: An automated transactional ap-
proach to concurrent memory reclamation. In Proceedings of the Ninth
European Conference on Computer Systems. 1–14.

[3] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit.
2017. Forkscan: Conservative memory reclamation for modern oper-
ating systems. In Proceedings of the Twelfth European Conference on
Computer Systems. 483–498.

[4] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit.
2018. Threadscan: Automatic and scalable memory reclamation. ACM
Transactions on Parallel Computing (TOPC) 4, 4 (2018), 1–18.

[5] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi.
2016. Fast and robust memory reclamation for concurrent data struc-
tures. In Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures. 349–359.

[6] Guy E Blelloch and Yuanhao Wei. 2020. Concurrent Reference Count-
ing and Resource Management in Wait-free Constant Time. arXiv
preprint arXiv:2002.07053 (2020).

[7] Anastasia Braginsky, Alex Kogan, and Erez Petrank. 2013. Drop the
anchor: lightweight memory management for non-blocking data struc-
tures. In Proceedings of the twenty-fifth annual ACM symposium on
Parallelism in algorithms and architectures. 33–42.

[8] Nathan G Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
2010. A practical concurrent binary search tree. ACM Sigplan Notices
45, 5 (2010), 257–268.

[9] Trevor Brown. 2017. Techniques for Constructing Efficient Lock-free
Data Structures. arXiv preprint arXiv:1712.05406 (2017).

[10] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A General Tech-
nique for Non-blocking Trees. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
’14). 329–342. Full version available from http://tbrown.pro.

[11] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A general tech-
nique for non-blocking trees. In Proceedings of the 19th ACM SIGPLAN
symposium on Principles and practice of parallel programming. 329–342.

[12] Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. 2020. Non-
blocking interpolation search trees with doubly-logarithmic running
time. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 276–291.

[13] Trevor Alexander Brown. 2015. Reclaiming memory for lock-free data
structures: There has to be a better way. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing. 261–270.

[14] Nachshon Cohen. 2018. Every data structure deserves lock-free mem-
ory reclamation. Proceedings of the ACM on Programming Languages
2, OOPSLA (2018), 1–24.

[15] Nachshon Cohen and Erez Petrank. 2015. Automatic memory reclama-
tion for lock-free data structures. ACM SIGPLAN Notices 50, 10 (2015),
260–279.

[16] Nachshon Cohen and Erez Petrank. 2015. Efficient memory manage-
ment for lock-free data structures with optimistic access. In Proceedings
of the 27th ACM symposium on Parallelism in Algorithms and Architec-
tures. 254–263.

[17] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asyn-
chronized concurrency: The secret to scaling concurrent search data
structures. ACM SIGARCH Computer Architecture News 43, 1 (2015),
631–644.

[18] David L Detlefs, Paul A Martin, Mark Moir, and Guy L Steele Jr. 2002.
Lock-free reference counting. Distributed Computing 15, 4 (2002),
255–271.

[19] Dave Dice, Maurice Herlihy, and Alex Kogan. 2016. Fast non-intrusive
memory reclamation for highly-concurrent data structures. In Proceed-
ings of the 2016 ACM SIGPLAN International Symposium on Memory
Management. 36–45.

[20] Dana Drachsler, Martin Vechev, and Eran Yahav. 2014. Practical con-
current binary search trees via logical ordering. In Proceedings of the
19th ACM SIGPLAN symposium on Principles and practice of parallel
programming. 343–356.

[21] Aleksandar Dragojević, Maurice Herlihy, Yossi Lev, and Mark Moir.
2011. On the power of hardware transactional memory to simplify
memory management. In Proceedings of the 30th annual ACM SIGACT-
SIGOPS symposium on Principles of distributed computing. 99–108.

[22] Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. 2014.
The amortized complexity of non-blocking binary search trees. In
Proceedings of the 2014 ACM symposium on Principles of distributed
computing. 332–340.

[23] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-blocking binary search trees. In Proceedings of the 29th ACM
SIGACT-SIGOPS symposium on Principles of distributed computing. 131–
140.

[24] Jason Evans. 2006. A scalable concurrent malloc (3) implementation
for FreeBSD. In Proc. of the bsdcan conference, ottawa, canada.

[25] Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. 2019. Per-
sistent non-blocking binary search trees supporting wait-free range
queries. In The 31st ACM Symposium on Parallelism in Algorithms and
Architectures. 275–286.

[26] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University
of Cambridge, Computer Laboratory.

[27] Anders Gidenstam,Marina Papatriantafilou, Håkan Sundell, and Philip-
pas Tsigas. 2008. Efficient and reliable lock-free memory reclamation
based on reference counting. IEEE Transactions on Parallel and Dis-
tributed Systems 20, 8 (2008), 1173–1187.

[28] Timothy L Harris. 2001. A pragmatic implementation of non-blocking
linked-lists. In International Symposium on Distributed Computing.
Springer, 300–314.

[29] Thomas EHart, Paul EMcKenney, Angela Demke Brown, and Jonathan
Walpole. 2007. Performance of memory reclamation for lockless syn-
chronization. J. Parallel and Distrib. Comput. 67, 12 (2007), 1270–1285.

[30] Meng He and Mengdu Li. 2017. Deletion without rebalancing in
non-blocking binary search trees. In 20th International Conference
on Principles of Distributed Systems (OPODIS 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[31] SteveHeller, MauriceHerlihy, Victor Luchangco,MarkMoir,WilliamN
Scherer, and Nir Shavit. 2005. A lazy concurrent list-based set algo-
rithm. In International Conference On Principles Of Distributed Systems.
Springer, 3–16.

[32] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. 2005.
Nonblocking memory management support for dynamic-sized data
structures. ACM Transactions on Computer Systems (TOCS) 23, 2 (2005),
146–196.

[33] Shane V Howley and Jeremy Jones. 2012. A non-blocking internal
binary search tree. In Proceedings of the twenty-fourth annual ACM
symposium on Parallelism in algorithms and architectures. 161–171.

[34] Paul E McKenney and John D Slingwine. 1998. Read-copy update:
Using execution history to solve concurrency problems. In Parallel
and Distributed Computing and Systems, Vol. 509518.

[35] Maged M Michael. 2004. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Transactions on Parallel and Distributed
Systems 15, 6 (2004), 491–504.

[36] Aravind Natarajan and Neeraj Mittal. 2014. Fast concurrent lock-
free binary search trees. In Proceedings of the 19th ACM SIGPLAN
symposium on Principles and practice of parallel programming. 317–
328.

188

http://tbrown.pro

NBR: Neutralization Based Reclamation PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

[37] Ruslan Nikolaev and Binoy Ravindran. 2019. Hyaline: fast and trans-
parent lock-free memory reclamation. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing. 419–421.

[38] Ruslan Nikolaev and Binoy Ravindran. 2020. Universal wait-free mem-
ory reclamation. In Proceedings of the 25th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. 130–143.

[39] Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Mar-
tin Odersky. 2012. Concurrent tries with efficient non-blocking snap-
shots. In Proceedings of the 17th ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming. 151–160.

[40] Arunmoezhi Ramachandran and Neeraj Mittal. 2015. CASTLE: fast
concurrent internal binary search tree using edge-based locking. ACM
SIGPLAN Notices 50, 8 (2015), 281–282.

[41] Arunmoezhi Ramachandran and Neeraj Mittal. 2015. A fast lock-free
internal binary search tree. In Proceedings of the 2015 International
Conference on Distributed Computing and Networking. 1–10.

[42] Pedro Ramalhete and Andreia Correia. 2017. Brief announcement:
Hazard eras-non-blocking memory reclamation. In Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and Architectures.
367–369.

[43] Niloufar Shafiei. 2013. Non-blocking Patricia tries with replace op-
erations. In 2013 IEEE 33rd International Conference on Distributed
Computing Systems. IEEE, 216–225.

[44] Ajay Singh, Trevor Brown, and Ali Mashtizadeh. 2020. NBR: Neutral-
ization Based Reclamation. arXiv:2012.14542 [cs.DC]

[45] Shahar Timnat and Erez Petrank. 2014. A practical wait-free simulation
for lock-free data structures. ACM SIGPLAN Notices 49, 8 (2014), 357–
368.

[46] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H Alan Beadle, and
Michael L Scott. 2018. Interval-based memory reclamation. ACM
SIGPLAN Notices 53, 1 (2018), 1–13.

8 Artifact Description
This section provides a step by step guide to run our artifact
(nbr_setbench) in a docker container. Other ways to setup a
machine to use our artifact are provided in the readme file
at the URL: https://doi.org/10.5281/zenodo.4409185.
To better reproduce the results described in our paper

we recommend to run the nbr_setbench on a NUMA ma-
chine with atleast 2 NUMA nodes having a recent Linux
distro (we used Ubuntu 18.04 or 20.04) with 188GB RAM and
recent Docker installation (we used version 19.03.6, build
369ce74a3c).

Steps to load and run the provided Docker image: Sudo
permission may be required to execute the following instruc-
tions.

1. Install the latest version of Docker on your system.
We tested the artifact with the Docker version 19.03.6,
build 369ce74a3c. Instructions to install Docker may
be found at
https://docs.docker.com/engine/install/ubuntu.

$ docker -v

2. Download the artifact from Zenodo at URL:
https://doi.org/10.5281/zenodo.4409185.

3. Extract the downloaded folder and move to
nbr_setbench/ directory using 𝑐𝑑 command.

4. Find docker image named nbr_docker.tar.gz
in nbr_setbench/ directory. And load the downloaded
docker image with the following command:
$ sudo docker load -i nbr_docker.tar.gz

5. Verify that image was loaded:
$ sudo docker images

6. Start a docker container from the loaded image:
$ sudo docker run --name nbr -i -t \
--privileged nbr_setbench /bin/bash

7. Invoke 𝑙𝑠 to see several files/folders of the artifact:
Dockerfile, README.md, common, ds, install.sh, lib,
microbench, nbr_experiments, tools.

Steps to run the experiments: To compile, run and see
results of the experiment follow these steps:

Input: Inputs to the experiment can be configured in cor-
responding input files at:

/nbr_setbench/nbr_experiments/inputs/
Output: Generated figures can be found in directory:
/nbr_setbench/nbr_experiments/plots/generated_plots/

1. Assuming you are currently in 𝑛𝑏𝑟_𝑠𝑒𝑡𝑏𝑒𝑛𝑐ℎ, execute
the following command:
$ cd nbr_experiments/

2. Run the following command to generate plots for
throughput evaluation:
$./run.sh

3. Run the following command to generate plots for mem-
ory usage evaluation:
$./run_memusage.sh

After the above scripts finish executing DO NOT exit the
terminal as we would need to copy the generated figures on
the host machine to be able to see them.
Steps to visualize the plots: Resultant figures could be
found in nbr_experiments/plots/generated_plots.
To visualize the generated figures on your host machine

copy the plots from the docker container to your host system
by following these steps:

1. Verify the name of the docker container. Use the fol-
lowing command which would give us the name of the
loaded docker container under NAMES column which
is ’nbr’.
$ sudo docker container ls

2. Open a new terminal on the same machine. Move to
any directory where you would want the generated
plots to be copied (use cd). And execute the follow-
ing command to copy the generated plots from the
nbr_experiments/plots/generated_plots folder to your
current directory.
$ sudo docker cp nbr:/nbr_setbench/ \
nbr_experiments/plots/generated_plots/ .

189

https://arxiv.org/abs/2012.14542
https://doi.org/10.5281/zenodo.4409185
https://docs.docker.com/engine/install/ubuntu
https://doi.org/10.5281/zenodo.4409185

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Ajay Singh, Trevor Brown, and Ali Mashtizadeh

Now you can analyse the generated plots. Each plot fol-
lows a naming convention:

1. throughput-[data structure name]-[number of inserts]-
[number of deletes].png. For example, a plot showing
throughput of DGT with 50% inserts and 50% deletes
is named as: throughput-guerraoui_ext_bst_ticket-i50-
d50.png.

2. Similarly the plot for peak memory usage experiments
follows a naming convention:
mem_usage-[data structure name]-[number of inserts]-
[number of deletes].png. For example, a plot showing
mem_usage of DGTwith 50% inserts and 50% deletes is
named as: mem_usage-guerraoui_ext_bst_ticket-i50-
d50.png.

190

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	4 NBR
	4.1 Assumptions on the data structure
	4.2 Overview of NBR
	4.3 Implementation of NBR
	4.4 Revisiting the write restriction

	5 NBR+
	5.1 Implementation of NBR+
	5.2 Applicability
	5.3 Ease of use
	5.4 Correctness

	6 Experimental Evaluation
	7 Conclusions
	Acknowledgments
	References
	8 Artifact Description

