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Simple, Fast and Widely Applicable Concurrent
Memory Reclamation via Neutralization

Ajay Singh , Trevor Alexander Brown , and Ali José Mashtizadeh

Abstract—Reclaiming memory in non-blocking dynamic data
structures in unmanaged languages like C/C++ presents a unique
challenge due to the risk of use-after-free errors caused by con-
current accesses. Existing safe memory reclamation (SMR) algo-
rithms fall short of satisfying five key properties: high perfor-
mance, bounded garbage, usability, consistency, and applicability.
In particular, bounded garbage and high performance are quite
difficult to achieve simultaneously. In this paper, we address this
limitation by proposing a new, provably correct technique called
neutralization based reclamation (NBR) that neutralizes threads
using POSIX signals to provide the synchronization required for
safe memory reclamation. NBR uses atomic reads and writes and
achieves bounded garbage and high performance without imposing
significant overhead on concurrent readers and writers. An exten-
sive experimental evaluation serves to demonstrate the efficiency
of our technique across various data structures, reclamation algo-
rithms, and workloads. A detailed survey of popular concurrent
data structures suggests NBR is applicable to a wide range of
data structures, many of which could not be used with prior SMR
algorithms that guarantee bounded garbage.

Index Terms—Non-blocking data structures and algorithms, safe
memory reclamation, shared memory synchronization.

I. INTRODUCTION

IN UNMANAGED languages like C/C++, the reclamation
of records in non-blocking dynamic data structures poses a

distinctive challenge. Unlike their locking counterparts, these
data structures allow individual nodes to be concurrently ac-
cessed by multiple threads, which greatly increases the risk of
use-after-free errors. A classic example can be seen in a so-called
lazy linked list [1], in which threads search without acquiring any
locks, and then acquire fine-grained locks on only a few nodes
at the end of its search. Suppose a reader thread reads a node’s
next pointer, saving the address it sees in a local variable x, and
a (reclaimer) thread subsequently unlinks and reclaims the node
pointed to by x. If the reader thread attempts to dereference x, a
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use-after-free error occurs. The problem of reclaiming memory
safely in such data structures is widely referred to as the safe
memory reclamation (SMR) problem [2], [3], [4], [5].

In the literature on SMR algorithms, researchers have pro-
posed a wide range of techniques with diverse properties, pecu-
liarities, and limitations. Through rigorous experimentation and
an extensive survey of the current literature [2], [3], [4], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], we have identified a set of desirable properties
that are highly sought after in SMR algorithms. Some similar
properties were also discussed by Kang et al. [5]. Here, we refine
those properties and reaffirm their significance. These properties
have served as guiding principles for the development of the
neutralization-based technique presented in this paper, as well
as a few other techniques [23], [24], [25], [26] which appeared
after NBR [27].

P1 Performance: Reclamation operations should exhibit low
latency and high throughput, ensuring efficient utilization
of system resources.

P2 Bounded Garbage: The number of unlinked but unre-
claimed records should be finite, even in the presence of
thread failures or significant delays.

P3 Usability: Intrusive changes to data structure layout, code
modifications, and reliance on specialized hardware in-
structions and compilers should be minimized to enhance
the ease of adoption and integration.

P4 Consistency: The algorithm’s performance should remain
stable and consistent across different workloads, such
as shifting between read-intensive and update-intensive
scenarios, and when the system is oversubscribed with
more threads than available cores.

P5 Applicability: The algorithm should be applicable to a
wide range of popular data structures, prioritizing use-
fulness over attempting to support any imaginable data
structure [8].

All existing SMR algorithms exhibit significant limitations
and shortcomings, and fall short of satisfying properties P1 to
P5 simultaneously. We give a brief taxonomy of the popular
families of SMR algorithms.

Perhaps the most popular family of SMR algorithms, Haz-
ard Pointer Based (HP) algorithms [3], [13], [14], [15], [17],
[28] ensure safe reclamation and bounded garbage by requiring
readers to explicitly reserve records before accessing them. This
allows a thread that is attempting to reclaim a set of records
to identify which ones it can safely reclaim (the ones not re-
served by any thread). Since a reader must reserve each record
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before accessing it, HP-based SMR algorithms impose signifi-
cant overhead, especially in data structures where threads repeat-
edly follow pointers (e.g., lists and trees). Reference counting
based reclamation (RCBR) techniques (e.g., [6]) typically offer
similar guarantees and overheads.

In contrast, Epoch-Based Reclamation (EBR) algorithms [2],
[8], [29], [30] ensure safety in a highly efficient way, by di-
viding an execution into epochs, and reclaiming records in
large batches. Intuitively, the epoch changes when all threads
have “forgotten” pointers to records that were reclaimed in a
previous epoch. Thus, whenever the epoch changes, all threads
can reclaim a batch of records. The synchronization needed to
track epoch changes imposes significantly less overhead than
HP-based algorithms, but a stalled thread can prevent the epoch
from advancing, so garbage is not bounded.

Hybrid SMR algorithms attempt to blend the best attributes of
these approaches, combining ideas from each [2], [4], [7], [22],
[31]. Such algorithms typically offer high performance and some
notion of bounded garbage, but often compromise significantly
on applicability, as we see in Section VI.

In summary, HP bounds garbage but incurs high overhead,
EBR offers low overhead but allows unbounded garbage, and
hybrid approaches compromise significantly on applicability.

The technique discussed in this paper [27], [32]1 offers an
alternative solution. It avoids waiting for stalled threads to
reclaim memory (unlike EBR), and does not require readers
to repeatedly reserve records during searches (unlike HP). More
specifically, readers do not reserve records, and writers reserve
records exactly once, after they have finished gathering pointers
to all of the records they intend to modify, and before they
have begun modifying these records. Synchronization between
reclaiming threads and threads accessing the data structure is
mediated via neutralizing. As we will see, this allows NBR to
guarantee bounded garbage with EBR-like speed, while remain-
ing applicable to many data structures that are incompatible with
existing HP-based and hybrid SMR algorithms.

Neutralization is achieved through the use of POSIX signals.
During a neutralizing event, participating threads, based on their
roles as readers or writers, take specific actions to ensure all
accesses are safe. Readers discard all references they acquired
before the event, and retry their operation from the beginning, ef-
fectively resetting their state. On the other hand, writers continue
to operate unimpeded, as long as they promise only to access
records that they reserved before the neutralization event. (If a
writer has not yet gathered pointers to all of the records it intends
to modify, it behaves like a reader.)

By neutralizing other threads, a reclaimer can effectively force
readers (or writers that have not yet begun writing) to drop their
pointers to any records that the reclaimer might be trying to
reclaim. Crucially, this allows a reclaimer to reclaim records
without having to wait for an epoch to advance (unlike EBR), and
readers can avoid the overhead of reserving individual records
(unlike HP). However, NBR retains the key benefit of HP: the
set of reserved records, that cannot be reclaimed, is bounded.

1A preliminary version of the technique appeared in the Proceedings of
the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming.

In NBR, only the records that active writers intend to modify
are reserved. This allows NBR to guarantee bounded garbage
without introducing per-record overheads for reservations.

NBR draws considerable inspiration from DEBRA+ [2], a
hybrid algorithm combining EBR with a restricted form of
HP. Similar to NBR, DEBRA+ utilizes neutralizing signals to
guarantee bounded garbage. However, DEBRA+ suffers from
limitations in terms of applicability and usability. Specifically,
a thread receiving a neutralizing signal in DEBRA+ is required
to restart, even if it has made modifications to shared memory.
This necessitates the inclusion of data structure-specific recov-
ery code, which can be complex and is not always feasible.
Additionally, it is unlikely that DEBRA+ can be used with
lock-based data structures, as neutralizing a thread holding locks
can cause deadlock. NBR is simpler to implement, is compatible
with data structures that use locks, and can be used to reclaim
memory for many popular data structures for which it is unclear
how DEBRA+ could be used.

In this work, we demonstrate the effectiveness of NBR by
showcasing its ability to match or surpass the performance
of existing SMR algorithms [P1]. Additionally, NBR achieves
bounded garbage [P2], offers simplicity in its usage [P3] and
consistent performance [P4], and is applicable to a wide range
of data structures, including many that are not supported by
popular SMR algorithms [P5].

Contributions: In this paper, we build on our prior work on
NBR [27] and make the following new contributions:
� We provide a detailed theoretical proof demonstrating

that, when utilized with compatible data structures, NBR
preserves the correctness and progress guarantees of the
original data structures.2

� We study the signal handling code of modern operating sys-
tems (Linux and FreeBSD) and design a microbenchmark
to gain insight into the potential delays that can affect the
delivery of these signals in the context of NBR. We analyze
results obtained from the benchmark to better understand
how long a thread should wait after sending neutralizing
signals before it can safely proceed with reclamation.

� We conduct a extensive review of many existing concurrent
data structures, examining their compatibility with NBR
as well as other popular reclamation techniques. To our
knowledge, this review represents the most comprehensive
study of SMR algorithm compatibility to date, providing
valuable insights into a metric that we think is under studied
in the literature.

� Building upon the preliminary work’s benchmark, we en-
hance the code of the original technique through manual
optimizations. We include multiple new data structures
and state-of-the-art reclamation algorithms, and evaluate
performance across additional workloads. We also study
the memory usage of different SMRs in greater detail. To

2Technically, for lock-free and wait-free data structures, the full progress
guarantee is preserved only if the operating system kernel facilities offer a similar
progress guarantee. This means, for example, the memory allocator, context
switching mechanism, thread scheduler, and interprocess signaling mechanism
should all be lock-free (or wait-free) in order for a data structure to be truly
lock-free.
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our knowledge, this is the most comprehensive evaluation
of SMR algorithms to date.

The remainder of the paper is organized as follows. Section II
discusses related work. Section III, introduces the model and as-
sumptions on the format of a data structure operation. Section IV
describes NBR and its implementation. In Section V, we present
an optimized version called NBR+. Section VI, discusses the
classes of data structures to which the technique applies and a
few to which it does not, followed by a extensive comparison
of the applicability of NBR with the other SMRs studied. In
Section VII and Section VIII, we prove safety and progress
property of NBR, and study the timing of signal delivery on
Linux. Performance experiments appear in Section IX. Finally,
we conclude in Section X.

II. RELATED WORK

There is a rich literature of SMR algorithms, and the follow-
ing survey does not characterize every known SMR algorithm.
However, we have attempted to cover the state of the art fairly
exhaustively, focusing especially on which of the properties P1
through P5 are satisfied by each algorithm (and to what degree
they are satisfied).

A. Reference Counting

One of the earliest fairly general SMR techniques, lock-free
reference counting [6] employs a count field within each record
to track the number of active references across all threads.
However, reference counting based techniques introduce sig-
nificant overhead due to cache invalidations caused by frequent
updates to reference counts. Updating reference counts is un-
fortunately quite slow. In modern optimistic data structures, in
which threads search without locking, reference counting can
completely negate any performance gains over traditional lock-
ing techniques (opposing P1). Recent advancements, such as
deferred reference counting [31], have demonstrated improved
performance in read-heavy workloads, but they still impose
significant overhead in update-heavy scenarios (opposing P4).
Reference counting also introduces other complications, such as
the need to break pointer cycles, the need to invoke functions
for many operations involving pointers, and the need to modify
the memory layout of nodes (opposing P3).

B. Pointer Reservations

Pointer reservation based reclamation techniques require each
thread to reserve pointers before dereferencing them. Reserving
a pointer typically entails writing it to a shared memory ad-
dress and subsequently performing some validation to ensure
that any thread attempting to reclaim that record has observed
the reservation [3], [14], [15]. Similar to RCBR, reserving a
record introduces significant overhead to each record access
(opposing P1). Additionally, users bear the responsibility of
correctly releasing previously reserved pointers. Morevoer, in
the event that validation of a reservation fails, threads need to
take alternative actions, such as restarting an operation (since,
e.g., the next node to be accessed cannot safely be accessed).

This requires modifying the original data structure in potentially
complex ways that may necessitate reproving correctness or
progress (opposing P3, P5).

An important factor to consider when applying pointer
reservation based techniques is their compatibility with data
structures that involve traversing marked (logically deleted)
nodes [1], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42]. In such cases, establishing the validity of reservations
becomes challenging [2], limiting the applicability of these tech-
niques [P5]. Some reservation based techniques sidestep these
issues [7] at the cost of considerably higher programmer effort
(opposing P3).

C. Epoch Based Reclamation

EBR algorithms [2], [8], [29], [30] offer a straightforward,
high-performance approach. In these algorithms, the execution
is divided into epochs, and each thread must regularly participate
in the algorithm for the epoch to change (typically imposing a
small amount of overhead on each data structure operation).
Classically, each thread maintains three batches of records it is
waiting to reclaim, one for each of the last three epochs, and
whenever the epoch changes, each thread can reclaim its oldest
batch. This approach incurs very little overhead, but a stalled
thread can prevent the epoch from advancing, preventing all
memory from being reclaimed (opposing P2).

Brown introduced an optimized variant of EBR called DE-
BRA, as well as an enhanced variant called DEBRA+[2] that
bounds garbage in compatible non-blocking data structures.
Like NBR, DEBRA+ uses neutralization. However, unlike NBR,
when a thread is neutralized in DEBRA+, it restarts its operation,
even if it had already begun modifying the data structure. Data
structure specific recovery code is thus required to deal with the
inconsistent states that can result. It is not clear how DEBRA+
could be applied to any lock based (or optimistic) algorithms [1],
[43], since neutralization could cause deadlocks (opposing P3
and P5).

D. Epoch Reservations

Following DEBRA and DEBRA+, other techniques like Haz-
ard Eras (HE) [17] and Interval Based Reclamation (IBR) [13]
emerged that attempt to limit the amount of garbage that cannot
be reclaimed to invidual epochs, or specific ranges of epochs.
These techniques augment records with additional metadata,
such as the epochs when a record was last allocated, and un-
linked from the data structure. This information is then used
to argue that a stalled thread cannot access particular records.
Unfortunately, in certain scenarios involving stalled threads,
memory consumption can still be extremely high, as we show
in our experiments. Recent algorithms such as Wait Free Eras
(WFE) [28], Hyaline (HY) [22], and Crystalline (CY) [44]
have also attempted to bound garbage while achieving high
performance. HY and CY employ an efficient form of reference
counting, specifically on records that have already been unlinked
from the data structure. These algorithms require per-record
metadata, necessitating changes to the memory layout of nodes
(opposing P3). Moreover, as we discuss in Section VI, it appears
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that most epoch reservation techniques, including as HE, IBR
and WFE cannot be used with a wide variety of data structures
in which threads traverse chains of unlinked records (opposing
P5). Additionally, as our experimental results demonstrate, these
algorithms exhibit non-trivial overhead (opposing P1).

E. OS/Hardware Primitives

Popular hybrid memory reclamation algorithms combine var-
ious techniques, including leveraging operating system features
like context switches [10] and POSIX signals [11], [21], as
well as hardware primitives such as hardware transactional
memory [19], [20]. One notable hybrid algorithm, Qsense [10],
introduced by Balmau et al. optimizes for the common case
by employing an EBR-like approach as a fast code path [8].
However, to ensure bounded garbage when threads experience
delays, Qsense switches to a hazard pointer inspired slow path.
Qsense provides bounded garbage, but it has been shown to be
slower than both EBR [10] (opposing P1).

Another hybrid algorithm, StackTrack [19], focuses on au-
tomating memory reclamation through compiler assistance. It
utilizes hardware transactional memory for common cases and
incorporates a hazard pointer-like fallback mode to ensure
progress [19]. However, StackTrack requires significant pro-
grammer intervention and assumes that programs will not hide
pointers (via, e.g., special pointer arithmetic), which can limit its
applicability (opposing P3 and P5). Due to their reliance on HP,
StackTrack and Qsense have the same issues with respect to ap-
plicability as other HP and epoch reservation based approaches.

ForkScan [21] uses OS level copy-on-write support for mem-
ory pages and POSIX signaling to automatically reclaim mem-
ory for concurrent data structures. Like StackTrack, ForkScan
does not work if users perform special pointer arithmetic (op-
posing P3). Due to the way that ForkScan identifies records
that are safe to reclaim, it has the same applicability issues as
StackTrack and Qsense (opposing P5). ForkScan’s successor,
ThreadScan [11], offers numerous improvements over the origi-
nal, but suffers from the same applicability issue (opposing P5).

The recent PEBR [5] is another hybrid of HP and EBR. The
key idea is to eject a stalled thread from the epoch advancement
mechanism and use hazard pointers to protect the references of
the ejected thread. Every read needs to reserve records as in
HP, but the reservation is made more efficient using techniques
from [14]. The publicly available implementation of PEBR is
in Rust, which makes a direct experimental comparison with
NBR’s C++ implementation difficult. PEBR has been shown
to be slower than Rust’s Crossbeam implementation of EBR
(opposing P1).

F. Optimistic Access

Cohen et. al. [18] introduced an interesting approach which
allows threads to access potentially deleted records optimisti-
cally and roll back to a safe point if validation (after the access)
indicates the record was deleted. These techniques involve in-
strumenting reads, writes, and CAS instructions and require the
data structure to be in a normalized form, somewhat similar
to (but not the same as) the form assumed by NBR. Aiming

Fig. 1. Typical NBR compatible data structure operation with preamble
(optional), read-phase (Φread) that ends with a conceptual reservation phase
followed by write-phase (Φwrite). Just before beginΦread a checkpoint is set
so that threads in Φread could be neutralized (discard all local references to
shared memory) and restart.

to enhance programmability, AOA [9] (Automatic Optimistic
Access) was introduced, automating the transformation into
the normalized form. Subsequently, the authors proposed the
FreeAccess (FA) [12] technique, which eliminated the require-
ment for data structures to be presented in a normalized form.

It is important to note that these optimistic access based
techniques first perform unsafe accesses and then check whether
reclaimed memory was accessed. Thus, a programmer must
either trap and ignore segmentation faults that occur (and lose a
valuable debugging tool) or use type-stable allocator that never
unmaps pages (and lose the ability to ever shrink the data struc-
ture’s memory usage in a long running program). Both options
oppose P3. The experimental results have shown that these tech-
niques achieve performance comparable to hazard pointers [12].
However, NBR targets applications that can benefit from even
higher performance (so P1 is not satisfied).

Recently, Sheffi et al. introduced VBR [23], which extends
OA to allow threads to access reclaimed records for write
accesses, as well. Each mutable field in a record also stores
corresponding version numbers to facilitate optimistic writes,
necessitating use of double-wide CAS for atomicity. VBR re-
quires programmers to define checkpoints to rollback when
reclaimed records are accessed, and it requires similar code
instrumentation to HE and IBR (opposing P3). Additionally, as
it performs unsafe accesses, it imposes the same requirements
as OA, AOA and FreeAccess.

III. SYSTEM MODEL AND ASSUMPTIONS

We assume the standard asynchronous shared memory model
(as in [27], [32]). A data structure consists of records which
are accessible from an immutable entry point. Each record can
be in one of five states: allocated, reachable, retired, safe, or
reclaimed. Once a record is allocated, it can be made reachable,
and once it is unlinked it becomes retired. It subsequently
becomes safe when no thread will access it again, at which point
it can be reclaimed (and then allocated again).

A. Assumptions on the Data Structure

NBR can be applied to data structure operations that follow a
simple template. Each operation should consist of a sequence of
phases: preamble, read-phase (Φread), (conceptual) reservation
phase, and write-phase (Φwrite), as illustrated in Fig. 1. As we
will see, this template ensures that it is safe for a thread to restart
its Φread from any arbitrary point in the Φread. In this section,
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we reproduce the rules governing each phase of a data structure
operation, as originally presented in [27]. The template and the
rules are crucial for the correct integration of NBR with a data
structure. Note, outside a data structure operation threads are in
quiescent phase, which is like preamble phase.

1) Preamble: Allows system calls and accesses to global
variables. No access to shared records. This phase can
be omitted in some data structure implementations.

2) Read phase (Φread): Permits reading from global vari-
ables and shared records, but only if pointers to them
were obtained during this phase or the preamble. Prohibits
system calls, writes/CASs to shared records or globals, and
writes to thread-local data structures.3

3) Reservation: Conceptual stage where shared records to
be modified in the next phase are identified and reserved.
These records are referred to as reserved records.

4) Write phase (Φwrite): Permits accesses to global variables
and system calls. Accesses to shared records (including
modifications) are permitted only if they have been re-
served.

IV. NBR

The key idea in NBR [27] is as follows. To bound garbage,
whenever a reclaimer accumulates a certain number of retired
records, it sends neutralizing signals to all threads. Threads
receiving these signals either (a) have already explicitly reserved
all records they will access, in which case the reclaimer can
safely avoid reclaiming any of those records, or (b) will abandon
their pointers and restart their operations, allowing the reclaimer
to safely ignore them.

More specifically, threads in a preamble phase (or quiescent
phase) can simply ignore the neutralizing signal since they do
not access shared records. However, threads in a Φread (readers)
or Φwrite (writers) do access shared records, and thus must
synchronize carefully with the reclaimer.

The readers does that by discarding their pointers to shared
records by simply restarting the current Φread from the entry
point of the data structure. It is straightforward to see from the
rules for the Φread that restarting the Φread does not have side
effects. However, writers cannot simply restart because doing
so could leave the data structure in an inconsistent state, as the
writer could be in the middle of an update. Instead, at the very
beginning of theΦwrite (in the conceptual reservation phase), the
writer reserves all of the records it will access in its Φwrite. This
enables the reclaimer to scan and avoid reclaiming those records,
in turn allowing a writer who receives a neutralization signal to
ignore it and proceed as usual. In summary, readers guarantee
that they will discard pointers to all records which were retired
before they received the neutralizing signal, writers guarantee
that they will only access reserved records, and reclaimers
guarantee that they will not free any reserved record.

3These restrictions exist because NBR uses sigsetjmp to implement a
checkpoint from which a thread restarts and neutralization fires a POSIX signal
that (sometimes) causes a thread to siglongjmp to its last checkpoint. For
readers not familiar with the caveats of using these subroutines, building upon the
original rules provided in [32], we further explain the rules in the accompanying
supplementary material.

Algorithm 1: Neutralization Based Reclamation (NBR).
thread local variable:
1: int tid; �current thread id
2: record *limboBag; �retired records.
Maxsize:S

3: atomic<bool> restartable;
�tracksΦread/Φwrite

4: record *tail; �last record in limboBag
shared variable: n:#threads, r:max reserved
records.

5: atomic<record*> reservations[n][r];
�Assume:r << S

6: procedure CHECKPOINT( ) �must be INLINED.
7: while sigsetjmp(...)) do �signal mask

not saved.
8: unblock neutralizing signal. �post

siglongjmp.
9: end while
10: end procedure
11: procedure SIGNALHANDLER( )
12: if !restartable then
13: return; �inΦwrite, ignore signal and

return.
14: end if
15: siglongjmp(...); � in Φread , jump to

checkpoint.
16: end procedure
17: procedure BEGINΦread( )
18: reservations[tid].clear();
19: restartable = True;
20: end procedure
21: procedure ENDΦread(rec = {rec1, · · ·, recR})
22: reservations[tid]=rec;
23: restartable = False;
24: end procedure
25: procedure RETIRE(rec)
26: if isLimboBagTooLarge() then
27: signalAll ( );
28: reclaimFreeable (tail);
29: end if
30: limboBag[tid].append(rec);
31: end procedure
32: procedure RECLAIMFREEABLE(tail)
33: A= collectReservations ();
34: R=limboBag[tid].remove(A, tail);
35: free({R});
36: end procedure

A. Implementation

Pseudocode for NBR appears in Algorithm 1. We assume the
C++ memory model. In particular, this means atomic accesses
are, by default, sequentially consistent.

1) Description of Variables: Each thread has an ID denoted
by tid. The thread collects retired records in its limboBag,
which is implemented as an array. The tail variable points
to the last retired record added to the limboBag. Each thread
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also has a local restartable flag, which determines how the
thread will behave if it receives a neutralizing signal. This flag
is set when a thread enters its Φread, and reset when the thread
exits the Φread. Prior to exiting the Φread, the thread enter a
conceptual reservation phase. During this phase, it announces all
the records it will access in its subsequent write-phase (if any),
using a single-writer multi-reader (SWMR) reservations
array.

2) CHECKPOINT() and SIGNALHANDLER(): To enable
thread restarts, CHECKPOINT() (line 6) is invoked just before
entering the Φread. It creates a checkpoint from which the
executing thread can safely restart after it receives a neutralizing
signal. When sigsetjmp (line 7) is executed, it saves the
current execution context (stack frame pointer, program counter
and register contents) and returns false when executed for the
first time, effectively creating a checkpoint from which the
thread can restart.

A thread invokes BEGINΦread() to initiate a Φread. While
in the Φread, if a neutralizing signal is received, the thread
executes a custom signal handler (line 11). From within the
signal handler, it uses siglongjmp (line 15) to jump back to
the checkpoint (restoring the saved context) and re-
executes the sigsetjmp, which this time returns true. It also
unblocks the neutralizing signal (which was automatically
blocked by siglongjmp to avoid recursive signal handler
invocations). This effectively restarts the Φread from scratch
with a new checkpoint.

3) BEGINΦread (): As mentioned above, a thread invokes
BEGINΦread() to start its Φread (line 17). The thread first clears
its previous reservations so that it can reserve new records in
the reservation phase. It then sets restartable to true (using
a sequentially consistent store; line 19). This ensures that the
thread becomes restartable before it accesses any shared records
in its Φread.

4) ENDΦread (): In order to enter a Φwrite, a thread invokes
ENDΦwrite() (line 21). The thread begins by reserving a sequence
of records (line 22) in its designated slots within the reserva-
tions array (implementing the conceptual reservation phase).
Then, it resets therestartable flag (with a sequentially con-
sistent store; line 23). This store ensures that when this thread,
in its Φwrite, executes a signal handler and sees restartable is
false, it has already reserved all of the records it will need in its
Φwrite, so any reclaimers that read these reservations will see all
of the records the thread will access. Note that these reservations
are different from classic hazard pointers based reservations,
both because records are reserved after the records have been
accessed, and because no special validation is required after the
stores to reservations.

5) RETIRE(): Whenever a thread unlinks a record from a
data structure, it invokes RETIRE(,) which adds the record (rec) to
the thread’s limboBag (line 30). If the size of the limboBag
exceeds a predefined threshold (line 26), 16 k in our experi-
ments, neutralizing signals are sent to all other threads using
the SIGNALALL() function (line 27). In our implementation,
SIGNALALL() uses pthread_kill() to send SIGQUIT.

Upon receipt of the signal, a thread immediately executes
SIGNALHANDLER() (line 11). If a thread is restartable (i.e, in a

Φread), it restarts from its previous checkpoint. Otherwise,
it returns and continues where it left off.

After, a reclaiming thread has sent neutralizing signals to all
other threads (line 27), it executes RECLAIMFREEABLE() (line 28).
Within RECLAIMFREEABLE() (line 32), the thread collects all
reservations in a set A. These reservations are used to determine
which records are safe to free (line 34), and these records are
then deallocated (line 35).

B. Optimization: Relaxing the Memory Model

In the previous section, we presented the theoretical algo-
rithm (Algorithm 1) assuming sequential consistency. However,
in practice, there is considerable interest in relaxing memory
models to obtain higher performance.

An implementation of NBR on a relaxed memory model
should provide two essential guarantees.

Guarantee 1: When a thread T1 executing a signal handler
reads its restartable variable and sees false, T1 must have
already written its reservations, and any other thread T2 that
subsequently reads T ′

1s reservations must see those reservations
that were written by T1.

Guarantee 2: A thread T must store true to its
restartable variable before it discovers any new records
in its Φread.

On modern Intel and AMD x86/64 systems, which implement
total store order (TSO), one possible optimization is to set the
C++ atomic memory order of all loads and stores in the
algorithm tomemory_order_relaxed, except for the stores
to the restartable variable.

As long as the stores to restartable are sequentially con-
sistent, if thread T1 executes the signal handler and sees that its
restartable variable is false, then it has already performed
its stores toreservations, and any other thread loading T1’s
reservations will see the records T1 reserved before setting its
restartable variable to false, satisfying Guarantee 1.

Similarly, sequential consistency ensures that re-
startable will be set to true before T1 discovers any
new records in its Φread, satisfying Guarantee 2.

Note that on modern Intel and AMD x86/64 systems, these
sequentially consistent stores to restartable typically com-
pile to a mov instruction followed by an mfence, which is
much slower than an xchg instruction (atomic_exchange
in C++) which would also offer the required semantics. (In fact,
some modern compilers will emit xchg for these stores with
high optimization compiler flags.)

V. NBR+

The NBR algorithm, discussed in the preceding section,
presents a simple solution to the safe memory reclamation
problem. However, it has been noted that the use of POSIX
signals in NBR introduces significant overhead [27]. In fact, it
was noted that in a system with n threads, O(n2) signals are
required for all threads to reclaim their limboBags at least
once. Each thread needs to send a neutralizing signal to every
other thread in order to initiate the reclamation of itslimboBag,
referred to as the reclamation event.
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A key observation is that when one thread reclaims its lim-
boBag upon reaching the threshold size, it effectively neu-
tralizes the other n− 1 threads by causing them to discard
all unreserved references to shared records. Consequently, all
records retired before this reclamation event become safe to be
freed. If all threads could tap into this information, they could
reclaim their limboBags without the need for sending signals
themselves, thus reducing the signal overhead from O(n2) to
O(n) in an ideal scenario.

NBR+ [27] proposes a mechanism to leverage this infor-
mation and significantly reduce the signal overhead, making
the neutralization technique highly efficient. In NBR+, each
thread passively monitors for a reclamation event starting from a
predetermined lower limboBag size known as the LoWater-
mark, before reaching the maximum limboBag size (referred
to as the HiWatermark) and triggering a reclamation event.
When a thread reaches the HiWatermark, it announces the
reclamation event by updating its slot in the SWMR (single-
writer, multiple-reader) announceTS[] (Algorithm 2, line 7).
Other threads, which have reached the LoWatermark but not
yet reached the HiWatermark, observe these announcements
to infer that a reclamation event has occurred. They can then
safely reclaim all records in their limboBags retired before
reaching the LoWatermark. If a thread has not reached the
LoWatermark or the HiWatermark, it simply adds the retired
record to its limboBag (line 29) and returns.

The Algorithm 2 provided in this manuscript serves as a
reproduction of the original algorithm, aiming to provide self-
containedness [27]. In the RETIRE() procedure, when a thread
reaches theHiWatermark, it announces the timestamps corre-
sponding to the start (line 10) and finishing (line 12) of the recla-
mation event by incrementing its slot in the announceTS[].
Other threads, which have reached the LoWatermark but not
the HiWatermark, observe the reclamation event using the
scanTS array (line 3). Upon reaching the LoWatermark,
these threads save the current announced timestamps of other
threads in their scanTS slots (line 18). They occasionally
scan (line 21) whether a thread at the HiWatermark has
started and finished a reclamation event (by incrementing its
timestamp twice). If such an event is observed by a thread at
the LoWatermark (line 22), it piggybacks on this observed
reclamation event and reclaims all records in its lim-
boBag that were retired before reaching the LoWatermark
(line 23). Specifically, all records up to the bookmarkTail
pointer saved from the record pointed to by tail at the time
when thread initially hit theLoWatermark are considered safe
for freeing and are freed.

After a thread reclaims at either the LoWatermark (line 13)
or the HiWatermark (line 23), the CLEANUP( ) method (line 31)
is used to set firstLoWmEntryFlag. This prepares the thread for
future reclamation events.

VI. APPLICABILITY

NBR categorizes data structures into three broad categories:
compatible, semi-compatible, and incompatible, based on its
applicability to these data structures. Compatible data structures

Algorithm 2: NBR+ [27]: NBR+ Incorporates all Vari-
ables and Procedures From Algorithm 1 While Introducing
a Modified RETIRE() and Additional Helper Procedures
With Self Explanatory Names.

1: thread local variable: n: #threads
2: int otid; �other thread’s ids, excluding tid.
3: int scanTS[n];
4: bool firstLoWmEntryFlag=true;
5: record* bookmarkTail;
6: shared variable:
7: atomic<int> announceTS[n];
8: procedure RETIRE(rec)
9: if isAtHiWm() then
10: FAA(&announceTS[tid],1);�rec. event

begin
11: signalAll()
12: FAA(&announceTS[tid],1);�rec. event

end
13: reclaimFreeable(tail);
14: cleanUp();
15: else if isAtLoWm()
16: if firstLoWmEntryFlag then
17: bookmarkedTail = tail;
18: scanTS[tid] =scanAnnounceTS()()
19: firstLoWmEntryFlag =0; �

correction [27]
20: end if
21: for each otid do
22: if announceTS[otid]≥scanTS[tid][otid]+2 then
23: reclaimFreeable(bookmarkTail);
24: cleanUp();
25: break;
26: end if
27: end for
28: end if
29: limboBag[tid].append(rec);
30: end procedure
31: procedure CLEANUP()
32: firstLoWmEntryFlag = 1;
33: end procedure

can be further classified into two types based on the pattern of
read and write phases.

A. Compatible Data Structures.

The first type of compatible data structures exhibit a single
Φread followed by a single Φwrite. Examples include optimistic
data structures such as lazylist [1] and DGT [43], where a
sequence of reads identifies target nodes (Φread), followed by a
few writes on those nodes (Φwrite). Applying NBR to these data
structures is straightforward, involving invoking checkpoint
and BEGINΦread() before the sequence of reads, and invoking
ENDΦread() when the target nodes are identified and updates
are executed. For read-only operations, ENDΦread() is invoked
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before the operation returns to reset the restartable flag
and mark the start of the quiescent phase.

The second type of compatible data structures involve a
pattern of alternating read-write phases. For example, Harris’s
lock-free list(HL) [42] shown in Algorithm 3 follows this pat-
tern. By examining our exposition on the HL, readers can gain
insights into how NBR can be applied to more sophisticated data
structures that share the similar design pattern [36], [38], [45],
[46], [47].

In HL, during an update or contains operation, a sequence of
reads is performed to identify target nodes (line 22-30), followed
by auxiliary updates to unlink marked nodes from the list(line
40). The sequence of reads is then restarted from the head of
the list, potentially repeating multiple times if marked nodes are
encountered, resulting in a sequence of read-write phases.

To apply NBR to data structures with alternating read-write
phases, the following steps are followed. First, the check-
point and BEGINΦread() operations are invoked at the be-
ginning of the sequence of reads. Then, the ENDΦread() op-
eration is called when auxiliary updates begin. After that, the
checkpoint and BEGINΦread() operations are invoked again
when the sequence of reads restarts from the head of the list.
Finally, the ENDΦread() operation is invoked when the final
intended update is executed. In the provided example, line 19
and line 32 indicate the start and end of the Φread and Φwrite,
respectively. For more detailed examples and discussions on
incorrect placements of BEGINΦread() and ENDΦread() functions
a programmer should be aware of, please refer to the preceding
conference version [27].

If a neutralization signal is received during the first Φread,
all threads will discard their shared node references and restart
from thecheckpoint corresponding to the first BEGINΦread()
invocation. Similarly, if the neutralization signal is received
during the second Φread, after an auxiliary update, the thread
will discard all references acquired during this second Φread

and jump back to thecheckpoint corresponding to the second
Φread.

It is crucial to highlight that each Φread, including the
second Φread, starts from the head node of the data structure.
As a result, there are no shared record references carried
forward from the previous Φread or Φwrite (auxiliary update
phase). This behavior ensures that each Φread is treated as
a new operation, disregarding any previously acquired node
references. Thus, the requirement of acquiring all references to
shared records during the current phase (refer to Φread rules in
Section III-A) and discarding them (Section IV) when restarting
from the corresponding checkpoint is met, ensuring the safety of
reclamation.

1) Limitation: Restarting From the Root.: If instead of
restarting from head (or entry point), threads were to continue
searching from a midpoint in the list, such as resuming from
a shared node R that was reserved during the previous Φwrite,
would introduce a risk of dereferencing a freed node. Although
R itself cannot be freed due to reservation, the nodes it points
to may not be reserved and thus could be freed. Consequently,
following any pointer from R could lead to accessing a freed
node, resulting in a crash.

Algorithm 3: Demonstration That NBR is Simple to Use
With Harris List [42] With Multiple Read/Write Phases
(Φread Φwrite)+ and Other Compatible Data Structures.
Reproduced From the Conference Version [27].

Fortunately, there are many concurrent data structures in the
literature that naturally restart from the head after auxiliary
updates and exhibit alternating read-write phases. These data
structures, are suitable for integration with NBR. Examples of
such data structures include Harris’ list [42], Brown’s lock-free
ABTree, chromatic tree, AVL tree (B17) [45], Natarajan et al.’s
lock-free binary search tree [37], and several others [36], [38],
[46], [47], including the recently proposed elimination (a,b)
Tree [48]. In our experiments, we utilized the Harris list and
ABTree among these options.

B. Semi-Compatible Data Structures.

The need to restart from the entry point (head in lists or root
in trees) at the beginning of each read phase presents a challenge
in directly applying NBR to data structures with patterns of
alternating read-write phases that do not restart from the root
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Fig. 2. Harris-Michael list. Figure showing the impact of transforming Harris-Michael list to restart from root to apply NBR is negligible. In NBR and NBR+
the HMlist restarts from root while for others it does not. Left: 10% updates. Middle: 50% updates. Right: 100% updates. Max size:20000.

node. For example, the Harris-Michael list [3] and certain search
trees [35], [49], [50], [51]. However, it is possible to adapt NBR
for use with these data structures by modifying their operations
to restart from the root after auxiliary updates. This adaptation,
requires careful consideration as it may introduce trade-offs,
potentially affecting progress guarantees, necessitating a new
amortized complexity analysis, or introducing additional over-
head.

Nevertheless, we observe that modifying data structures to
restart from the root after auxiliary updates is often a viable
solution that does not significantly increase overhead. In sce-
narios with high contention, such as the Harris-Michael list,
where multiple threads contend to unlink a same marked node,
the majority of threads (n− 1) would already restart from the
root [3]. By enforcing a restart from the root for all threads,
the number of threads requiring a restart increases by just one,
resulting in n threads restarting instead of n− 1. This behavior
aligns with the Harris list [42], where all threads contending on
the auxiliary CAS already restart from the root. In low contention
scenarios, the impact of restarting from the root on performance
is minimal.

Experimental results further support the notion that the cost of
restarting from the root is negligible when adapting the Harris-
Michael list to work with NBR compared to using other reclama-
tion techniques which use the list in its original form. Fig. 2 illus-
trates the analysis of the impact of restarting due to contention
induced by varying workloads. Additionally, Fig. 6(a) and (b)
(left column) provide an analysis of the impact of restarts result-
ing from contention induced by different data structures. These
findings demonstrate that the overhead associated with restarting
from the root in practical scenarios is generally low. Moreover, in
search trees, given uniform node access distribution, contention
is low, the performance difference between restarting from the
root and continuing traversal from an ancestor is expected to be
minimal due to shorter search paths.

By considering these factors, it is evident that modifying data
structures to restart from the root after auxiliary updates allows
for effective integration with NBR while maintaining reasonable
performance characteristics.

C. Incompatible Data Structures.

Certain data structures, such as two concurrent relaxed-
balance AVL trees [39], require rotations after update

operations to maintain height balance. These rotations may
discover new nodes that were not accessed during the previous
search phase, making it impractical to reserve nodes in advance
for subsequent write phases. As a result, the NBR technique
does not apply to these data structures. Further, modifying their
implementation to initiate rotations from the root would require
extensive code changes which may require reproving progress
or correctness.

Similarly, a recently introduced lock-free interpolation
tree [50] periodically rebuilds its subtrees by repeatedly visiting
and marking all nodes in old subtree which were not reserved
beforehand to maintain balance. And, in order to visit and mark
the nodes, it does not restart from the root, which violates the
requirement of NBR. Consequently, NBR doesn’t apply, also
neither the DEBRA+ technique nor Hazard Pointers can be
applied to this tree. At present, we are unaware of any SMR
technique with bounded garbage that is compatible with the
interpolation tree.

D. Compatibility of NBR Vs. Other SMR Algorithms

This section surveys a carefully curated list of data structures,
summarized in Table I, and reports whether it is compatible with
NBR and other SMR algorithms including EBR, DEBRA+ and
HP (and variants of HP, including HE, IBR, WFE, ThreadScan,
HY and QSense).

To safely apply NBR the following requirements should be
satisfied, as was discussed in Section VI-A1 and Section III-A.

Requirement 1: Each Φread in a data structure using NBR
should start from the root.

Requirement 2: All references to shared pointers that could
be accessed within a Φwrite should be reserved before entering
it.

Safely applying HPs to a data structure is more subtle. Typ-
ically, accessing shared records in a data structure operation
using the original form of HPs is a three step process where
pointers to records are reserved in a hand-over-hand manner [3].
(1) announcing a hazard pointer: requires a thread to save the
shared record in a single-write multi-reader (SWMR) memory
location. (2) store-load memory order fence: is necessary (on
TSO) to ensure the reclaimers timely collect and skip freeing
the announced hazard pointers. (3) reachability validation: is
required to ensure the record was reachable from the root at the
time it was announced to avoid announcing an already un-linked
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TABLE I
APPLICABILITY OF SMR ALGORITHMS

record that could be freed simultaneously. When these three
steps execute successfully, it can be said that the thread has
acquired a hazard pointer.

Table I presents a survey of eighteen data structures, wherein
NBR applies to eleven, DEBRA + applies to four and HP applies
only to three. However this does not necessarily mean NBR is
strictly more applicable than HP.

Qualitatively, NBR does not apply to data structure imple-
mentations where read and write phases interleave in a way
that leads to violation of shared record access requirements
(referred to as Requirement 1 and Requirement 2). On the
other hand, it is not clear how HP should be applied to data
structures where a sequence of logically deleted (or marked)
nodes can be traversed [2]. This scenario arises in an important
and substantial class of well known data structures, including
unbalanced binary trees [35], [36], [37], [43], [46], [49], [52],
relaxed AVL trees [47], Chromatic trees [53], B+trees [54],
ab-trees [45], [48], linked lists [1], skip lists [55], and Euler
tour trees [46]. We have not studied the applicability of NBR to
all of these data structures, however several of them do appear
in our survey.

Motivated in part by NBR, Petrank et al. [24] formal-
ized NBR’s data structure template and requirements (Require-
ment 1 and Requirement 2), and gave a name to data structures
that satisfy them: access-aware data structures. This class of
algorithms is the basis for the definition of what it means
for an SMR algorithm to be widely applicable in that paper.
More precisely, an SMR algorithm that can be applied to all
access-aware data structure implementations is said to be widely
applicable.

NBR is of course applicable to all access aware data structure
implementations and is therefore widely applicable according
to this definition. On the other hand, HP and its many variants
are not applicable to all access-aware data structures, and are
thus not widely applicable. It appears that DEBRA + is also not
widely applicable as it does not support lock-based access-aware
data structure implementations.

Details of HP applicability: Having discussed the require-
ments for ensuring safety and progress in a data structure, we
next discuss the applicability of HP to the data structures in
Table I.

In LL05 [1] searches are wait-free and updates use an opti-
mistic locking pattern. If HP is applied to LL05 it is possible
that a thread could repeatedly fail to acquire a HP on a node
that is marked but not yet unlinked (because the thread that
marked it is stalled or crashed). This breaks wait freedom for
searches. DGT2015 [43], on the other hand, traverses the nodes
in a synchronization-free manner (as in the lazy list) and uses
version numbers and ticket locks to perform updates. However,
since DGT15 doesn’t use marking, it is not clear how HPs could
be acquired safely.

In HJ12 [46], hazard pointer acquisition could fail indefinitely
if a thread that marks a node fails before unlinking it. More
specifically, threads that would try to help this failed thread to
finish unlinking the node would need to acquire an HP on the
marked node, and it is not clear how this HP could be acquired
(without acquiring HPs to all nodes on the search path from
the root). This could prevent all threads from making progress.
Such issues were described in [2]. Similarly, in HL17 [47] and
the concurrent interpolation search tree of Brown et al. [50],
it is not clear how a thread trying to acquire an HP on a node
could verify that it is still reachable from the root. BCCO10 [39]
uses lazy deletion in the sense that to delete a node with 2
children it converts it to a routing node (treating this as if the
AVL tree is an external tree) and this routing node is deleted
lazily at the time of next rebalancing step that involves it. Thus,
it appears that we can use HP as one can leverage version based
validation to know when a node is definitely reachable and if
such a validation fails one can simply restart from the root. Note
this doesn’t theoretically impact progress guarantee of searches
(unlike lazylist or DGT15) as they are already blocking due
to hand over hand optimistic validation. However, in practice,
HPs would necessitate restarts from the root when validation
fails, whereas BCCO nominally attempts to continue traversal
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from the parent node in this case. The logical ordering tree of
DVY14 [35] is based on BCCO10, but DVY14 does not use
version numbers, so a search has no way to tell whether a node
is currently in the tree. Thus, it is not clear how one could use
HPs in DVY14.

Details of NBR applicability: Reasoning about the applicabil-
ity of NBR is comparatively easy, as one just needs to confirm
that every Φread restarts from root, and that it is possible to
reserve all records before entering a Φwrite (Requirement 1
and 2, respectively). In other words, each thread should restart
from root after helping in search phase and no new pointers to
shared records should be accessed in a Φwrite.

NBR, at first may appear to be easily applicable to
EFRB10 [36] as it has lockless searches which either end in an
update or helping and operations restart searches from root after
helping. However, one helping step could lead to recursively
more helping updates which could discover new pointers that
could not be known before the first helping update. As a result
such pointers can not be reserved before the first helping update
(write phase), (violating Requirement 2). Similarly, NBR could
not be applied to EFRB14 [49] as, after helping, an operation
restarts from nearby ancestors and not from the root (violating
Requirement 1). Restarting from a nearby ancestor is crucial to
achieve the amortized complexity result in that work.

In HJ12 [46], the first lock-free internal BST, searches are
sometimes required to help an ongoing update to avoid missing
a node that is concurrently moved upwards in the tree, a situation
that can arise when a search is concurrent with a two-child delete
operation. However, in HJ12, after helping, searches restart from
the root (satisfying NBR ’s requirement that aΦread should start
from root), and all records required to do the helping update can
be known beforehand through the descriptor (satisfying NBR ’s
requirement that all records to be accessed in a Φwrite should
be reserved). Thus, NBR can be used in HJ12.

Similarly, data structures designed using the tree update tem-
plate of Brown et al. [45], for example lock-free chromatic
trees, relaxed (a,b)-trees, relaxed AVL trees, and weak AVL trees
HL17 [47] are compatible with NBR. In the template, operations
do typically synchronization-free searches to find target node(s)
(similar to our standard Φread), then check whether they need
to help (similar to entering Φwrite during a search), and in the
event that an operation O helps another, O typically restarts
from the root. Helping is implemented using descriptors which
contains pointers to all nodes that would be required to execute
the helping update, so NBR could reserve all node pointers in
the descriptor and enter Φwrite for the helping update and then
restart its search (Φread) from the root.

The lock-free Patricia Trie (S13) [38] too follows a pattern
in which searches are synchronization-free, and updates may
perform auxiliary helping using descriptors and then restart
from the root. Thus, NBR applies to S13 as we can know all
records to be accessed in Φwrite beforehand, and after helping,
the operation can be restarted from the root, satisfying both
Requirement 1 and 2.

DGT15 [43] has sync-free searches followed by locking pre-
determined nodes for updates, which is similar to the Φread

followed by single Φwrite pattern of LL05 [1]. Thus, NBR
applies to DGT15.

The unbalanced external BST of Natarajan and Mittal
(NM14) [37] too has a pattern where each operation starts with
synchronization-free search that returns a SeekRecord object
followed by possible modifications to the data structure. During
updates, the operation may possibly help by accessing nodes
only pointed by a SearchRecord object and then subsequently
restart from root. Deletion consists of two modes: injection and
cleanup. Both involve data structure modification, therefore,
both should be done in NBR ’sΦwrite. Additionally, it is possible
that injection mode may succeed and subsequent cleanup may
fail, in that case the operation is required to start from the root,
satisfying the requirements for NBR.

The unbalanced external BST in DVY14 [35] does a
synchronization-free search and then executes updates using
locks. But within the update phase it may obtain pointers to
new nodes, for example, the successor, children or parent of
a node, which may violate the Requirement 2 of NBR. So, in
order to apply NBR to DVY14, one must modify DVY14 to
perform all of the aforementioned reads of new record pointers
in the update phase before the first lock is acquired, then validate
after lock acquisitions that the values of those reads have not
changed (and restart if validation fails). Note, NBR would not
work with the balanced variant of the DVY14 tree, which does
bottom-up rebalancing without restarting from the root between
rotations.

BCCO [39] Uses optimistic concurrency control (OCC) tech-
niques to avoid locking nodes in searches as much as possible
but occasionally locks and immediately unlocks a node as part
of traversal, which suggests NBR cannot be used. However,
as described in [56], this locking is an optional part of the
BCCO algorithm (intended to improve fairness under heavy
contention) and can simply be removed. Unfortunately, this
algorithm performs recursive bottom-up rebalancing without
restarting from the root between rotations. To use NBR, one
would need to restart from the root after each rotation, which
would be a substantial algorithmic change.

In RM15 [52], an insert operation, does a sync-free search
followed by a CAS on an appropriate child pointer. If the CAS
fails, the pointer is re-read to find a descriptor, which helps
complete the conflicting operation and the operation restarts
from the root. For safe application of NBR, we must reserve both
children of node, and if either child is actually a descriptor, we
must reserve all pointers in the descriptor. At this point, if we see
a descriptor, we might as well help it before attempting the CAS
(if the CAS would be doomed to fail anyway). Unfortunately,
this changes the progress argument (although we don’t think it
actually changes the progress property). Delete in RM15 are the
real problem for applying NBR. after the inject part, the cleanup
part requires obtaining and dereferencing new pointers without
restarting from the root. modifying this algorithm to work with
NBR would require sweeping changes.

E. Ease of Use

Using NBR in compatible data structures is simpler compared
to most reclamation techniques, although it is not as straight-
forward as DEBRA. The process involves identifying the start
of a Φwrite and all records that will be needed to execute
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the Φwrite to place ENDΦwrite() in data structure operation.
This is similar to using two-phase locking. Additionally, the
programmer needs to identify when a Φread begins to place a
checkpoint and BEGINΦread(). A quantitative comparison and
detailed discussion on required programming effort required to
use NBR, DEBRA and HP can be found in [27].

VII. CORRECTNESS

Assumption 3: If Ti in order to reclaim its retired records
sends a signal to Tj , then by the time Ti finishes sending the
signal, Tj is guaranteed to receive it and execute a signal handler
before taking further steps in its program.

Property 4: A thread Tj in Φread

4.1 upon receiving a signal executes a signal handler and
restarts from the entry point of a data structure (i.e gets
neutralized).

4.2 is permitted to dereference reference fields of shared
records to discover new shared records (unless it is neu-
tralized).

Property 5: A thread Tj in Φwrite

5.1 reserves all records to be used in Φwrite before entering
Φwrite.

5.2 upon receiving a neutralizing signal simply continues its
execution as if no signal was received.

5.3 does not access any records it did not reserve prior to
entering Φwrite.

Property 6: Every reclaimer thread Tr does the following in
order:

6.1 sends signals to all participating threads.
6.2 scans all reserved records of each participating thread Tj .
6.3 reclaims records in its bag that are not reserved.
Lemma 7: A reclaiming thread Tr is guaranteed to scan all

the reservations of a thread Tw if Tw enters its Φwrite before it
is signalled by Tr.

Proof: A thread Tw reserves records by announcing them in a
single writer multi reader array. On x86/64, this announcement
must be followed by a memory ordering instruction to ensure
that the reservations are visible when the thread enters itsΦwrite.
Specifically, NBR uses a CAS to reset a thread local variable
restartable which simultaneously beginsΦwrite and ensures that
the preceding reservations are visible to any other thread that
sees Tw is in Φwrite.

Let tres be the time at which the last reservation was made
and twp be the time at whichΦwrite began. As we just explained,
this means (A) tres < twp.

To show that Tr observes all of Tw’s reservations, we show
that tscan < tres.

From, Property 6 we know that (B) tsig < tscan, where tsig
is when Tr sent its last signal, and tscan is when it reads the
first reservation slot of Tw. And, since Tw was in Φwrite when
it received the signal, we have (C) twp < tsig. By (A), (B) and
(C), tres < twp < tsig < tscan. �

Lemma 8 (NBR is Safe): No reclaimer thread in NBR re-
claims an unsafe record.

Proof: Suppose to obtain a contradiction that some reclaimer
Tr reclaims an unsafe record rec. This can occur in only two

ways: (1) a writer accesses a record rec that it did not reserve,
or (b) a reader accesses a record rec in the limboBag of Tr that
is being reclaimed.

It is easy to argue that (1) does not happen. By Property 6, Tr

must have sent a signal to the writer before reclaiming rec. By
Property 5, if the writer accesses rec it must reserve rec before
entering Φwrite.

Next we show (1) does not happen. As above, by Property 6,
Tr must have sent signal to the reader before reclaiming rec.
Once Tr has sent this signal, Assumption 3 and Property 4
imply that the reader will execute its signal handler as its next
step in its execution, at which point it will discard any private
reference to rec. Consequently, by the timeTr begins reclaiming
records in its limboBag, the reader will no longer have access
to rec. �

Lemma 9 (NBR+ is safe): No reclaimer thread in NBR+
reclaims an unsafe record.

Proof: In NBR+, threads can reclaim at the LoWatermark or
at the HiWatermark. Reclamation at the HiWatermark is similar
to reclamation in NBR, and the argument that reclaimers at
the HiWatermark do not reclaim unsafe records is similar to
Lemma 8.

It remains to prove that reclamation at the LoWatermark is
safe. We argue that any record rec reclaimed by a thread Tlw

at the LoWatermark must be safe. In other words, rec must not
be reserved by any thread, and no thread should have a private
reference to rec.

In NBR+, Tlw reclaims only up to its bookmarkTail, which
means it only reclaims records that it had retired before the
time t when Tlw reached the LoWatermark and scanned the
timestamps of all threads. And, Tlw reclaims these records only
at a later time t′ when it sees that all threads’ timestamps have
been incremented at least twice. These timestamp increments
indicate that, between times t and t′, all threads received signals
and discarded their pointers to unreserved records. Since rec is
retired before time t < t′, it follows that at time t′ any thread that
has a reference to rec must have reserved rec before t′. If rec
is still reserved when Tlw scans the reservations of all threads
(after t′) then rec will not be reclaimed. Otherwise, rec is safe
to reclaim. �

Lemma 10 (Both NBR and NBR+ are robust): The number
of records that are retired but not yet reclaimed is bounded.

Proof: Let k be an upper bound on the number of records
a thread reserves per operation, p be the number of processes,
and h be the maximum limboBag size at which a thread decides
to reclaim (i.e., the HiWatermark). Let, Tr be a reclaimer and
Tj be an arbitrary thread. If Tj is delayed (or crashes), it can
reserve at most k records in Tr’s limboBag. A retired record can
be present in only one limboBag, so in the worst case a single
thread can prevent only k records from being reclaimed (across
all limboBags). It follows that, in a system where p− 1 threads
can crash, those p− 1 threads can prevent at most k(p− 1)
records in total from being reclaimed. Moreover, a reclaimer
always reclaims when it hits the HiWatermark, so a limboBag
contains at most h records. �

Corollary 11: A thread can prevent only the records it re-
serves in a single operation from being reclaimed.
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In NBR, we assume the number of records that can be reserved
by a single data structure operation is smaller than the limboBag
size (otherwise a thread could prevent all records in a limboBag
from being reclaimed). Data structures typically require only a
small number of reservations per operation. For example in our
experiments, the lazy linked list [1] required a maximum of two
reservations per operation, and the harris list [42], DGT binary
search tree [43], and relaxed (a,b) tree [45] needed to reserve a
maximum of three records per operation.

VIII. IMMEDIACY OF SIGNAL DELIVERY IN PRACTICE

NBR assumes signal delivery is immediate for safety
(Assumption 3), so that neutralizing signals are delivered to
target threads before the sender initiates reclamation. We ex-
amine the signal handling code of two open source operating
systems, FreeBSD and Linux, and find that signal delivery is
immediate, unless the receiving thread has masked the signal
or has exited. Additionally, our experiments, spanning over
10 hours, confirm low latency between signal generation and
delivery, supporting Assumption 3.

To understand POSIX signal guarantees better, we analyze the
steps involved in the signal delivery process. First, the signaling
thread calls pthread_kill, which invokes a system call
and transfers control to the operating system (kernel switch).
Second, the kernel processes the call by marking the signal as
pending in the target thread’s per-thread structure (e.g., thread
in FreeBSD). Third, if the thread is currently running, the ker-
nel sends an Inter-Processor Interrupt (IPI) to asynchronously
interrupt the target thread and transfer control to the operating
system. Fourth, the destination core is interrupted (assuming an
IPI is sent) through the local APIC, in case of x86 systems.
Lastly, when the thread is resumed, the signal is delivered to the
user space, followed by the execution of the user space signal
handler.

For our purposes, we are primarily concerned with the point
at which, after the signal is sent, we can guarantee that the target
thread stops executing new user space instructions. For non-
running target threads, this is true when the sender returns from
its pthread_kill because the pthread_kill notifies the
target thread that a signal is pending by setting a flag in a pending
signal vector in the kernel thread structure. So, when the target
thread is scheduled to run again, it checks its signal pending
mask and immediately delivers the signal. In the case of running
threads, the kernel employs an IPI to interrupt the core where
the target thread is executing. This is an asynchronous process,
which may need to wait for a certain amount of time to confirm
the delivery of the IPI.

We have observed that, in practise, this waiting time for
IPI delivery is reasonably low. To determine the upper bound
of this waiting time, we design several benchmarks involving
two threads placed on consecutive CPU cores within the same
socket. The first thread sends a signal to the second thread by
invoking pthread_kill. We measure the end-to-end times
(CPU cycles required to send and deliver a signal) using the
rdtsc instruction and further breakdown the measured times

TABLE II
BREAKDOWN OF THE APPROXIMATE SIGNAL DELIVERY LATENCIES IN CYCLES

by using DTrace to analyze internal operating system functions
which allows us to identify signals that induce an IPI.

The latency is divided into two parts: the latency of trans-
mitting the IPI to the target core and how the processor drains
or aborts the remaining in-flight instructions. The IPI is sent at
the end of the pthread_kill operation, and the local APIC
completes the delivery (hardware portion) asynchronously. To
establish an upper bound on the end-to-end signal delivery cost,
we measured the local delivery cost using the int3 instruction,
which triggers an exception that is delivered faster than an
interrupt routed through the local APIC. This measurement
represents the lower bound of the signal delivery cost on the
destination core, as externally generated interrupts will take
longer than an interrupt generated by the instruction stream.

It is worth noting that if multiple interrupts are pending, the
delivery of the IPI may be delayed. However, for the purpose of
our wait time analysis, once the first IPI is received and delivered
at the target core, all other queued IPIs will be delivered imme-
diately. Hence, it is safe to assume that no further instructions
will be executed.

Table II presents the measurements for the number of CPU
cycles required for signal sending and delivery, including end-to-
end delivery, the cost of sending an IPI, the local signal delivery
cost, and the time to execute a pthread_kill syscall. We
have experimented with multiple hardware platforms, but we
report these measurements on an Intel Xeon Gold 6342 CPU
running at 2.80 GHz (Ice Lake) with FreeBSD 13.0.

We approximate the maximum waiting time for the IPI to
complete by subtracting the local signal delivery time from the
end-to-end time. This computation provides an upper bound on
the moment when the processor stops executing user-space in-
structions. Additionally, we subtract the time it takes to complete
pthread_kill since the source cannot initiate reclamation
until control is returned from the operating system. This calcu-
lation results in unaccounted cycles that vary from zero to 283
cycles, on multiple machines we tested.

The machines used for evaluation of NBR in our experiments
section had no unaccounted for cycles. This may be in part
due to the extra overhead in returning from kernel mode when
KPTI is enabled, which masks the signal delivery latency, giving
the effect of immediate signal delivery. However, on the Intel’s
Icelake machine we calculated roughly 283 cycles that we can
not account for. The unaccounted cycles represent the latency
required for the two Local APICs to communicate the IPI request
between the cores and any additional cost for interrupt delivery.
Thus, on this machine threads should wait for 283 cycles before
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initiating reclamation to ensure Assumption 3’s validity. This
latency is within a small factor of the cost of a cache line transfer
between L2 caches.

In general, we have observed that signaling mechanism is
designed to be fast and the signal delivery cost is low. However,
it is important to acknowledge that for some specific processor
designs the signal delivery cost may vary. While the exact
variations are dependent on the specific architecture, we believe
that it is still feasible to approximate the wait times by employing
the profiling and benchmarking technique similar to ours. By
carefully analyzing the characteristics of the architecture at
hand, it is possible to infer reliable wait time for threads to
initiate reclaiming after sending signals to ensure validity of
Assumption 3, on such architectures. Alternatively, utilizing fast
user space interrupts could also be explored to address this.

IX. EXPERIMENTAL EVALUATION

We rigorously evaluate NBR and NBR+. To the best of our
knowledge, this is the most extensive evaluation to date in
terms of the number of reclamation schemes and variety of data
structures evaluated.

Setup: We conducted our experiments on a quad-socket Intel
Xeon Platinum 8160 machine with 192 threads, 384 GB of
RAM, 33 MB of L3 cache per socket (total 132 MB). The
machine ran Ubuntu 20.04 with kernel 5.8 with GCC 9.3.0.
We implemented all algorithms in the Setbench [50] benchmark
with -O3 optimization flag and utilized jemalloc as the mem-
ory allocator [57]. Our evaluation consisted of three types of
experiments:

(E1): Evaluating NBR (+) throughput with different workloads
thread counts to understand scalability [P1].

(E2): Measuring throughput with varying data structure sizes to
understand the impact of contention and cache misses[P4].

(E3): Evaluates peak memory usage of NBR+ with and without
stalled threads to understand its memory behaviour [P2].

We studied multiple data structures with varying memory
access patterns including of lists, hash tables, and trees. Specif-
ically, we utilized the lazylist (LL) [1], Harris list (HL) [42]
and Harris-Michael list (HMList) [3] for lists, HMList chaining
based hashtable (HMHT), for hash table, and external binary
search tree of David et al. (DGT) [43] and Brown’s relaxed
(a,b)-tree (BABT) [45] for trees.

LL and DGT belong to the class of data structures that are
naturally compatible with NBR as they have a single Φread

and Φwrite per operation. HL and BABT belong to the class
of data structures with multiple Φread and Φwrite that start
every Φread from root. Thus, they are suitable for NBR with
careful separation of the phases as discussed in Section VI-A.
Finally, HMList and HMHT represent the semi-compatible data
structures discussed in Section VI-B. Each of these data struc-
tures is implemented with up to twelve different reclamation
algorithms (as applicable), including NBR, NBR+ and none
algorithm which is a leaky implementation. The reclamation
algorithms are summarized in Table III.

TABLE III
SMRS USED IN BENCHMARK

Trees do not include the lines for crystallineL and crys-
tallineW. Although these algorithms worked correctly with lists,
they occasionally crashed when used with trees in oversub-
scribed scenarios, and it is unclear how to use them correctly
in this context. Therefore, we decided to exclude them from the
tree plots. Additionally, since HP does not apply to HL [3], it was
omitted from the HL plots. Furthermore, VBR [23] was not used
in our experiments because it assumes a type-stable allocator
that never frees memory to the OS, and a fair comparison would
require forcing all algorithms to use memory pools. The reported
results are obtained by averaging data from 5 timed trials, each
lasting 5 seconds. The experiments were conducted with thread
counts ranging from 1 to 384 threads on a system with 192
hardware threads and more than 91% of data points had less
than 5% variance. Before each execution, the data structure was
pre-filled to half of its maximum size.

For each of (E1), (E2), and (E3) we measure throughput for
three workloads, (1) update-intensive: 100% updates where 50%
of operations are inserts and the rest are deletes, (2) balanced:
25% of operations are inserts, 25% are deletes and rest are
searches, and (3) search-intensive: 5% of the operations are
inserts, 5% are deletes and the rest are searches.

A. Discussion of E1

Figs. 3, 4, and 5 show the throughput of all the data structures
with varying workloads. In general, it can be observed that
especially in balanced and update intensive workloads, NBR+ is
similar to other reclamation techniques at lower thread counts,
i.e up to 48 threads. Then at higher thread counts, from 48 to
192 threads, NBR+ is better than other reclamation techniques,
except in the LL and HMList data structures. In oversubscribed
scenarios, i.e., for thread counts greater than 192, NBR+ is
competitive and sometimes outperforms the competition.

One interesting observation is the cross-over between DE-
BRA and NBR+ at the higher thread counts, particularly evident
in the DGT, BABT and HMHT data structures. The slowdown
of DEBRA at higher thread counts could be attributed to the
delayed thread vulnerability, where slow threads infrequently
advance epochs, halting regular reclamation of limbo bags.
This results in the accumulation of a large number of retired
records waiting to be reclaimed. When the slow thread finally
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Fig. 3. E1: Evaluation with data structures having a single read-write phase. Y axis: throughput in million operations per second. X-axis: #threads.

Fig. 4. E1: Evaluation with data structures having multiple read-write phases. Y axis: throughput in million operations per second. X-axis: #threads.

announces the latest epoch, all threads reclaim their large limbo
bags, causing a reclamation burst (many records being freed at
once). This burst harms overall throughput as reclamation bursts
bottleneck the underlying allocator by increasing contention and
triggering slow code paths as internal buffers in the allocator
are quickly filled. The probability of threads getting delayed
increases as more threads get involved in high inter-socket and
update-intensive computations. Furthermore, the thread count
where NBR+ overtakes DEBRA is lower in the update-intensive
than the search-intensive workloads. This is because the over-
head of burst reclamation sets in at lower thread counts for
update-intensive workloads.

B. Discussion of E2

In the second experiment, we evaluate all the reclamation
algorithms with data structures of small and very large sizes. This
serves two purposes. First, this illustrates the behavior under
high contention at small sizes and low contention at large sizes.
Second, this experiment also studies the impact of varying cache
miss rates on throughput when data fits in the LLC (last level
cache), and when it does not.

Fig. 6, shows the HMList (left column), DGT (middle col-
umn), and BABT (right column). The first row (Fig. 6(a)) depicts
these data structures with sizes that fit in the LLC. The HMList
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Fig. 5. E1: Evaluation with data structures that can be modified to restart from root/head. Y axis: throughput in million operations per second. X-axis: #threads.
In NBR and NBR+ the HMlist restarts from root while for others it does not.

Fig. 6. E2: Throughput across different data structure sizes. Workload: 100% updates. Y axis: throughput in million operations per second. X-axis: #threads.
Trees size of 20 M exceeds LLC. Trees size of 200 K fits LLC. Lists always fit in LLC.

Fig. 7. E2: HMList-based Hash table with load factor 600 that does not fit in
LLC.

is of size 200 and both the trees are of size 200 K. The second
row (Fig. 6(b)) depicts these data structures with sizes that do
not fit in LLC. The HMList is of size 20 K and both the trees are
of size 20 M. Note, the list, even at 20 K size, fits in LLC and it
is not possible to go beyond the size of 20 K and complete the
experiments in a reasonable amount of time. So, to emulate the
case of very low contention in lists we use the maximum size
of 20 K. Additionally, in Fig. 5(b) and Fig. 7 we include results
for chaining hash tables with 60 K buckets (fits in the LLC) and
6 M buckets (exceeds the LLC), with load factors 6 and 600,
respectively.
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Fig. 8. E3: Left: DGT with stalled threads. Right: DGT with no stalled threads. Max Size: 20 M.

Interestingly, NBR+ outperforms the competition, especially
at the high thread counts. When combined with the analysis
of E1, it is clear that NBR+ is fast [P1] and consistent [P4].
Specifically, NBR+ is comparable to other fast epoch-based
algorithms like DEBRA, QSBR, RCU for the HMList at both
the small and large sizes (see the left column in Fig. 6(a), (b)).
In DGT (see the middle column in Fig. 6(a), (b)), NBR+ is
significantly faster at higher thread counts. Similarly, in BABT
(see the right column in Fig. 6(a), (b)) NBR+ is faster at small
sizes and comparable to other reclamation algorithms at large
sizes. In the case of HMHT, NBR+ is comparable at small sizes
(see the right column in Fig. 5(b)) as well as at large sizes
(see Fig. 7).

Furthermore, experiment E2 also helps to explore two dis-
parate usage scenarios for semicompatible data structures like
HMList and the HMHT. First, at a large size, for example 20 K
in HMList and a load factor of 600 in HMHT, we hypothesize
restarts would be inexpensive due to low contention. Second,
at a small size, i.e. 200 in HMList and the load factor of 6 in
HMHT, we assume that restarting from the head node will occur
frequently due to high contention, therefore it should have high
overhead and slowdown the data structures.

For low contention, the NBR+ based implementation which
enforces restarts is still faster than other reclaimers which do not
restart, in HMlist and HMHT. Surprisingly, even for high con-
tention, NBR+ outperforms other reclaimers. This suggests that,
at least for semicompatible lists, NBR ’s methodology is suffi-
ciently fast and restarts in the data structure incur low overhead.

C. Discussion of E3

In our third type of experiment, we measure peak memory
consumption of all reclaimers when a thread is stalled (see the
middle column in Fig. 8) and when no thread is stalled (see the
right column in Fig. 8) to establish that NBR (+) bounds garbage.

Each trial is run for 40 seconds. For DEBRA, QSBR, RCU,
HP, HE, NBR and NBR+ one thread is made to sleep within
a data structure operation, for whole 40 seconds, imitating a
stalled thread. And, for 2GEIBR, one thread is made to stall
to maximize the interval of reservations such that maximum
number of nodes are prevented from getting reclaimed, imitating
pathological scheduling.

As expected, DEBRA, 2GEIBR, QSBR and RCU do not have
bounded garbage, show an increase in peak memory usage when
a thread stalls (Fig. 8). In contrast, NBR, NBR+, HP exhibit

similar memory usage regardless of thread stalls. In HE and WFE
memory usage increases marginally as a result of the stalled
thread, showing some minor sensitivity to stalled threads. In
summary, our experiments reveal that NBR is fast[P1], bounds
garbage [P2], and is consistent [P4]. Additionally, we also show
that NBR can be fairly easily integrated [P3] in multiple data
structures [P5].

Code: (https://gitlab.com/aajayssingh/nbr_setbench_plus).

X. CONCLUSION

We proposed two neutralization based reclamation techniques
(NBR and NBR+) for safely reclaiming memory in dynamic
concurrent data structures. Provided analysis of their correctness
and progress guarantees, investigated their safe usage on modern
operating systems, and conducted a survey to assess the appli-
cability of these techniques. Neutralization based reclamation
leverage the common pattern observed in many concurrent
data structures, characterized by their read-write phases. By
utilizing POSIX signals, this technique establishes a lightweight
coordination mechanism among threads, preventing use-after-
errors. Future exploration of user-space signals could further en-
hance these techniques’ effectiveness. Overall, our experiments
demonstrate that these techniques provide fast and consistent
performance and bound garbage. Furthermore, our integration
of these techniques with multiple data structure shows their
simplicity and widely applicabililty when compared to other
hybrid approaches.
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