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ABSTRACT
The introduction of hardware transactional memory (HTM)
into commercial processors opens a door for designing and
implementing scalable synchronization mechanisms. One
example for such a mechanism is transactional lock elision
(TLE), where lock-based critical sections are executed con-
currently using hardware transactions. So far, the effective-
ness of TLE and other HTM-based mechanisms has been
assessed mostly on small, single-socket machines.

This paper investigates the behavior of hardware trans-
actions on a large two-socket machine. Using TLE as an
example, we show that a system can scale as long as all
threads run on the same socket, but a single thread running
on a different socket can wreck performance. We identify the
reason for this phenomenon, and present a simple adaptive
technique that overcomes this problem by throttling threads
as necessary to optimize system performance. Using exten-
sive evaluation of multiple microbenchmarks and real appli-
cations, we demonstrate that our technique achieves the full
performance of the system for workloads that scale across
sockets, and avoids the performance degradation that crip-
ples TLE for workloads that do not.

Keywords
hardware transactional memory, nonuniform memory ac-
cess, lock elision, concurrent data structures, locks

1. INTRODUCTION
To perform well on modern multiprocessor systems, ap-

plications must exploit the increasing core count on these
systems by executing operations concurrently on different
cores without introducing too much overhead in synchro-
nizing these operations. Recent systems have introduced
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Figure 1: AVL tree microbenchmark on a large HTM system
(left), and a small HTM system (right). The workload is
100% updates with key range [0, 2048).

hardware transactional memory (HTM) [20] to support effi-
cient synchronization, and previous work has shown that it
can be used effectively [2, 12, 16–18, 26, 34]. However, until
recently, HTM has been available only on relatively small
single-socket systems. For this paper, we investigated the
behavior of HTM on a large multi-socket machine and ob-
served that its behavior differs from that of smaller systems
in ways that present challenges for scaling the performance
on the larger machine.

For example, consider the graph on the left in Figure 1,
which shows the speedup over single-thread execution of a
microbenchmark in which we repeatedly insert and delete
nodes in an AVL tree [1]. Operations on the tree are pro-
tected by a single lock, to which we apply transactional lock
elision (TLE) [13], a popular technique for exploiting HTM
in which lock-based critical sections are executed concur-
rently using hardware transactions, implemented on top of
the Intel Haswell TSX/RTM interface. The machine has
two sockets, each with 18 hyperthreaded cores, for a total of
72 threads. We bind threads so that the first 36 all run on
one socket, and the last 36 threads run on the other socket.
(This microbenchmark is described in more detail in Sec-
tion 3.) As we can see, performance improves until we reach
36 threads, though the scaling is more moderate after 12
threads. However, as soon as any thread executes on the
second socket, the performance drops dramatically. Perfor-
mance continues to decline until the machine is saturated, at
which point its performance is barely better than with a sin-
gle thread. These results are in stark contrast to those shown
on the right, from a similar experiment on a smaller single-
socket machine (4 hyperthreaded cores), whose performance
continues to improve until the machine is saturated.

Not all benchmarks exhibit this pathology: with only
lookup operations (i.e., a read-only workload), for example,
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performance scales all the way to 72 threads (i.e., the full
capacity of the machine). We experimented with a variety of
microbenchmarks to identify the causes of this performance
pathology, as well as other differences between the behaviors
of HTM on the large and small machines. In this paper we
describe several of these experiments and their results, and
the conclusions we draw from them.

Informed by these results, we explored several ways, de-
scribed in the latter half of this paper, to use HTM effec-
tively on the multi-socket machine. The technique we found
most effective is to adaptively throttle the number of threads
to optimize performance. At a high level, the idea is to pro-
file TLE performance and decide, separately for each lock,
whether critical sections protected by that lock should be
executed by threads on multiple sockets, or only on a single
socket. We implemented this idea entirely in a library pro-
viding a lock API, thus requiring no changes to the code that
uses traditional lock-based synchronization. Using multiple
microbenchmarks and a number of real applications, includ-
ing STAMP [27], ccTSA [4] and paraheap-k [21], we show
that this simple approach avoids sharp performance degra-
dation for workloads that do not scale beyond one socket
while exploiting additional sockets for workloads that do
scale. We describe this technique in detail and present ex-
perimental results that demonstrate its effectiveness.

2. BACKGROUND
The machine we are studying is an Oracle Server X5-2,

a two-socket system with two Intel Xeon E5-2699 v3 pro-
cessors. Each processor has 18 cores, each with 2 hard-
ware threads (i.e., 72 threads in all), running Ubuntu 15.04
at 2.30GHz. Because of its two-socket design, this ma-
chine has non-uniform memory access (NUMA): Cores on
the same processor share an L3 cache, so communication
between threads running on the same processor is much
faster than inter-socket communication. For comparison,
the other (smaller) machine we used in Figure 1 is a single-
socket 4-core hyperthreaded Haswell Core i7-4770 (also with
2 threads per core, so 8 threads in all) running Oracle Linux
7 at 3.40GHz.

Both systems provide “best effort” hardware transactional
memory (HTM): transactions are not guaranteed to commit,
but any transaction that commits appears to other threads
to have been executed atomically. A transaction that does
not commit is aborted : its writes to memory are discarded
and are never made visible to other threads. A transaction
that aborts sets a condition code indicating the cause, and
then jumps to a fallback code path specified at the beginning
of the transaction. This condition code allows us to distin-
guish, for instance, between transactions that abort because
some internal buffer overflowed and those that abort due to
conflict with another thread. It also includes a hint bit that
indicates whether, according to the hardware, the transac-
tion is likely to succeed if retried.

We use transactional lock elision (TLE) [13] implemented
on top of the Intel Haswell TSX/RTM interface as a vehicle
to study the behavior of HTM. TLE is a practical synchro-
nization technique for exploiting HTM that can be applied
without requiring changes to code that uses traditional lock-
based synchronization: it co-opts the LockAcquire and Lock-
Release operations that bracket a critical section, attempt-
ing to elide the lock acquisition (and subsequent release) by
executing within a transaction. If the transaction commits,

it ensures that the critical section executes without inter-
ference from other threads. If the transaction aborts, the
critical section may be retried in another transaction or it
may be executed in the traditional fashion by acquiring the
lock. (To avoid executing concurrently with a critical sec-
tion executed under lock, a transaction executing a critical
section must check that the associated lock is free and abort
otherwise.) If the transaction aborts and the hint bit is not
set (typically, if the abort is due to overflow), it is common
to not retry at all [3, 16].

Numerous studies have observed that TLE provides nearly
ideal speedups when applied to workloads in which threads
have few data conflicts and transactions do not overflow [12,
18, 26, 28, 34]. However, when these conditions do not hold,
the performance of TLE deteriorates quickly. Several recent
papers have suggested ways to improve the performance of
TLE in these scenarios, employing various approaches such
as adaptively tuning retry policies [12, 16] and introducing
auxiliary locks [2, 17]. All these papers, however, evaluated
TLE and suggested improvements using relatively small,
single-socket machines.

Most of our experiments use TLE applied to an AVL tree
implementation that uses a single global lock to synchro-
nize access to the tree. An AVL tree [1] is a balanced binary
search tree that ensures that the heights of the left and right
subtrees of any node differ by at most 1. Whenever an op-
eration disrupts this balance (by adding or deleting a node),
it “rotates” the node and/or its ancestors to restore the bal-
ance. Most insert and delete operations do not conflict with
other operations because they update only a few nodes at
the bottom of the tree, but a few operations may rebalance
even the root node, conflicting with every other operation.

The effects of NUMA on the performance of multithreaded
systems has been an area of active research in the past few
decades [6–8, 22, 23, 32, 33]. This research is motivated by
the observation that remote memory accesses and remote
cache misses (i.e., cache misses served from another cache
located on a different socket) are expensive, and therefore
should be reduced. Dice et al. [15], for instance, achieve this
goal through the design of a series of NUMA-aware cohort
locks, which allow threads running on the same socket to
pass the lock among themselves (and thus exploit cache lo-
cality within the socket) before releasing the lock so that it
can be acquired by a thread on a different socket. Other
researchers attempt to colocate threads and the data they
access through thread migration [6, 24] or data migration
and replication [33].

Prior work in various contexts has considered restricting
concurrency to improve system performance. Multiple pa-
pers, for instance, observe that using fewer threads than
the available cores can lead to better performance [9,29,30],
and suggest ways to tune the number of running threads to
achieve that. In the context of software transactional mem-
ory, several papers consider contention management mech-
anisms that throttle some of the conflicting software trans-
actions to increase the chance that remaining transactions
succeed [5,35]. In the context of TLE, Diegues et al. [17] sug-
gest using core locks, which synchronize between hardware
transactions running on the same core when those transac-
tions abort due to overflow. In the same context, Afek et
al. [2] consider adding an auxiliary lock to TLE, which is
acquired by conflicting transactions. The above-mentioned
cohort locks [15] are perhaps most relevant to the concur-



rency restriction ideas that we consider in this paper. They
throttle threads running on sockets other than the one hold-
ing the lock, thus sacrificing short-term fairness for higher
throughput.

Delegation is another approach aimed at reducing remote
cache misses. The idea of delegation is to mediate access
to a data structure or critical section by one or more server
threads, which execute requests from client threads. Client
and server threads communicate via message passing imple-
mented on top of shared memory. As an example, Lozi et
al. [25] propose structuring a client-server system in which
server threads running on dedicated cores execute critical
sections on behalf of client threads. Calciu et al. [8] investi-
gate different approaches for implementing message passing
and show that while delegation can be effective, the com-
munication overhead of message passing often outweighs its
benefits. In the context of software transactional memory,
Hassan et al. [19] investigate the idea of dedicating a num-
ber of server threads to perform commit phase of software
transactions executed by client threads.

3. HTM ON A LARGE MACHINE
In this section, we present and analyze the results of sev-

eral experiments we ran to better understand the behavior
of HTM on the large (72-thread) NUMA system. In Sec-
tion 3.1, we make observations that are not due to NUMA ef-
fects, but rather to the larger number of cores in our system.
Section 3.2 details findings that are more NUMA-specific.

In most of these experiments, threads repeatedly invoke
insert, delete and lookup operations on implementations of
an abstract set (e.g., an AVL tree) using a key selected uni-
formly at random from a specified key range. The set is pre-
filled with approximately half the keys. We specify the per-
centage of lookup operations, with the remaining operations
being evenly split between insert and delete operations (col-
lectively update operations) to keep the set approximately
half filled. Unless otherwise specified, we pin the threads to
cores so that the first 18 threads are executed by different
cores on the first socket, and the next 18 are executed with
hyperthreading on the same cores. (Thus, all threads exe-
cute on a single socket when there are 36 or fewer threads.)
The next 36 threads are pinned similarly to cores on the
second socket. (We discuss alternative pinning policies in
Section 5.)

3.1 Going beyond 8–12 cores
We tested whether the conventional wisdom about retry

polices in TLE on small systems is appropriate for the large
system. Figure 2(a) shows the results of a microbenchmark
on the large HTM system wherein threads perform insertions
and deletions (i.e., no lookup operations) in an AVL tree
with key range [0, 131072) (i.e., containing approximately
65536 keys) using different retry policies. (This tree fits in
the L3 cache but is large enough that concurrent operations
are unlikely to conflict.) TLE-5-hint-bit implements a pol-
icy commonly used in small HTM systems: we attempt to
execute a critical section using a transaction up to 5 times
before falling back to the lock. We do not count attempts
that fail because the lock is held by another thread (in which
case the transaction is not retried until the lock is released in
order to avoid the lemming effect [14]). However, if a trans-
action aborts and the hint bit is not set by hardware, we fall
back to the lock immediately (recall that this bit is set if,

(a) TLE using different retry policies

(b) Percent of transactions in TLE-20 that
commit after at least one failure with hint
bit not set

Figure 2: An AVL tree on a large HTM system. The work-
load is 100% updates with key range [0, 131072).

according to the hardware, the transaction is likely to suc-
ceed if retried). TLE-20-hint-bit implements the same policy
except that 20 attempts are allowed before falling back to
the lock. TLE-5 and TLE-20 are similar except that they
ignore the hint bit (i.e., they do not fall back to the lock
immediately when a transaction aborts and the hint bit is
not set). Finally, TLE-5-count-lock and TLE-20-count-lock
also ignore the hint bit, but they do count attempts that fail
because the lock is held by another thread.

Perhaps surprisingly, contrary to the common belief that a
transaction that fails with the hint bit not set (which in most
cases happens due to overflow) will continue to fail if it is
retried, we observed that subsequent attempts may succeed.
Thus, falling back immediately when a transaction aborts
with the hint bit not set caused threads to fall back to the
lock unnecessarily. Eliminating this “optimization” signifi-
cantly improves performance. (Compare, for example, the
curves for TLE-20 and TLE-20-hint-bit.) This improvement
shows up after 18 threads, suggesting that hyperthreading
may cause transient overflow failures. Indeed, the percent-
age of transactions that commit after a previous attempt
failed with the hint bit not set, shown in Figure 2(b), rises
sharply when there are more than 18 threads. (The graph
for transactions committing after a previous attempt failed
due to overflow is similar.) Although this percentage never
exceeds 4%, this result emphasizes the greater cost of falling
back to the lock on a system running more than a dozen
threads: Because a thread that takes the lock blocks every
other thread, in a large system, it pays to tolerate more
failed transactions to avoid taking the lock.

Allowing 20 transactional attempts rather than only 5
(compare the curves for TLE-20 and TLE-5 ) also improves
performance, though to a lesser extent. To determine whether
raising the limit on transactional attempts beyond 20 might
improve performance even more, we experimented with vary-



Figure 3: An AVL tree on a large HTM system. The work-
load is 100% lookup on the left, and 2% updates (i.e., 98%
lookups) on the right, with key range [0, 2048).

ing the limit over a wide range, up to hundreds of millions
of retries, and we were not able to consistently improve per-
formance beyond that achieved with 20 attempts. In the
rest of this paper, unless otherwise specified, we report on
results for TLE-20.

The curves for TLE-5-count-lock and TLE-20-count-lock
show the importance of the anti-lemming-effect optimiza-
tion. TLE-5-count-lock scales well up to 8 threads, the typ-
ical capacity of small systems, but collapses after just 12
threads. Allowing more retries in TLE-20-count-lock delays
this collapse, but nonetheless, more data conflicts arise as
the number of threads grows, leading more threads to ac-
quire the lock. This in turn causes the lemming effect, which
hurts performance.

3.2 How NUMA affects HTM
For the workload depicted in Figure 2, performance does

not significantly decrease when threads run on two sockets.
This is because operations on a large AVL tree are lightly
contended, and most of them succeed in HTM on the first
attempt. In a smaller tree, however, concurrent operations
are more likely to conflict, and thus the performance suf-
fers greatly once threads execute on the second socket. We
already saw this in Figure 1, which depicted TLE-20 in an
AVL tree with key range [0, 2048): Adding a single thread on
the second socket cut performance in half, and performance
at 72 threads was reduced almost to that of a single thread.
This drop in performance is caused by NUMA effects (i.e.,
the increased latency of inter-socket communication).

It is possible to scale to the full capacity of the large HTM
system. As an example, in a read-only workload, TLE scales
all the way to 72 threads. However, performing just 2% up-
dates flattens the curve after 36 threads, completely negat-
ing the benefit of the second socket (see Figure 3).

Although NUMA effects are well known to negatively im-
pact performance, this impact is amplified by the use of
HTM. Figure 4 shows the results of a simple experiment
in which threads repeatedly search for a randomly chosen
key and then write the key found in the last node visited
by this search into the key field of that node. (This might
not be the key chosen because that key may not be in the
set). This search-and-replace operation can be implemented
without any synchronization because it does not actually
change the key (i.e., it writes the same value that is already
in the field). As we can see from this figure, NUMA ef-
fects impact TLE much more than the algorithm with no
synchronization. With 36 threads, the algorithm with no
synchronization is 12.1x faster than with a single thread,
but only 8.9x faster with 72 threads, a 26% decrease in per-
formance. However, the TLE algorithm experiences a much
larger (75%) drop in performance when going from 36 to 72

Figure 4: Comparison of TLE vs. no synchronization in a
workload doing search-and-replace operations on an AVL
tree with key range [0, 4096).

Figure 5: Abort rate for the TLE curve in Figure 4. (Note:
the x-axis is not to scale near x=37).

threads (6.4x faster than a single thread with 36 threads vs.
1.6x faster with 72 threads).

To understand why TLE suffers so greatly from NUMA
effects, consider Figure 5, which shows how many transac-
tion attempts aborted, and the reasons (i.e., the condition
code) they did so. The fraction of transactions that abort
dramatically increases as threads are added on the second
socket, from 10% at 36 threads to 33% at only 42 threads.
Beyond 36 threads, the vast majority of these aborts are
reported by hardware as data conflicts.

We hypothesize that these aborts occur because cross-
socket cache invalidations lengthen the time needed to com-
plete a transaction, which, in turn, lengthens the “window
of contention” during which it may conflict with other trans-
actions, increasing the likelihood of such conflicts. In con-
trast, when a cacheline is invalidated by a thread on the
same socket, it can be restored much more quickly because
the threads share an L3 cache.

Our hypothesis explains why performance is poor with
even a single thread on the second socket (operations per-
formed on the second socket cause expensive cache misses
on the first socket), why read-only workloads scale on both
sockets (threads do not cause cross-socket cache invalida-
tions), and why the impact of NUMA effects on TLE-20 is
more severe in Figure 1 than in Figure 2 (in the small tree,
there is a higher chance of conflicts, and operations complete
more frequently, so more cache invalidations occur).

To check our hypothesis, we ran a 36-thread single-socket
experiment that added some artificial delay (spinning) just



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 10 100 1000 10000fr
a

c
ti
o

n
 o

f 
a

b
o

rt
e

d
 T

X
s

artificial delay (loop iterations)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 10 100 1000 10000

fr
a

c
ti
o

n
 o

f 
T

X
s

a
b

o
rt

in
g

 d
u

e
 t

o
 c

o
n

fl
ic

t

artificial delay (loop iterations)

Figure 6: Abort rate (left) and fraction of transactions
aborting due to conflict (right) for a 36-thread single-socket
experiment in which delay is inserted before committing
each transaction. The workload is 100% updates in an AVL
tree with key range [0, 131072).

Figure 7: Comparison between an AVL tree and a leaf-
oriented BST, with 20% updates and key range [0, 2048).

before committing each transaction.1 The results in Figure 6
show that, with a certain amount of delay, the abort rate
jumps significantly, mimicking the results on two sockets,
and that once the abort rate increases, most transactions
that abort do so because of conflicts, mimicking the phe-
nomenon in Figure 5. These results provide strong evidence
for our hypothesis.

Our hypothesis predicts that NUMA effects will be less
significant for unbalanced leaf-oriented trees, where each up-
date modifies a leaf, or the parent of a leaf. In such a tree,
threads can only cause cross-socket cache invalidations near
leaves, so the top of the tree is likely to remain cached. We
tested this prediction by comparing the AVL tree to an un-
balanced leaf-oriented binary search tree. As we can see in
Figure 7, which shows the result of a workload with 20%
updates and a key range of [0, 2048), the leaf-oriented BST
scales much better than the AVL tree.

An alternative explanation for this behavior is that a trans-
action may abort whenever it experiences a last-level cache
(LLC) miss (as it does, for example, whenever it experi-
ences a page fault). To rule out this possibility, we designed
a simple experiment in which a single thread allocates a one
gigabyte array of bytes, and then iterates over the cells of
this array, starting a transaction, reading a word, and com-
mitting. Because this array is too large to fit in cache, many
of the thread’s reads cause LLC misses. There is one com-
plication: Whenever a thread reads a location in memory,

1The delay was implemented by varying a number of loop
iterations, each consisting of a small, constant number of
instructions. The average length of successful transactions
increased from about 61ns (without the delay) to about 43µs
(with the maximal delay of 10K iterations). Even with the
maximal delay, transactions are short enough so that the
chance for aborts imposed by context switch interrupts is
negligible.

modern Intel processors fetch the entire cache line contain-
ing the memory location, and also prefetch the next cache
line. To avoid prefetching effects, the thread skips two cache
lines (128 bytes) in between each pair of reads. In this ex-

periment, almost all the 230

128
= 223 reads should incur a LLC

miss, and we confirmed (using the Linux tool perf) that
the number of LLC misses was approximately 223. How-
ever, there were fewer than 100 transactional aborts, which
proves that LLC misses do not necessarily cause transac-
tions to abort. We did a similar experiment to rule out the
possibility that cross-socket LLC misses cause transactions
to abort.

4. DEALING WITH NUMA

4.1 Considered approaches
In this section, we briefly describe a few unsuccessful ap-

proaches we tried to deal with NUMA effects, and then con-
centrate on one simple technique that did work.

One approach to deal with NUMA effects is to delegate
each operation to the socket on which it should ideally exe-
cute (i.e., the socket on which most of its accesses would be
local). If a thread gets an operation that should be executed
on a different socket, it packages it up and sends it to the
other socket. We implemented a number of delegation algo-
rithms, in which we manually decided which socket to send
each AVL tree operation to by checking whether its key fell
into the lower or upper half of the key range. The results
showed that while delegation doubled performance per unit
of time spent executing delegated operations, the overhead of
coordination between threads was too high. This experience
echoes the results of previous work, which has shown that
the benefit of delegation is often outweighed by the overhead
of implementing it [8]. We were able to extract some ben-
efit from delegation by packing multiple operations into a
single critical section (reducing the relative overhead due to
the increased size of each critical section). In future work,
we plan to explore better delegation techniques and ways to
apply them generically and with reduced overheads.

Another approach to deal with NUMA effects is to restrict
the concurrency of threads executing on different sockets.
For instance, one might allow only a few threads to run
on the second socket. However, as Figure 1 shows, even
a single thread running on the second socket can cripple
performance. Alternatively, one might force threads on the
second socket to backoff before retrying an aborted transac-
tion. We tried this approach early in our exploration, and
we found that performance improved only when the backoff
was so long that the second socket was almost completely
starved. Although starving the second socket avoids perfor-
mance degradation beyond 36 threads, it yields poor perfor-
mance for workloads that scale on two sockets.

The most effective solution we found builds on the ob-
servation that, for many workloads, the best performance
is achieved either when only threads on one socket are al-
lowed to execute (i.e., starving threads on the other socket)
or when all threads regardless of socket are allowed to ex-
ecute. We exploit this observation by periodically profiling
TLE performance to determine, for each lock L, whether
it is better to allow any thread to execute critical sections
protected by L or to restrict concurrency to threads on one
socket at a time. The results of this profiling is used to guide
when a thread is allowed to execute critical sections outside



type Lock {
lock_t lockData; // original lock metadata

long acquisitions [][];
// acquisitions [i][m] = #lock acquisitions
// for thread i and mode m

int fastestMode;
int alternateMode;
long fastestModeSlice;

// time slice out of each quantum for which
// the lock mode should be fastestMode

long lastProfStart = 0;
// when this lock was profiled for the last time

}

Figure 8: Lock data structure.

of the profiling phase. In particular, if we determine that it is
better to restrict concurrency, then after profiling, we cycle
through the sockets, allowing only threads from one socket
at a time to execute critical sections protected by L, with
the amount of time allocated to each socket determined by
their relative performance as measured during the profiling.
Critically, throttling decisions are made on a per-lock basis,
and as we demonstrate in Section 5, our solution may choose
to use all available sockets for some locks, and alternate be-
tween sockets for others. In the remainder of this section,
we provide a high-level description of our implementation,
which we call NATLE (for NUMA-aware TLE).

4.2 NATLE implementation
For simplicity, we assume a two-socket system, but it is

straightforward to extend this implementation to systems
with more sockets. NATLE allows performance tuning through
a number of configurable parameters (such as the number of
TLE attempts, the length and the frequency of the profiling
period, etc.), which we currently set to fixed values that work
reasonably well for our benchmarks. Of course, some appli-
cations may benefit by using different settings. Dynamically
adapting these settings is left for future work.

For the NATLE implementation, we augment each lock
with a mode that specifies which threads may execute crit-
ical sections protected by that lock. In our two-socket sys-
tem, there are three possible modes: In mode 0 or mode 1,
only threads on socket 0 or 1, respectively, may execute the
critical section (threads on the other socket are delayed un-
til the mode changes); in mode 2, threads on either socket
may do so. In general, the number of modes is equal to the
number of sockets plus one.

The running time is conceptually divided into cycles; each
cycle is composed of a profiling phase and a post-profiling
phase. The profiling phase is equally divided between differ-
ent modes. The post-profiling phase is equally divided into
quanta, and each quantum is split (based on relative perfor-
mance during profiling) between two modes corresponding
to two sockets (or treated as one unit if the favorable mode
of operation found during profiling is using both sockets).
In our implementation, the length of the profiling time in
each cycle was 30ms; thus, each mode was profiled for 10ms.
The length of each quantum was set to the length of the pro-
filing time (30ms), and we used 9 quanta per cycle. Thus,
the length of each cycle was 300ms, with 10% of this time
allocated to profiling.

Figure 8 provides details on the Lock data structure main-
tained by NATLE. The Lock data structure contains the
metadata of the original (pthread) lock implementation (lock-

int LockAcquire(Lock *lock) {
int repetitions =0;
while (repetitions ++ < REPETITIONS_THRESHOLD) {

// check if we are allowed to acquire the lock
int mode = getMode(lock);
if (mode == NUM_MODES -1 || mode == getSocket ()) {

++lock ->acquisitions[getTid ()][mode];
// call the underlying TLE implementation
return LockAcquireTLE(lock);

}
wait for a while

}
// call the underlying TLE implementation
return LockAcquireTLE(lock);

}

int LockRelease(Lock *lock) {
// just call the underlying TLE implementation
return LockReleaseTLE(lock);

}

Figure 9: LockAcquire and LockRelease.

Data), the start time of the last profiling phase (lastProfS-
tart), the fastest mode (i.e., the mode in which the most crit-
ical sections were executed) as determined by the most re-
cent profiling session (fastestMode), the relative length of the
quantum allocated to the fastest mode (fastestModeSlice)
and an acquisitions collection, which is used for profiling.
The last two bits in the lastProfStart field identify the stage
of the profiling phase: 0 indicates that profiling is on but
the profiling data (stored in acquisitions) has not yet been
initialized; 1 indicates that profiling is on and the data has
been initialized; 2 indicates that profiling is done but the
profiling data has not yet been aggregated; 3 is when the
profiling done and the profiling data has been aggregated.
In the pseudocode, S(x) denotes the last two bits of x, and
the tuple <x,y> denotes the value obtained by setting the
last two bits of x to y.

The acquisitions collection stores, for each thread and
mode, the number of times the critical section was executed
by that thread in that mode since the last profiling phase
began. In each cycle, when the profiling phase is finished,
the data in this collection is aggregated and used to decide
which mode is fastest and for how long it should be used, for
each lock. For simplicity, we assume that an upper bound
is known on the number of threads, and we implement ac-
quisitions using an array with one slot for each thread and
mode. One could eliminate this assumption by using, e.g.,
a linked list in which each thread maintains its statistics in
a separate node.

As usual with TLE, we co-opt the LockAcquire and Lock-
Release operations that bracket the critical section to at-
tempt to elide the lock acquisition and release using trans-
actions. The details of these operations as implemented in
NATLE are given in Figure 9. While the LockRelease op-
eration in NATLE is simply a wrapper for the underlying
TLE implementation, a thread executing LockAcquire must
now first check the mode of the lock to determine whether
it is allowed to execute the critical section. This is done by
calling the auxiliary getMode function (see Figure 10).

To determine the mode of the lock, the thread in getMode
reads the current system time2 and determines at what part
of the current cycle it is. If it is in the profiling phase, it en-
sures that profiling data has been initialized by calling start-

2To reduce overhead, the system time may be cached in a
thread-local variable and read less frequently.



int getMode(Lock *l) {
long start = startTime; // shared variable , set

once when it is read for the first time
long now = getCurrentTime ();
long timeIntoCycle = (now - start) % CYCLE_LEN;
if (timeIntoCycle < PROFILING_LEN) {

startProfiling(l, now - timeIntoCycle);
return timeIntoCycle / (PROFILING_LEN/NUM_MODES);

} else { // profiling is finished
finalizeProfiling(l);

if (l->fastestModeSlice == 1 ||
(( timeIntoCycle - PROFILING_LEN) % QUANTUM_LEN

< l->fastestModeSlice * QUANTUM_LEN))
return l->fastestMode;

return l->alternateMode;
}

}

void startProfiling(Lock *l, long profStart) {
long t = l->lastProfStart;
while (t < <profStart ,1>) {

if (t < <profStart ,0> &&
CAS(&l->lastProfStart , t, <profStart ,0>)) {

// reset learning counters
set all entries of l->acquisitions to 0
// signal that profiling data is initialized
CAS(&l->lastProfStart , <profStart ,0>,

<profStart ,1>);
return;

}
t = l->lastProfStart;

}
}

Figure 10: Auxiliary functions for getting the current mode
and starting a new profiling phase.

Profiling and returns the mode corresponding to the current
time. If it is in the post-profiling phase, it ensures that the
profiling data has been finalized by calling finalizeProfiling.

The profiling functions are shown in Figures 10 and 11.
In startProfiling, the thread compares the current time with
the value of lastProfStart stored in the lock. If the initial-
ization is required, it atomically sets (using CAS) the last-
ProfStart to the current time and resets the entries of the
acquisitions collection to 0. In finalizeProfiling, if the data
has not been finalized (determined by checking the last two
bits of the lastProfStart field stored in the lock), the thread
toggles these bits (using CAS), signaling other threads that
it is in the process of summarizing profiling data, which it
does by calling computeBestLockModes. There, if it finds
out that most acquisitions took place in the mode allowing
both sockets to run, it sets fastestMode to 2 and fastest-
ModeSlice to 1; otherwise, it sets fastestMode to the mode
with the most acquisitions and sets fastestModeSlice to the
ratio of the number of acquisition in the fastestMode to the
total number of acquisition in that mode and in the mode
1 − fastestMode (i.e., the mode corresponding to the other
socket).

To avoid cases where insufficient profiling data (e.g., dur-
ing warmup time) may lead to a suboptimal decision of using
only one of the sockets, we use a threshold (set to 256); if
the total number of lock acquisitions in all modes falls below
that threshold, fastestMode is set to 2 (and fastestModeSlice
is set to 1). (For simplicity, this optimization is omitted
from the pseudo-code.)

After calling finalizeProfiling, the thread decides (in get-
Mode) based on the current time and the values of fastest-
Mode and fastestModeSlice on the current mode for the lock.

void finalizeProfiling(Lock *l) {
long t = l->lastProfStart;
// check if the profiling data has been finalized

already
if (S(t) == 3) return;

if (S(t) == 1 &&
CAS(&l->lastProfStart , <t,1>, <t,2>)) {

computeBestLockModes(l);
CAS(&l->lastProfStart , <t,2>, <t,3>;

} else
while (S(t) == 2 &&

<t,0> == <l->lastProfStart ,0>) {
t = l->lastProfStart;

}
}

void computeBestLockModes(Lock *l) {
// compute fastest mode for the given lock
long acqs [];
for (int m = 0; m < NUM_MODES; m++) {

// sum acquisitions in mode m for all threads
acqs[m] = 0;
for (int j = 0; j < NUM_THREADS; j++) {

acqs[m] += l->acquisitions[j][m];
}

}
l->fastestMode = index of largest element of acqs
l->alternateMode = index of second largest

element of acqs

if (l->fastestMode == NUM_MODES -1) {
// both sockets run in fastest mode , so no need

to alternate modes
l->fastestModeSlice = 1;

} else {
// Only one socket runs in fastest mode. Divide

quantum between fastest and alternate modes.
l->fastestModeSlice = acqs[l->fastestMode] /

(acqs[l->fastestMode] +
acqs[1 - l->fastestMode ]);

}
}

Figure 11: Auxiliary functions for finalizing a profiling phase
and computing modes for a post-profiling phase.

If the mode returned by getMode is the one corresponding
to the socket on which this thread is running (which can
be found through a library call and is stored in a thread-
local variable) or corresponding to the mode that allows both
sockets to run, the thread proceeds with the underlying TLE
operation. Otherwise, if the current mode corresponds to
the socket different from the one on which the thread is run-
ning, the thread spins for a while (or yields) and then repeats
from the beginning of the LockAcquire function. To avoid
pathological cases (e.g., when a thread continuously misses
the times when the corresponding lock is in the mode that
would allow it to run), the number of repetitions is limited
by a large constant. To accommodate possible thread mi-
grations, each thread infrequently (e.g., every 1K attempts
to execute LockAcquire) rechecks the socket on which it is
running. Critically, even if the thread decides to run in
the “wrong” mode, correctness is preserved, and only per-
formance may be affected (for limited time, until the thread
finds out the real mode it should run with). Also, note
that NATLE does not assume any specific underlying TLE
implementation. While in our evaluation in Section 5 we
use a common TLE implementation (denoted as TLE-20 in
Section 3.1), other variants are possible, e.g., a TLE imple-
mentation that performs contention management using an
auxiliary lock [2].



5. EXPERIMENTAL RESULTS

5.1 Data structure microbenchmarks
In this section, we present a selection of results from a

large suite of microbenchmarks. We implemented the set
data type (i.e., supporting insert, delete, and search oper-
ations) in three different ways, as an AVL tree, as an un-
balanced binary search tree (BST), and as a skip-list. Each
implementation has a single lock that protects every oper-
ation, and we used two variants of TLE to implement this
lock. The first variant (which we simply call TLE) is the
common implementation described in Section 3.1, in which
a thread makes 20 attempts using HTM before falling back
to a (test-and-test-and-set) lock. The second variant is the
NATLE algorithm described in Section 4 implemented on
top of this common TLE implementation.

Each data point in our graphs is an average of five timed
trials, each lasting approximately 10 seconds. In each trial,
a fixed number of threads repeatedly invoke operations with
keys drawn uniformly at random from a fixed key range with
a specified proportion of update vs. search operations. Be-
fore a trial begins, the data structure is prefilled so that it
contains half of its key range, and among the update op-
erations, inserts and deletes are equally likely, so the data
structure remains approximately half full. As mentioned in
Section 3, we pin the first 36 threads to one socket and the
next 36 to the other socket. In all experiments, we use an
HTM-friendly memory allocator [10]. To reduce noise from
the power management system, the machine was set up in
performance mode (i.e., the power governor was disabled,
while all cores were brought to the highest frequency) with
turbo mode disabled.

Figure 12 shows the results of several experiments on AVL
trees. First consider the graphs on the left, in which threads
do not do any “external work” between operations. For the
read-only workload (top left graph), both TLE variants scale
(the reductions in slope from 18 to 36 threads and from
54 to 72 threads occur because of hyperthreading). How-
ever, NATLE achieves about 27% less throughput than TLE
due to periodic profiling overhead and time sampling, which
are redundant in this case because the best performance is
achieved by simply using both sockets. Tuning the frequency
and the length of profiling, as well as the frequency of time
sampling is possible, but is left for future work.

In more realistic settings, threads typically perform some
work between consecutive operations on a shared data struc-
ture. We emulate this external work by having each thread
call a short function a random number of times; this ran-
dom number is chosen from some preset range (e.g., [0, 256)).
The graphs on the right side of Figure 12 show the results
of experiments with such external work on the AVL tree. In
the read-only workload and a single-thread experiment, the
external work reduces the throughput of TLE (and NATLE)
by about 2/3. At the same time, the gap between NATLE
and TLE in this workload shrinks to less than 13%.

When we introduce update operations, both TLE and NA-
TLE do not scale as well, and this worsens as the proportion
of updates increases. However, once threads start to exe-
cute on the second socket (i.e., when there are more than
36 threads), TLE’s throughput drops dramatically, whereas
NATLE manages to stay closer to the peak throughput achieved
at 36 threads. This is true with or without external work.
In summary, NATLE can exploit both sockets for workloads
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Figure 12: Experimental results for AVL trees. The key
range is [0, 2048).
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Figure 13: Experimental results for unbalanced BSTs (left)
and skip-lists (right). The key range is [0, 2048).

that scale on both sockets with TLE (e.g., the read-only
workload), but unlike TLE, it exhibits little or no perfor-
mance degradation when using cores on both sockets for
workloads that do not scale.

The results for experiments with unbalanced BSTs and
skip lists are provided in Figure 13. There, threads perform
the same amount of external work as in the right part of
Figure 12. Interestingly, TLE performance in unbalanced
BSTs is not prone to the NUMA effects as operations do
not rotate the tree and thus always modify only nodes at
or near tree leaves. Indeed, the NATLE profiling statistics
show that the number of critical section executions is slightly
larger when both sockets are used, and thus it chooses to use
both sockets. However, as Figure 14 demonstrates, reducing
the key range increases the chance for a data conflict between
tree operations, which in turn makes TLE susceptible to
the NUMA effect. In this case, NATLE is able to avoid
the performance degradation. Its profiling statistics show



(a) 40% updates (b) 100% updates
Figure 14: Experimental results for unbalanced BSTs with
key range [0, 128).

Pin to alternating sockets No pinning

Figure 15: Experimental results for AVL trees with different
thread pinning policies. The workload is 100% updates with
key range [0, 2048).

that using one socket at a time is by far more efficient that
using both sockets. Along with that, the performance of
skip lists (cf. Figure 13) is more like AVL trees, although the
performance degradation of TLE is slightly less dramatic.

We also experimented with several different policies for
pinning threads. In Figure 15, we show graphs using two
alternative pinning policies for workloads with 100% up-
dates, key range [0, 2048), and the same amount of external
work as in right part of Figure 12. For the graph on the
left, threads are pinned to alternating sockets (i.e., even-
numbered threads are pinned to cores on socket 0 and odd-
numbered threads are pinned to cores on socket 1). For the
graph on the right, threads are not pinned; rather, the op-
erating system decides placement. The similarity between
these two graphs suggests that the Linux scheduler attempts
to evenly distribute the load across sockets. Since the work-
load does not scale on two sockets, the benefit of NATLE
is more significant, and is evident earlier (starting at eight
threads).

Although the benchmarks we have considered thus far use
only one lock, NATLE can profile and throttle threads for
applications that use multiple locks, and it does so inde-
pendently for each lock. That is, the mode(s) selected for
each lock is determined separately for each lock based on the
statistics gathered for that lock during the profiling phase.
For example, in Figure 16, we show the results of an ex-
periment in which there are two AVL trees, both with key
range [0, 2048). Half of the threads invoke only update op-
erations on one tree; the other half invoke only search oper-
ations on the other tree. (We only run this experiment with
even numbers of threads.) As before, threads are pinned to
spread across the cores of a single socket as much as possi-
ble (i.e., until there are more than 18 threads), and then use
hyperthreading before spilling over onto the other socket.
When there are more than 36 threads, we ensure that there
are equal numbers of threads accessing each tree. In other
words, the first 36 threads (divided equally between two
groups) run on the first socket, and the remaining threads
(again, divided equally between two groups) run on the sec-
ond socket.

Note that these two groups of threads are accessing differ-
ent trees, so threads in one group never conflict with threads
in the other group. To simplify the evaluation, we want both
groups of threads to have approximately the same through-
put (when running without contention). Since search oper-
ations are generally much faster than update operations, we
achieve this by adding external work between invocations of
the search operations.

We know from Figure 12 that the workload with 100%
updates does not scale on two sockets, whereas the work-
load with 0% updates does. Thus, the threads doing update
operations should be throttled so that at any time, only
threads from one socket are accessing the update-only tree.
In contrast, the threads doing search operations should not
be throttled: threads executing on different sockets can, and
should, access the read-only tree concurrently.

The graphs in Figure 16 show the combined throughput
of both groups of threads, and also the contribution of each
group to that combined throughput. NATLE significantly
outperforms TLE when there are more than 36 threads be-
cause it throttles the update-only threads but not the search-
only threads. The graphs that break out performance by
data structure (two rightmost charts in Figure 16) show that
the drop at 38 threads for TLE occurs mostly because of a
drop in the performance of the tree with updates opera-
tions. At the same time, NATLE keeps scaling by avoiding
this drop.

5.2 STAMP
In this section, we present results with STAMP [27], a

common benchmarking suite for transactional memory pro-
grams. We evaluate the version of the suite provided by
Ruan et al. [31], which includes a number of code modifi-
cations that allow adaptation to the standard transactional
memory interface. Note that NATLE does not require the
latter, however, it can be used with transactional programs
as long as the transactional runtime configured to simply use
a pthread lock for each transaction. This is exactly what we
have done by overwriting the transactional runtime imple-
mentation library (libitm) provided with GCC.

The results for various STAMP benchmarks and standard
workloads are shown in Figure 17. (We omit the results for
the bayes benchmark since it highly depends on the order
of various parallel computations and thus exhibits high vari-
ance; this fact was noted in [34].) These benchmarks report
the total runtime, hence the lower result is better.

STAMP benchmarks appear to be very sensitive to cross-
socket contention: In 7 out of 9 charts the runtime of TLE
skyrockets when the number of threads exceeds the capacity
of one socket. In all these cases, however, NATLE is able
to maintain roughly the same performance across all thread
counts beyond 36.

5.3 ccTSA
The ccTSA software is an open source implementation of

a de novo gene sequence assembler [4]. It gets an input file
with DNA segments and tries to assemble the whole genome
by looking for overlap between the segments. It uses a lock-
protected hash-map to store subsequences of DNA segments
during their processing. ccTSA achieves good scalability on
real genome data by splitting the main hash-map data struc-
ture into thousands of smaller hash-maps, each protected by
its own lock. For our evaluation, however, we are using the



(a) Total throughput (b) Break-down for TLE (c) Break-down for NATLE
Figure 16: Experimental results for a workload involving two AVL trees. The left graph compares the performance of the TLE
algorithms. The other two area graphs each show a single algorithm, and break out the performance of each data structure.
The area graphs are stacked, meaning that the top of the upper area represents the aggregate performance for both trees.

Figure 17: Experimental results with STAMP.

(a) Total runtime (with pinning) (b) Time allocation for socket 0 when
running with 72 threads (with pin-
ning)

(c) Total runtime (without pinning)

Figure 18: Experimental results with ccTSA.



transactified version of ccTSA [11], which simplifies the de-
sign of the original implementation and uses a single (lock-
protected) hash-map. Comparing to the original lock-based
implementation, this version achieves better single-thread
performance when used with locks, and performs more than
twice better at any thread count when the lock is elided
using TLELib (see [11] for details).

For our evaluation we use DNA segments from the E.coli
organism that were provided with the original software, and
configure ccTSA (e.g., the size of subsequences) with the
same configuration as reported in [11]. Figure 18(a) com-
pares the performance of ccTSA with TLE and NATLE us-
ing our usual pinning policy. Both variants scale well up
to 18 threads and then keep stable performance up to 36
threads. When the number of threads exceeds the capacity
of one socket, however, the runtime of TLE jumps, almost
reaching the level of the single thread. In contrast, NATLE
decides to throttle periodically one of the sockets, maintain-
ing the same level of performance up to 72 threads.

Data shown in Figure 18(b) sheds some light on the deci-
sions taken by NATLE in a run with 72 threads. The x-axis
corresponds to runtime cycles (as a reminder, NATLE di-
vides the running time into cycles and profiles performance
at the beginning of each cycle), while the y-axis corresponds
to the ratio of running time allocated in each quantum of
the corresponding cycle for socket 0. Based on these results,
one can see that for the majority of cycles, NATLE decides
to allocate roughly half of the quantum time to each of the
two sockets. The decision is taken based on the profiling,
which shows that for these cycles, socket throttling is more
effective than using both sockets at the same time.

We also show the results of running this benchmark with-
out pinning threads (see Figure 18(c)). In this case, the
benefit of using NATLE becomes evident much earlier be-
cause the cctsa benchmark does not scale across sockets.

5.4 paraheap-k
paraheap-k is a small (less than 1000 lines of code) parallel

heap-based application for calculating k-means clusters [21].
It has been developed in the context of studying astronom-
ical data to process efficiently galactic spectral data with
the task of finding galactic components. paraheap-k gets as
in input a file with galactic coordinates and uses a config-
urable number of threads to calculate iteratively k centroids.
The calculation process stops once the ratio of data points
that maintains an association with the same centroid across
subsequent iterations goes above a configurable threshold
(99.9%, by default). At the end, the position of calculated
centroids as well as the data point association is written to
output files.

Overall, the paraheap-k application has 7 critical sections,
6 of which are very short (just update a shared counter) and
another one inserts a data point into the heap. Furthermore,
the application uses multiple locks, making it an interesting
use case for the evaluation of NATLE. The results of this
evaluation with the usual pinning policy are shown in Fig-
ure 19(a). We measured the time of the actual data process-
ing, i.e., we did not include the time to read the provided
input file and output the results.

Despite the fact that NATLE statistics show that for most
parts of executions with more than 36 threads, using one
socket at a time yielded substantially higher throughput
then when using both sockets, the benefit of NATLE over

(a) With pinning (b) Without pinning
Figure 19: Experimental results with paraheap-k.

TLE is relatively moderate. We believe this is a result of
the way this benchmark creates and uses multiple worker
threads. Specifically, while all other benchmarks considered
so far create their working threads once and at the begin-
ning of their runs, paraheap-k does so in every processing
iteration (there are more than a dozen iterations per run),
and in fact, does so twice per iteration (to associate data
points with centroids, and then to recalculate the position
of those centroids once the data association phase is done).
Each time a new thread is created, it is pinned according to
the pinning policy, and the overhead of this pinning becomes
substantial when it is done frequently, eliminating most of
the benefits achieved by NATLE in reducing conflicts be-
tween threads running on different sockets. The results of
the evaluation without pinning confirm this hypothesis (see
Figure 19(b)). There, the benefit of NATLE is much more
substantial, and it becomes evident at 18 threads.

6. CONCLUSION
In this paper, we have presented results of experiments

we have done in an investigation into the behavior of HTM
on a large 72-thread dual-socket machine. We have shown
that some recommendations and common usage patterns for
HTM on smaller single-socket machines do not carry over to
larger machines. In particular, the NUMA characteristics of
the multi-socket machine can have dramatic effects on the
performance of applications that use HTM: for some appli-
cations, using all 72 threads on the machine yields behavior
that is only marginally better than that of single-threaded
execution. On the other hand, other applications may scale
to the full capacity of the machine.

Based on these observations, we proposed a technique for
more effective use of HTM on large NUMA machines by
adaptively throttling threads as necessary to optimize per-
formance based on profiling information collected during ex-
ecution. Our experiments show that our technique achieves
the full performance of both sockets for workloads that scale,
and avoids the performance degradation that cripples TLE
for workloads that do not.
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