
Cost of Concurrency in Hybrid Transactional Memory

Trevor Brown
University of Toronto
tabrown@cs.toronto.ca

Srivatsan Ravi
Purdue University

srivatsanravi@purdue.edu

Abstract
State-of-the-art software transactional memory (STM)
implementations achieve good performance by carefully
avoiding the overhead of incremental validation (i.e.,
re-reading previously read data items to avoid incon-
sistency) while still providing progressiveness (allowing
transactional aborts only due to data conflicts). Hard-
ware transactional memory (HTM) implementations
promise even better performance, but offer no progress
guarantees. Thus, they must be combined with STMs,
leading to hybrid TMs (HyTM) in which hardware trans-
actions must be instrumented (i.e., access metadata) to
detect contention with software transactions.

We show that, unlike in progressive STMs, software
transactions in progressive HyTMs cannot avoid incre-
mental validation. In fact, this result holds even if hard-
ware transactions can read metadata non-speculatively.
We then present opaque HyTM algorithms providing pro-
gressiveness for a subset of transactions that are optimal
in terms of hardware instrumentation. We explore the
concurrency vs. hardware instrumentation vs. software
validation tradeoffs for these algorithms. Preliminary
experiments with Intel’s HTM seem to suggest that the
inherent cost to concurrency in HyTMs also exists in
practice. Finally, we discuss algorithmic techniques for
cicumventing this cost.

1. Introduction
The Transactional Memory (TM) abstraction is a syn-
chronization mechanism that allows the programmer to
speculatively execute sequences of shared-memory op-
erations as atomic transactions. Several software TM
designs [6, 9, 11, 16, 20] have been introduced subse-
quent to the original proposal TM proposal based in
hardware [12]. The original dynamic STM implementa-
tion DSTM [11] ensures progressiveness: a transaction
aborts only if there is a read-write data conflict with
a concurrent transaction. However, read operations in
DSTM must incrementally validate the responses of all
previous read operations to avoid inconsistent execu-
tions. This results in a quadratic (in the size of the
transaction’s read set) step-complexity bound. Subse-
quent STM implementations like NOrec [6] and TL2 [8]

minimize the impact on performance due to incremental
validation. NOrec uses a global sequence lock that is read
at the start of a transaction and performs value-based
validation during read operations only if the value of the
global lock has changed (by an updating transaction)
since reading it. TL2, on the other hand, eliminates
incremental validation completely. Like NOrec, it uses
a global sequence lock, but each data item also has an
associated sequence lock value that is updated alongside
the data item. When a data item is read, if its asso-
ciated sequence lock value is different from the value
that was read from the sequence lock at the start of the
transaction, then the transaction aborts.

In fact, STMs like TL2 and NOrec ensure progress in
the absence of data conflicts with O(1) step complexity
read operations and invisible reads (read operations do
not apply any nontrivial primitives on the shared mem-
ory). Nonetheless, TM designs that are implemented
entirely in software still incur significant performance
overhead. Thus, current CPUs have included instruc-
tions to mark a block of memory accesses as transac-
tional [1, 15, 18], allowing them to be executed atomi-
cally in hardware. Hardware transactions promise better
performance than STMs, but they offer no progress guar-
antees since they may experience spurious aborts. This
motivates the need for hybrid TMs in which the fast
hardware transactions are complemented with slower
software transactions that do not have spurious aborts.

To allow hardware transactions in a HyTM to de-
tect conflicts with software transactions, they must be
instrumented to perform additional metadata accesses,
which introduces overhead. Hardware transactions typi-
cally provide automatic conflict detection at cacheline
granularity, thus ensuring that the transaction itself
would be aborted if it experiences memory contention
on the cacheline. This is at least the case with the Intel’s
Transactional Synchronization Extensions [21]. The IBM
Power8 ISA additionally allows hardware transactions to
access metadata non-speculatively, thus bypassing auto-
matic conflict detection. While this has the advantage of
potentially reducing contention aborts in hardware, this
makes the design of HyTM implementations potentially
harder to prove correct.

1 2017/2/2



In [2], it was shown that hardware transactions in
progressive HyTMs must perform at least one metadata
access per transactional read and write. In this paper,
we show that in progressive HyTMs with invisible reads,
software transactions cannot avoid incremental valida-
tion. Specifically, we prove that each read operation of
a software transaction in a progressive HyTM must nec-
essarily incur a validation cost that is linear in the size
of the transaction’s read set. This is in contrast to TL2
which is progressive and has constant complexity read op-
erations. Thus, in addition to the linear instrumentation
cost on the hardware transactions, there is the quadratic
step complexity cost on the software transactions.

We then present opaque HyTM algorithms providing
progressiveness for a subset of transactions that are opti-
mal in terms of hardware instrumentation. Algorithm 1
is progressive for all transactions, but it incurs high in-
strumentation overhead in practice. Algorithm 2 avoids
all instrumentation in fast-path read operations, but is
progressive only for slow-path reading transactions. We
also sketch how some hardware instrumentation can be
performed non-speculatively without violating opacity.

We performed preliminary experiments comparing
our HyTM algorithms to TL2, Transactional Lock Eli-
sion (TLE) and Hybrid NOrec [19] using a binary search
tree microbenchmark. In these experiments, we studied
two types of workloads: workloads in which essentially
all transactions commit on the fast-path, and workloads
in which some thread periodically performs transactions
on the slow-path. These experiments demonstrate that
hardware instrumentation is a dominating factor in the
performance of HyTMs, and that simplistic algorithms
like TLE perform very well unless transactions periodi-
cally run on the slow-path.

Viewed collectively, our results demonstrate that
there is an inherent cost to concurrency in HyTMs.

2. Hybrid transactional memory
(HyTM)

In this section, we adopt the formal model of HyTMs
originally proposed in [2].
Transactional memory (TM). A transaction is a
sequence of transactional operations (or t-operations),
reads and writes, performed on a set of transactional
objects (t-objects). A TM implementation provides a set
of concurrent processes with deterministic algorithms
that implement reads and writes on t-objects using a
set of base objects.
Configurations and executions. A configuration of
a TM implementation specifies the state of each base
object and each process. In the initial configuration,
each base object has its initial value and each process is
in its initial state. An event (or step) of a transaction in-
voked by some process is an invocation of a t-operation,

a response of a t-operation, or an atomic primitive oper-
ation applied to base object along with its response. An
execution fragment is a (finite or infinite) sequence of
events E = e1, e2, . . . . An execution of a TM implemen-
tation M is an execution fragment where, informally,
each event respects the specification of base objects and
the algorithms specified byM.

We consider the dynamic programming model: the
read set (resp., the write set) of a transaction Tk in an
execution E, denoted RsetE(Tk) (and resp. WsetE(Tk)),
is the set of t-objects that Tk attempts to read (and resp.
write) by issuing a t-read (and resp. t-write) invocation
in E (for brevity, we sometimes omit the subscript E
from the notation).

For any finite execution E and execution fragment
E′, E · E′ denotes the concatenation of E and E′ and
we say that E · E′ is an extension of E. For every
transaction identifier k, E|k denotes the subsequence
of E restricted to events of transaction Tk. Let txns(E)
denote the set of transactions that participate in E. Two
executions E and E′ are indistinguishable to a set T of
transactions, if for each transaction Tk ∈ T , E|k = E′|k.
A transaction Tk ∈ txns(E) is complete in E if E|k ends
with a response event. The execution E is complete if all
transactions in txns(E) are complete in E. A transaction
Tk ∈ txns(E) is t-complete if E|k ends with Ak or Ck;
otherwise, Tk is t-incomplete.

We assume that base objects are accessed with read-
modify-write (rmw) primitives. A rmw primitive event
on a base object is trivial if, in any configuration, its
application does not change the state of the object.
Otherwise, it is called nontrivial. Events e and e′ of
an execution E contend on a base object b if they are
both primitives on b in E and at least one of them is
nontrivial.
Hybrid transactional memory executions.We now
describe the execution model of a Hybrid transactional
memory (HyTM) implementation. In our HyTM model,
shared memory configurations may be modified by
accessing base objects via two kinds of primitives: direct
and cached. (i) In a direct access, the rmw primitive
operates on the memory state: the direct-access event
atomically reads the value of the object in the shared
memory and, if necessary, modifies it. (ii) In a cached
access performed by a process i, the rmw primitive
operates on the cached state recorded in process i’s
tracking set τi.

More precisely, τi is a set of triples (b, v,m) where
b is a base object identifier, v is a value, and m ∈
{shared, exclusive} is an access mode. The triple (b, v,m)
is added to the tracking set when i performs a cached
rmw access of b, where m is set to exclusive if the access
is nontrivial, and to shared otherwise. A base object b
is present in τi with mode m if ∃v, (b, v,m) ∈ τi.

2 2017/2/2



Hardware aborts. A tracking set can be invalidated
by a concurrent process: if, in a configuration C where
(b, v, exclusive) ∈ τi (resp. (b, v, shared) ∈ τi), a process
j 6= i applies any primitive (resp. any nontrivial primi-
tive) to b, then τi becomes invalid and any subsequent
event invoked by i sets τi to ∅ and returns ⊥. We refer
to this event as a tracking set abort.

Any transaction Tk ∈ txns(E) that performs at
least one cached access necessarily performs a cache-
commit primitive as the last event of E|k. A cache-
commit primitive issued by process i with a valid τi
does the following: for each base object b such that
(b, v, exclusive) ∈ τi, the value of b in C is updated to v.
Finally, τi is set to ∅ and the primitive returns commit.
Slow-path and fast-path transactions. We parti-
tion HyTM transactions into fast-path transactions and
slow-path transactions. A slow-path transaction models
a regular software transaction. An event of a slow-path
transaction is either an invocation or response of a t-
operation, or a direct rmw primitive on a base object. A
fast-path transaction essentially encapsulates a hardware
transaction. Specifically, in any execution E, we say that
a transaction Tk ∈ txns(E) is a fast-path transaction
if E|k contains at least one cached event. An event of
a hardware transaction includes series of direct trivial
accesses and at least one cached access followed by a
cache-commit primitive.

We assume that a fast-path transaction Tk returns Ak
as soon an underlying cached primitive or cache-commit
returns ⊥. This implies the following observation:

Observation 1. For any t-incomplete transaction Tk ∈
txns(E) executed by process i and (b, v, exclusive) ∈ τi
(and resp. (b, v, shared) ∈ τi) after execution E and let
e be any event (and resp. nontrivial event) that some
process j 6= i is poised to apply after E, then the next
event of Tk in any extension of E · e is Ak.

Non-cached reads inside fast-path. Note that we
specifically allow hardware transactions to perform
reads without adding the corresponding base object
to the process’s tracking set, thus modelling the non-
speculative accesses inside hardware allowed by IBM
Power8 architectures. We remark that Intel’s HTM
does not support this feature: an event of a hardware
transaction does not include any direct access.
HyTM properties. Throughout this paper, we con-
sider the TM-correctness property of opacity [10]: an
execution E is opaque if there exists a legal sequential
execution S equivalent to some t-completion of E that
respects the real-time ordering of transactions in E.

We also assume a weak TM-liveness property for t-
operations in this paper: every t-operation returns a
matching response within a finite number of its own
steps if running step-contention free from a quiescent

configuration, i.e., a configuration in which every trans-
action is t-complete.

Algorithms and lower bounds presented in this paper
concern HyTMs that provide invisible reads: t-read
operations do not perform nontrivial primitives in any
execution.

3. Progressive HyTM must perform
incremental validation

In this section, we show that it is impossible to imple-
ment opaque progressive HyTMs with invisible reads
with O(1) step-complexity read operations for slow-path
transactions. This result holds even if fast-path transac-
tions may perform direct trivial accesses.

Formally, we say that a HyTM implementationM is
progressive for a set T of transactions if in any execution
E ofM; T ⊆ txns(E), if any transaction Tk ∈ T returns
Ak in E, there exists another concurrent transaction Tm
that conflicts (both access the same t-object and at least
one writes) with Tk in E [10].
Theorem 2. LetM be any progressive opaque HyTM
implementation providing invisible reads. There exists
an execution E of M and some slow-path read-only
transaction Tk ∈ txns(E) that incurs a time complexity
of Ω(m2); m = |Rset(Tk)|.
For the proof, we construct an execution of a read-only
slow-path transaction Tφ that performs m ∈ N distinct
t-reads of t-objects X1, . . . , Xm. We show inductively
that for each i ∈ {1, . . . ,m}; m ∈ N, the ith t-read must
access i − 1 distinct base objects during its execution.
The (partial) steps in our execution are depicted in
Figure 1.

The proof of the lemma below is a simple extension
of the analogous lemmas from [3] allowing direct trivial
accesses inside fast-path transactions. This intuively
follows from the fact that the tracking set of a process
executing a fast-path transaction is invalidated due to
contention on a base object with another transaction (cf.
Observation 1).
Lemma 3. LetM be any progressive HyTM implementa-
tion in which fast-path transactions may perform trivial
direct accesses. Let E1 · E2 be an execution ofM where
E1 (and resp. E2) is the step contention-free execution
fragment of fast-path transaction T1 (and resp. T2), T1
and T2 do not conflict in E1 ·E2, and at least one of T1
or T2 is a fast-path transaction. Then, T1 and T2 do not
contend on any base object in E1 · E2.

The proof sketch of the theorem follows. The complete
proof will be available in the full version of the paper.
Proof sketch. We construct an execution of a progres-
sive opaque HyTM in which every t-read performed by
a read-only slow-path transaction must access linear (in
the size of the read set) number of distinct base objects.

3 2017/2/2



Rφ(X1) · · ·Rφ(Xi−1)
i− 1 t-reads Rφ(Xi)→ nvWi(Xi, nv)

Ti commits

Slow-PathFast-Path

TφTi

(a) Slow-path transaction Tφ performs i − 1 distinct t-reads followed by the
t-read of Xi that returns value nv writtten by fast-path transaction Ti

Rφ(X1) · · ·Rφ(Xi−1)
i− 1 t-reads

Wi(Xi, nv)
Ti commits

Rφ(Xi)→ nv

Slow-Path

Fast-Path

TφTφ

Ti

(b) Fast-path transaction Ti does not contend with any of the i − 1 t-reads
performed by Tφ; this execution is indistinguishable to Tφ from 1a and t-read
of Xi must return nv

Rφ(X1) · · ·Rφ(Xi−1)
i− 1 t-reads

Wi(Xi, nv)
Ti commits

Wi−1(Xi−1, nv)
Ti−1 commits

W1(X1, nv)
T1 commits

Rφ(Xi)→ nv

Slow-Path

Fast-PathFast-Path

Fast-Path

TφTφ

Ti−1 Ti

T1

(c) To distinguish the i− 1 different executions, t-read of Xi by Tφ is forced
to access i− 1 different base objects

Figure 1: Proof steps for Theorem 2

For all i ∈ {1, . . . ,m}; m ∈ N, let v be the initial
value of t-object Xi. Let πm denote the complete step
contention-free execution of a slow-path transaction Tφ
that performs m t-reads: readφ(X1) · · · readφ(Xm) such
that for all i ∈ {1, . . . ,m}, readφ(Xi)→ v.

Claim 4. For all i ∈ N,M has an execution of the form
πi−1 · ρi · αi where,
• πi−1 is the complete step contention-free execution
of slow-path read-only transaction Tφ that performs
(i− 1) t-reads: readφ(X1) · · · readφ(Xi−1),

• ρi is the t-complete step contention-free execution of
a fast-path transaction Ti that writes nvi 6= vi to Xi

and commits,
• αi is the complete step contention-free execution frag-
ment of Tφ that performs its ith t-read: readφ(Xi)→
nvi.

For each i ∈ {2, . . . ,m}, j ∈ {1, 2} and ` ≤ (i− 1), we
now define an execution of the form Eij` = πi−1 ·β` ·ρi ·αij
as follows:
• β` is the t-complete step contention-free execution
fragment of a fast-path transaction T` that writes
nv` 6= v to X` and commits

• αi1 (and resp. αi2) is the complete step contention-
free execution fragment of readφ(Xi)→ v (and resp.
readφ(Xi)→ Aφ).

Claim 5. For all i ∈ {2, . . . ,m} and ` ≤ (i−1),M has
an execution of the form Ei1` or Ei2`.

The proof of the above claim is immediate. We now show
that for all i ∈ {2, . . . ,m}, j ∈ {1, 2} and ` ≤ (i − 1),
slow-path transaction Tφ must access (i − 1) different
base objects during the execution of readφ(Xi) in the
execution πi−1 · β` · ρi · αij .

Consider the (i− 1) different executions: πi−1 ·β1 · ρi,
. . ., πi−1·βi−1·ρi (cf. Figure 1c). For all `, `′ ≤ (i−1);`′ 6=
`,M has an execution of the form πi−1 · β` · ρi · β`′ in
which fast-path transactions T` and T`′ access mutually
disjoint data sets. By invisible reads and Lemma 3, the
pairs of transactions T`′ , Ti and T`′ , T` do not contend
on any base object in this execution. This implies that
πi−1·β`·β`′ ·ρi is an execution ofM in which transactions
T` and T`′ each apply nontrivial primitives to mutually
disjoint sets of base objects in the execution fragments
β` and β`′ respectively.

This implies that for any j ∈ {1, 2}, ` ≤ (i− 1), the
configuration Ci after Ei differs from the configurations

4 2017/2/2



after Eij` only in the states of the base objects that
are accessed in the fragment β`. Consequently, slow-
path transaction Tφ must access at least i− 1 different
base objects in the execution fragment πij to distinguish
configuration Ci from the configurations that result
after the (i − 1) different executions πi−1 · β1 · ρi, . . .,
πi−1 · βi−1 · ρi respectively.

Thus, for all i ∈ {2, . . . ,m}, slow-path transaction
Tφ must perform at least i− 1 steps while executing the
ith t-read in πij . �

How STM implementations avoid the lower
bound. NOrec [6] is a progressive opaque STM that
minimizes the average step-complexity resulting from
incremental validation of t-reads. Transactions read a
global versioned lock at the start, and perform value-
based validation during t-read operations iff the global
version has changed. TL2 [8] improves over NOrec by cir-
cumventing the lower bound of Theorem 2. Concretely,
TL2 associates a global version with each t-object up-
dated during a transaction and performs validation with
O(1) complexity during t-reads by simply verifying if
the version of the t-object is greater than the global
version read at the start of the transaction. Technically,
NOrec and algorithms in this paper provide a stronger
definition of progressiveness: a transaction may abort
only if there is a prefix in which it conflicts with another
transaction and both are t-incomplete. TL2 on the other
hand allows a transaction to abort due to a concurrent
conflicting transaction.

4. Hybrid transactional memory
algorithms

In this section, we present progressive opaque HyTM
algorithms that subject to the lower bound of Theorem 2
and then discuss some techniques to circumvent the lower
bound.

4.1 Instrumentation-optimal progressive
HyTMs

For every t-object Xj , our implementation maintains a
base object vj ∈ D that stores the value of Xj and a
sequence lock rj . The sequence lock is an unsigned integer
whose LSB bit stores the locked state. Specifically, we
say that process pi holds a lock on Xj after an execution
E if orj & 1 = 1 after E, where orj is the value of rj
after E.
Fast-path transactions: For a fast-path transaction Tk
executed by process pi, the readk(Xj) implementation
first reads rj (uncached) and returns Ak if some other
process pj holds a lock on Xj . Otherwise, it returns
the value of Xj . As with readk(Xj), the write(Xj , v)
implementation returns Ak if some other process pj
holds a lock on Xj . Process pi then increments the value

of rj by 2 via a direct access and stores the cached state
of Xj along with its value v. If the cache has not been
invalidated, pi updates the shared memory during tryCk
by invoking the commit-cache primitive.
Slow-path read-only transactions: Any readk(Xj) invoked
by a slow-path transaction first reads the value of the
object from vj , checks if rj is se, adds rj to Rset(Tk)
and then performs validation on its entire read set to
check if any of them have been modified. If either of these
conditions is true, the transaction returns Ak. Otherwise,
it returns the value of Xj . Validation of the read set is
performed by re-reading the values of the sequence lock
entires stored in Rset(Tk).
Slow-path updating transactions: An updating slow-path
transaction Tk attempts to obtain exclusive write access
to its entire write set by performing compare-and-set
(cas) primitive that checks if the value of rj , for each
Xj ∈Wset(Tk), is unchanged since last reading it during
writek(X.v) If all the locks on the write set were acquired
successfully, Tk performs validation of the read set and
returns Ck if successful, else pi aborts the transaction.
Non-cached accesses inside fast-path: As indicated in
the pseudocode of Algorithm 1, some accesses may be
performed uncached (as allowed in IBM Power 8) and
the resulting implementation would still be opaque.
Instrumentation-optimal HyTMs that are pro-
gressive only for a subset of transactions. Algo-
rithm 2 does not incur the linear instrumentation cost
on the fast-path reading transactions (as in Algorithm 1,
but provides progressiveness only for slow-path reading
transactions. The instrumentation cost on fast-path t-
reads is avoided by using a global single-bit lock L that
serializes all updating slow-path transactions.

4.2 Minimizing the cost for incremental
validation in opaque HyTMs

Observe that the lower bound in Theorem 2 assumes
progressiveness for both slow-path and fast-path trans-
actions along with opacity and invisible reads. In this
section, we suggest algorithmic ideas for cirvumventing
the lower bound or minimizing the cost incurred by im-
plementations due to incremental validation. Figure 2
summarizes the complexity costs associated with the
HyTM algorithms considered in this paper.
Sacrificing progressiveness and minimizing con-
tention window. Hybrid NOrec [5] is a HyTM imple-
mentation that does not satisfy progressiveness (unlike
its STM counterpart NOrec), but mitigates the step-
complexity cost on slow-path transactions by performing
incremental validation during a transactional read iff
the shared memory has changed since the start of the
transaction. Conceptually, hybrid NOrec uses a global
sequence lock gsl that is incremented at the start and

5 2017/2/2



Algorithm 1 Algorithm 2 TLE HybridNorec
Instrumentation in fast-path reads per-read none none none
Instrumentation in fast-path writes per-write per-write constant none

Validation in slow-path reads Ω(|Rset|) Ω(|Rset|) None Ω(|Rset|) only if concurrency
h/w-s/f concurrency prog. prog. for slow-path readers zero not prog., but small contention window

Uncached accesses inside fast-path yes yes no yes
opacity yes yes Yes Yes

Figure 2: Table summarizing complexities of HyTM implementations

Algorithm 1 Progressive fast-path and slow-path opaque HyTM implementation; code for transaction Tk
1 Shared objects
2 vj , value of each t-object Xj
3 rj , a sequence lock of each t-object Xj

5 Code for fast-path transactions
6 readk (Xj )
7 ovj := vj
8 orj := rj . direct read
9 if orj & 1 then return Ak

10 return ovj

12 writek (Xj , v )
13 orj := rj

14 if orj & 1 then return Ak
15 rj := orj +2
16 vj := v
17 return OK
19 tryCk()
20 commit-cachei

22 Function: release(Q)
23 for each Xj ∈ Q
24 rj := orj +1
26 Function: acquire(Q)
27 for each Xj ∈ Q
28 if rj . i sSet() . CAS/LLSC
29 Lset(Tk) := Lset(Tk) ∪ {Xj}
30 release(Lset(Tk))
31 return false
32 return true

33 Code for slow-path transactions
34 Readk(Xj)
35 if Xj ∈ Wset(Tk) then return Wset(Tk).locate(Xj)
36 orj := rj
37 ovj := vj

38 Rset(Tk) := Rset(Tk)∪ {Xj ,orj}
39 if orj & 1 then return Ak

40 if not validate() then return Ak
41 return ovj

43 writek (Xj , v )
44 orj := rj
45 nvj := v
46 if orj & 1 then return Ak
47 Wset(Tk) := Wset(Tk) ∪ {Xj , nvj , orj}
48 return OK
50 tryCk()
51 if Wset(Tk) = ∅ then return Ck

52 if not acquire(Wset(Tk)) then return Ak

53 if not validate()
54 release(Wset(Tk))
55 return Ak
56 for each Xj ∈ Wset(Tk)
57 vj := nvj

58 release(Wset(Tk))
59 return Ck

61 Function: validate()
62 if ∃ Xj ∈ Rset(Tk):orj 6= rj then return false
63 return true

Algorithm 2 Opaque HyTM implementation with sequential slow-path and progressive fast-path TM-progress; code
for Tk by process pi

1 Shared objects
2 L, global single-bit lock

4 Code for fast-path transactions
5 startk()
6 l := L
7 if l & 1 6= 0 then return Ak

9 readk(Xj)
10 ovj := vj

11 return ovj

13 writek(Xj , v)
14 orj := rj
15 rj := orj + 2
16 vj := v
17 return OK
19 tryCk()
20 return commitCachei()

21 Code for slow-path transactions
22 tryCk()
23 if Wset(Tk) = ∅ then return Ck

24 while not flag do flag := CAS(L, 0, 1)
25 for each Xj ∈ Wset(Tk)
26 nrj := rj

27 if orj 6= nrj then
28 release(Wset(Tk))
29 return Ak
30 for each Xj ∈ Wset(Tk) do rj := nrj + 1
31 if validate() then
32 release(Wset(Tk))
33 return Ak
34 for each Xj ∈ Wset(Tk) do vj := nvj
35 release(Wset(Tk))
36 return Ck

38 Function: release(Q)
39 for each Xj ∈ Q do rj := nrj + 1
40 L := 0; return OK

end of each transaction’s commit procedure. Readers
can use the value of gsl to determine whether shared
memory has changed between two configurations. Unfor-
tunately, with this approach, two fast path transactions
will always conflict on the gsl if their commit procedures
are concurrent. To reduce the contention window for fast

path transactions, the gsl is actually implemented as two
separate locks (the second one called esl). A slow path
transaction locks both esl and gsl while it is commit-
ting. Instead of incrementing gsl, a fast path transaction
checks if esl is locked and aborts if it is. Then, at the
end of the fast path transaction’s commit procedure, it

6 2017/2/2



increments gsl twice (quickly locking and releasing it and
immediately commits in hardware), thus, the window
for fast path transactions to contend on gsl is very small.
Employing an uninstrumented fast fast-path. We
now describe how every transaction may first be executed
in a “fast” fast-path with almost no instrumentation and
if unsuccessful, may be re-attempted in the fast-path
and subsequently in slow-path. Specifically, we transform
any opaque HyTMM to an opaque HyTMM′ in which
a shared fetch-and-add metadata base object F that
slow-path updating transactions increment (and resp.
decrement) at the start (and resp. end). InM′, a “fast”
fast-path transaction checks first checks if F is 0 and if
not, aborts the transaction; otherwise the transaction is
continued as an uninstrumented hardware transaction.
The code for the fast-path and the slow-path is identical
to M. Assuming the hardware transactions do not
perform any direct accesses, opacity is immediate.

5. Evaluation
In this section, we study the performance characteristics
of Algorithms 1 and 2, Hybrid NOrec, TLE and TL2.
Our experimental goals are (G1) to study the perfor-
mance impact of instrumentation on the fast-path and
validation on the slow path, (G2) to understand how
Algorithms 1 and 2 perform relative to the other algo-
rithms, and (G3) to determine whether non-speculative
accesses can be used to obtain significant performance
improvements. We discuss (G1) and (G2), here. We are
currently in the process of investigating (G3).
Experimental system. The experimental system is a
large-scale 2-socket Intel E7-4830 v3 with 12 cores per
socket and 2 hyperthreads (HTs) per core, for a total
of 48 threads. Each core has a private 32KB L1 cache
and 256KB L2 cache (which is shared between HTs on
a core). All cores on a socket share a 30MB L3 cache.
This system has a non-uniform memory architecture
(NUMA) in which threads have significantly different
access costs to different parts of memory depending on
which processor they are currently executing on.

We pin threads so that the first socket is saturated
before we place any threads on the second socket. Thus,
thread counts 1-24 run on a single socket. Furthermore,
hyperthreading is engaged on the first socket for thread
counts 13-24, and on the second socket for thread counts
37-48. Consequently, our graphs clearly show the effects
of NUMA and hyperthreading.

The machine has 128GB of RAM, and runs Ubuntu
14.04 LTS. All code was compiled with the GNU C++
compiler (G++) 4.8.4 with build target x86_64-linux-
gnu and compilation options -std=c++0x -O3 -mx32.
Hybrid TM implementations. For TL2, we used
the implementation published by its authors. We im-

plemented the other algorithms in C++. Each hybrid
TM algorithm first attempts to execute a transaction on
the fast path, and will continue to execute on the fast
path until the transaction has experienced 20 aborts, at
which point it will fall back to the slow path.
Methodology. We used a simple unbalanced binary
search tree (BST) microbenchmark as a vehicle to
study the performance of our implementations. The BST
implements a dictionary, which contains a set of keys,
each with an associated value. For each TM algorithm
and update rate U ∈ {40, 10, 0}, we run six timed trials
for several thread counts n. Each trial proceeds in two
phases: prefilling and measuring. In the prefilling phase,
n concurrent threads perform 50% Insert and 50% Delete
operations on keys drawn uniformly randomly from
[0, 105) until the size of the tree converges to a steady
state (containing approximately 105/2 keys). Next, the
trial enters the measuring phase, during which threads
begin counting how many operations they perform. In
this phase, each thread performs (U/2)% Insert, (U/2)%
Delete and (100−U)% Search operations, on keys/values
drawn uniformly from [0, 105), for one second.

Uniformly random updates to an unbalanced BST
have been proven to yield trees of logarithmic height
with high probability. Thus, in this type of workload,
almost all transactions succeed in hardware, and the
slow path is almost never used. To study performance
when transactions regularly run on the slow path, we
introduced another operation called a RangeIncrement
that often fails in hardware and must run on the slow
path. A RangeIncrement(low, hi) atomically increments
the values associated with each key in the range [low, hi]
present in the tree. Note that a RangeIncrement is more
likely to experience data conflicts and capacity aborts
than BST updates, which only modify a single node.

We consider two types of workloads: (W1) all n
threads perform Insert, Delete and Search, and (W2)
n − 1 threads perform Insert, Delete and Search and
one thread performs only RangeIncrement operations.
Figure 3 shows the results for both types of workloads.
Results. We first discuss the 0% updates graph for
workload type W1. In this graph, essentially all oper-
ations committed in hardware. In fact, in each trial, a
small fraction of 1% of operations ran on the slow-path.
Thus, any performance differences shown in the graph
are essentially differences in the performance of the al-
gorithms’ respective fast-paths (with the exception of
TL2). Algorithm 1, which has instrumentation in its
fast-path read operations, has significantly lower perfor-
mance than Algorithm 2, which does not. Since this is a
read-only workload, this instrumentation is responsible
for the performance difference.

In the W1 workloads, TLE, Algorithm 2 and Hybrid
NOrec perform similarly (with a small performance

7 2017/2/2



No threads perform
RangeIncrement (W1)

One thread performs
RangeIncrement (W2)

0%
up

da
te
s

10
%

up
da

te
s

40
%

up
da

te
s

Figure 3: Results for a BST microbenchmark. The
x-axis represents the number of concurrent threads. The
y-axis represents operations per microsecond.

advantage for Hybrid NOrec at high thread counts). This
is because the fast paths for these three algorithms have
similar amounts of instrumentation. In each algorithm,
there is no instrumentation for reads or writes, and the
transaction itself incurs one or two metadata accesses.

In contrast, in the W2 workloads, TLE performs
quite poorly, compared to the HyTM algorithms. In
these workloads, transactions must periodically run on
the slow-path, and in TLE, this entails acquiring a global
lock that restricts progress for all other threads. At high
thread counts this significantly impacts performance.
Its performance decreases as the sizes of the ranges
passed to RangeIncrement increase. Its performance is
also negatively impacted by NUMA effects at thread
counts higher than 24. (This is because, when a thread
p reads the lock and incurs a cache miss, if the lock was
last held by another thread on the same socket, then p
can fill the cache miss by loading it from the shared L3
cache. However, if the lock was last held by a thread on
a different socket, then p must read the lock state from
main memory, which is significantly more expensive.)

On the other hand, in each graph in the W2 workloads,
the performance of each HyTM (and TL2) is similar to
its performance in the corresponding graph in the W1
workloads. For Algorithm 1 (and TL2), this is because
it is progressive. Although Algorithm 2 is not truly
progressive, fast-path transactions will abort only if
they are concurrent with the commit procedure of a slow-

path transaction. In RangeIncrement operations, there
is a long read-only prefix (which is exceptionally long
because of Algorithm 2’s quadratic validation) followed
by a relatively small set of writes. Thus, RangeIncrement
operations have relatively little impact on the fast-path.
The explanation is similar for Hybrid NOrec (except
that it performs less validation than Algorithm 2).

Observe that the performance of Hybrid NOrec de-
creases slightly, relative to Algorithm 2, after 24 threads.
Recall that, in Hybrid NOrec, the global sequence num-
ber is a single point of contention on the fast-path. (In
Algorithm 2, the global lock is only modified by slow-
path transactions, so fast-path transactions do not have
a single point of contention.) We believe this is due to
NUMA effects, similar to those described in [4]. Specifi-
cally, whenever a threads on the first socket performs
a fast-path transaction that commits and modifies the
global lock, it causes cache invalidations for all other
threads. Threads on socket two must then load the lock
state from main memory, which takes much longer than
loading it from the shared L3 cache. This causes the
transaction to run for a longer time, which lengthens its
window of contention, making it more likely to abort.
(Note that, in the 0% updates graph in the W2 work-
load, we still see this effect, because there is a thread
performing RangeIncrement operations.)

6. Related work and discussion
The proof of Theorem 2 is based on the analogous proof
for step complexity of STMs that are disjoint-access
parallel [14]. Early HyTMs like the ones described in
[7, 13] provided progressiveness, but subsequent HyTM
proposals sacrificed progressiveness for lesser instrumen-
tation overheads. Recent work has investigated fallback
to reduced hardware transactions [17] in which an all-
software slow-path is replaced by a mix of hardware and
software transactions. Our implementation of Hybrid
NOrec follows [19], which additionally proposed the use
of non-speculative accesses in fast-path transactions to
reduce instrumentation overhead.

In ongoing work, we are implementing our algorithms
on the IBM POWER8 HTM implementation which sup-
ports non-cached accesses in hardware transactions. We
hope to understand whether the instrumentation over-
heads we observed on Intel’s HTM are also inherent to
POWER8’s HTM implementation. To our knowledge,
ours is the first work to consider the theoretical founda-
tions of the cost of concurrency in HyTMs. In order to
achieve high performance in practice, one must either
identify a new progress condition to replace progressive-
ness or develop a new HyTM algorithm that effectively
uses non-speculative writes. Both directions are promis-
ing, and little work has been done in either in the context
of today’s HTMs.

8 2017/2/2



References
[1] Advanced Synchronization Facility Proposed Ar-

chitectural Specification, March 2009. http:
//developer.amd.com/wordpress/media/2013/
09/45432-ASF_Spec_2.1.pdf.

[2] D. Alistarh, J. Kopinsky, P. Kuznetsov, S. Ravi, and
N. Shavit. Inherent limitations of hybrid transactional
memory. In Distributed Computing - 29th International
Symposium, DISC 2015, Tokyo, Japan, October 7-9,
2015, Proceedings, pages 185–199, 2015.

[3] D. Alistarh, J. Kopinsky, P. Kuznetsov, S. Ravi, and
N. Shavit. Inherent limitations of hybrid transactional
memory. In Distributed Computing - 29th International
Symposium, DISC 2015, Tokyo, Japan, October 7-9,
2015, Proceedings, pages 185–199, 2015.

[4] T. Brown, A. Kogan, Y. Lev, and V. Luchangco. Inves-
tigating the performance of hardware transactions on a
multi-socket machine. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 2016, Asilomar State Beach/Pacific Grove,
CA, USA, July 11-13, 2016, pages 121–132, 2016.

[5] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir,
M. L. Scott, and M. F. Spear. Hybrid NOrec: a case study
in the effectiveness of best effort hardware transactional
memory. In R. Gupta and T. C. Mowry, editors,
ASPLOS, pages 39–52. ACM, 2011.

[6] L. Dalessandro, M. F. Spear, and M. L. Scott. Norec:
Streamlining stm by abolishing ownership records. SIG-
PLAN Not., 45(5):67–78, Jan. 2010.

[7] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir,
and D. Nussbaum. Hybrid transactional memory. SIG-
PLAN Not., 41(11):336–346, Oct. 2006.

[8] D. Dice, O. Shalev, and N. Shavit. Transactional locking
ii. In Proceedings of the 20th International Conference on
Distributed Computing, DISC’06, pages 194–208, Berlin,
Heidelberg, 2006. Springer-Verlag.

[9] K. Fraser. Practical lock-freedom. Technical report,
Cambridge University Computer Laborotory, 2003.

[10] R. Guerraoui and M. Kapalka. Principles of Transac-
tional Memory, Synthesis Lectures on Distributed Com-
puting Theory. Morgan and Claypool, 2010.

[11] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer,
III. Software transactional memory for dynamic-sized
data structures. In Proceedings of the Twenty-second
Annual Symposium on Principles of Distributed Com-
puting, PODC ’03, pages 92–101, New York, NY, USA,
2003. ACM.

[12] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
ISCA, pages 289–300, 1993.

[13] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and
A. Nguyen. Hybrid transactional memory. In Proceedings
of the Eleventh ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’06,
pages 209–220, New York, NY, USA, 2006. ACM.

[14] P. Kuznetsov and S. Ravi. Progressive transactional
memory in time and space. In Parallel Computing
Technologies - 13th International Conference, PaCT
2015, Petrozavodsk, Russia, August 31 - September 4,
2015, Proceedings, pages 410–425, 2015.

[15] H. Q. Le, G. L. Guthrie, D. Williams, M. M. Michael,
B. Frey, W. J. Starke, C. May, R. Odaira, and T. Nakaike.
Transactional memory support in the IBM POWER8
processor. IBM Journal of Research and Development,
59(1), 2015.

[16] V. J. Marathe, W. N. S. Iii, and M. L. Scott. Adaptive
software transactional memory. In In Proc. of the 19th
Intl. Symp. on Distributed Computing, pages 354–368,
2005.

[17] A. Matveev and N. Shavit. Reduced hardware transac-
tions: a new approach to hybrid transactional memory.
In Proceedings of the 25th ACM symposium on Par-
allelism in algorithms and architectures, pages 11–22.
ACM, 2013.

[18] J. Reinders. Transactional Synchroniza-
tion in Haswell, 2012. http://software.
intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/.

[19] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fet-
zer. Optimizing hybrid transactional memory: The im-
portance of nonspeculative operations. In Proceedings of
the 23rd ACM Symposium on Parallelism in Algorithms
and Architectures, pages 53–64. ACM, 2011.

[20] N. Shavit and D. Touitou. Software transactional
memory. In PODC, pages 204–213, 1995.

[21] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Per-
formance evaluation of intel&reg; transactional synchro-
nization extensions for high-performance computing. In
Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis,
SC ’13, pages 19:1–19:11, New York, NY, USA, 2013.
ACM.

9 2017/2/2

http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf
http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf
http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

	Introduction
	Hybrid transactional memory (HyTM)
	Progressive HyTM must perform incremental validation
	Hybrid transactional memory algorithms
	Instrumentation-optimal progressive HyTMs 
	Minimizing the cost for incremental validation in opaque HyTMs

	Evaluation
	Related work and discussion

