
PHyTM: Persistent Hybrid Transactional Memory

Hillel Avni
Huawei Technologies

hillel.avni@huawei.com

Trevor Brown
University of Toronto

tabrown@cs.toronto.edu

Abstract
The availability of hardware transactional memory (HTM) and
the feasibility of persistent hardware transactions make them a
natural choice for in-memory database synchronization. However,
limitations on the size of hardware transactions and the lack of
progress guarantees by modern HTM implementations prevent some
transactions from obtaining the benefit of hardware transactional
memory. In this paper, we study persistent hybrid TM, which
allows hardware assisted ACID transactions to execute concurrently
with pure software transactions. This allows applications to gain
the benefit of persistent HTM while accommodating unbounded
transactions with a high degree of concurrency.

1. Introduction
Non-volatile memory (NVM) is an upcoming technology that
promises to revolutionize computer memory. It is not currently com-
mercially available, but manufacturers have developed prototypes,
and have released performance information about these prototypes
to the public. NVM is expected to become cheaper, faster and more
power efficient than DRAM, and will likely become ubiquitous.

Researchers have just begun to understand how machines with
NVM should be programmed. The programming model for NVM is
still in flux, and several companies are competing to bring an imple-
mentation to market. In a system with NVM, the processor cache
and registers are volatile, and writes to cache are asynchronously
flushed to NVM (at any time, and without the programmer’s knowl-
edge). A programmer can also cause a cacheline to be flushed to
NVM by invoking a primitive called Flush. Another primitive called
a persistence barrier is provided to allow a thread to block until the
cache line has been flushed to NVM. The key challenge in develop-
ing software for NVM is to ensure that the system is always left in a
consistent state if a power failure occurs and the cache and registers
are cleared.

Another recent technology called hardware transactional memory
(HTM), which brings database-style transactions to shared memory,
was recently implemented in Intel processors. Intel’s implementation
of HTM is best effort, which means that no transaction is ever
guaranteed to commit. Thus, a non-transactional fallback path
must be provided by a programmer to be executed if a transaction
aborts sufficiently many times. The simplest fallback path simply
reexecutes the body of a transaction after taking a global lock (that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

prevents other processes from performing transactions). However,
this naive approach does not work with NVM.

The interplay between transactional memory and NVM propos-
als is particularly interesting, because transactions must appear to
be atomic, but writes performed by the fallback path can be per-
sisted (flushed to persistent memory) at any time. Therefore, the
fallback path must be carefully designed to avoid exposing partial
effects of an in-flight transaction to other processes in the event of a
power failure. An additional complication arises from the fact that
HTM cannot directly modify main memory. Any modifications to
shared memory that are made by a transaction are performed on
a copy of the data stored in the private cache of the core running
the transaction. Thus, there is a timing window between when a
transaction commits, and when the changes are flushed from cache
into main memory, when a power failure could cause the results of
a committed transaction to be lost.

Recent work by Avni et al. [2] introduced the first algorithm,
PHTM, that allows hardware transactions to be performed in a sys-
tem with NVM. At a high level, PHTM uses a redo log to ensure that
no committed changes are lost. The authors propose a modification
to Intel’s HTM implementation that allows a single bit to be flushed
to NVM atomically as part of a transactional commit. This bit allows
them to simultaneously commit a transaction and flag a record of the
redo log in NVM as complete so that, after a power failure, it will be
replayed if and only if its transaction committed. The fallback path
in PHTM is a software transactional memory (STM) called PSTM
that was designed for use with NVM. Unfortunately, PSTM serial-
izes all transactions, and the algorithm does not allow concurrency
between hardware and software transactions. This eliminates all
concurrency whenever a process is executing on the fallback path,
and makes the algorithm unlikely to scale as the number of cores in
HTM systems increases.

In the transactional memory (TM) literature, hybrid TM was in-
troduced to solve similar performance issues. Hybrid TM algorithms
improve performance by using STM algorithms that allow concur-
rency on the fallback path, and designing the fast path algorithm
so that hardware and software transactions can run concurrently.
However, existing hybrid TM algorithms do not work with NVM,
so new algorithms are needed.

The main contribution of this work is PHyTM, the first hybrid
TM for systems with NVM. PHyTM provides linearizable transac-
tions with opacity and deadlock- and livelock-freedom. The strength
of PHyTM lies in the high degree of concurrency that it offers. It
uses a fast, hardware path and a slow, software path that can run
concurrently. To avoid livelock, transactions on the slow path may
occasionally take a global lock, which excludes other transactions
on the slow path, but allows transactions on the fast path to continue.
PHyTM allows transactions to continue to run in hardware, regard-
less of the actions of transactions on the slow path. This makes
PHyTM an appealing option for in-memory databases, which de-
mand persistence for ACID transactions, and often feature many
large queries that must run in software.

The rest of this paper is structured as follows. Section 2 gives a
detailed description of our model. Since PHyTM builds upon the
logging mechanism of PHTM, we use Section 3 to motivate and
describe its implementation. We then describe the PHyTM algorithm
in Section 4, and its implementation in Section 5. A formal proof
of correctness and progress is given in Section 6. Related work is
discussed in Section 7. Finally, we conclude in Section 8.

2. Model
We consider an asynchronous shared memory system with n threads
(also called processes).

2.1 Memory
The memory is organized into a hierarchy, with the lowest level,
main memory, consisting either entirely of NVM, or of a mixture
of NVM and DRAM. This lowest level is logically divided into
cache lines (which are typically 64 bytes on modern systems). The
next levels of the hierarchy are cache levels, which contain copies
of cache lines that appear in main memory. A cache coherence
protocol ensures that threads see a consistent view of main memory
despite the existence of multiple cached copies of some memory
locations. At the highest level of the memory hierarchy are registers,
special memory locations reserved in each processor for temporary
computations. Generally, operations on objects lower in the memory
hierarchy are orders of magnitude slower than operations on objects
higher in the hierarchy. NVM is expected to be slower than DRAM
for write operations, but at least as fast for read operations.

2.2 Failures
We assume that the system can experience power failures, which
result in all contents of volatile memory being lost. DRAM is
volatile, and so are all levels of the cache hierarchy and all registers.
If the cache and registers in a system were, instead, made persistent,
then no algorithms would require no changes to function on a system
with NVM. However, the cache is likely to remain volatile for the
foreseeable future due to hardware limitations (e.g., the relatively
slow speed of writes and high failure rate of NVM compared to
the memory currently used to implement the cache). After a power
failure, only NVM still contains information.

System recovery after a power failure is performed by a single
recovery thread which executes a special recovery procedure. The
recovery procedure repairs the data structure before other threads
resume execution. Since the recovery thread runs alone, it has
considerable latitude to perform actions that would otherwise appear
dangerous, such as forcefully releasing locks that were held by other
threads before the crash.

2.3 Hardware transactional memory
We consider Intel’s implementation of HTM. When a transaction
loads a memory location, the cache coherence protocol loads the
cache line that contains the memory location into the processor cache
in shared mode. In this mode, other processors are also allowed to
load this cache line into their caches. When a transaction writes to a
memory location, its cache line is first set to exclusive mode, and any
copies of the cache line in other processor caches are invalidated
(deleted). Then, the write is performed in the cache.

Since hardware transactions do not directly modify main mem-
ory, any modified cachelines must be flushed to NVM at some point
after a transaction has committed. This is accomplished using a
hardware primitive called FLUSH, which takes a memory address
addr as its argument. FLUSH(addr) causes the cache coherence
protocol to flush the most up-to-date copy of the cache line that
contains addr to main memory. FLUSH(addr) can cause any trans-
actions that have addr in their read-sets to abort. If a power failure

occurs while a transaction is in the middle of flushing its data to
NVM, the system could be left in an inconsistent state, with part of
a committed transaction recorded, and part of it lost.

We assume the same extension to the implementation of the
HTM commit operation as Avni et al. [2]. An HTM transaction is
committed using an instruction called tx_end_log, which takes the
address of a single logged bit, as its argument. This bit is atomically
set and flushed to NVM at the same time as the transaction is
committed (in cache). We also assume their transparent flush
operation TFLUSH, which takes a memory address addr as its
argument. TFLUSH(addr) has the same effect as FLUSH(addr),
except that it will not cause any transaction to abort.

3. Logging in PHTM
Since we build on the logging mechanism used for PHyTM from
PHTM, we now expand upon the brief description of PHTM that
was given in the introduction.

To eliminate the risk of losing data to a power failure, PHTM
adds transaction logging. Traditional transaction logs have two major
disadvantages: they can contain many transactions, and they store
global information about the order in which transactions committed,
so that a recovery process can decide what to do if, e.g., two
threads write x=2 and x=3, respectively. These kinds of logs are very
expensive to maintain, and offer more generality than is necessary
for PHTM.

In order to limit the size of its logs, PHTM requires each thread
to flush the results of its last transaction to NVM before starting
another. This way, PHTM only needs to be able to recover one
transaction for each process (namely, the current one). Consequently,
PHTM only needs to store at most one transaction per thread in the
log. PHTM is also able to log transactions without any ordering
information, provided that the log never simultaneously contains
two different writes to the same address. PHTM guarantees this
property by having each transaction lock each addresses it will
write, and hold this lock until its log is no longer necessary (and will
no longer be used by a recovery thread). Holding locks until the log
is no longer needed slightly lengthens the contention window of the
transaction, and may cause a small amount of additional contention.
(However, as we mentioned above, this allows PHTM to implement
a more efficient log.)

4. PHyTM algorithm
In PHyTM, transactions can execute on an HTM-based fast path,
and an STM-based slow path. To guarantee progress, transactions
on the slow path must sometimes take a global lock. We begin by
describing the slow path.

4.1 STM-based slow path
Lock-based STM algorithms feature two common locking method-
ologies: commit-time locking (CTL) and encounter-time locking
(ETL). CTL makes it fairly easy to guarantee progress, because
threads know the entire read-set before they begin locking: trans-
actions can sort their read-sets and lock addresses in a consistent
order, avoiding deadlock. However, CTL makes it difficult to satisfy
the common correctness condition opacity [8, 9], which intuitively
states that threads cannot observe the partial results of transactions.
Transactional memory implementations that do not satisfy opac-
ity can cause threads running transactions to enter infinite loops,
encounter unexpected segmentation faults, etc., where it would be
impossible to do so in a sequential execution. Since CTL does not ac-
quire any locks until just before committing, all of the transaction’s
reads are necessarily done without taking locks. Without additional
synchronization mechanisms, threads may read partial effects of
other transactions, violating opacity.

Because of the difficulty of providing opacity with CTL, PHyTM
uses ETL, which requires transactions to lock each address it will
read before reading it. ETL makes it fairly straightforward to prove
opacity. Since a thread can read an address only after locking it,
and the thread will unlock its addresses only after performing all
of its writes, no other transaction can see any of these writes until
they have all been completed. Thus, ETL simplifies the proof of
correctness for the STM. Unfortunately, it complicates progress: if
transactions read addresses in different orders, then deadlock can
occur. For example, if transactions T1 is trying to read A and then
B, and transaction T2 is trying to read B and then A, each of them
can lock one address, and then deadlock occurs.

We can avoid deadlock by using a TryLock primitive instead
of a Lock primitive. Unlock Lock, which blocks until the lock is
free, TryLock immediately returns false if the lock is held. In the
aforementioned scenario, T1 and T2 will each return immediately
from their second invocation of TryLock, and can then abort their
transactions and try them again. However, the same scenario could
arise over and over again, causing an infinite sequence of aborts.
This is called livelock. As we explain below, we can avoid livelock
by having threads on the slow path that are suspected of being
livelocked take a global lock.

At a high level, PHyTM’s STM path locks each address it
encounters, performs all of its reads and logs its writes, then flushes
its log to NVM before writing its values to memory and flushing
them to NVM. For improved concurrency between readers, we use
reader-writer locks, which can be acquired by either a single writer
or multiple readers. The implementation must be careful to ensure
that the log is atomically flushed to NVM, so that it will be replayed
by the recovery thread, precisely when it is committed. (Otherwise,
committed transactions might be lost, or transactions that have not
yet been committed might be replayed by the recovery thread.)

4.2 HTM-based fast path
Like the slow path, the fast path acquires locks on all of the addresses
it will write to, and then logs its writes. As we described above, this
prevents the log from containing two writes to the same address.
However, the fast path differs from the slow path in two crucial
ways. First, the fast path actually performs its writes immediately
after logging them (without waiting for the log to be replayed).
This only works on the fast path, because these writes will all
remain in the thread’s private cache until the transaction commits.
Second, the fast path does not acquire any locks when it reads
addresses. Instead, it reads the state of the lock for these addresses.
If the lock is currently locked by a writer (write-locked), then
the transaction aborts. Reading the lock state causes the HTM
transaction to subscribe to the lock, so that if is unlocked when the
transaction first checks its state, but is locked by another thread at
some later point before the transaction commits, then the transaction
will abort.

At a high level, PHyTM’s HTM path subscribes to locks for the
addresses it reads, and locks the addresses it writes, logging and
performing its writes as it locks each address to be written. When
all of its writes are finished, it flushes its log to NVM and uses
tx_end_log to atomically commit the transaction and mark its log as
completed, so that a recovery thread will replay it, should a power
failure occur. Finally, the HTM path replays its log entry, flushing
all of its writes to NVM, and then clears its log entry. If a transaction
fails sufficiently many times on the fast path, it moves to the slow
path.

4.3 Optimizing fast path reads/writes
We can take advantage of HTM’s ability to subscribe to a lock’s state
to implement an optimization. Suppose an HTM transaction reads
a lock’s state, but delays checking whether the lock is held until

Path Fast Slow-R Slow-W
Fast Yes Yes Yes
Slow-R Yes Yes No
Slow-W Yes No No

Figure 1. Table showing which transactions can run concurrently.
Slow-R (Slow-W) represents a transaction on the slow path holding
the global lock as a reader (writer).

right before the transaction commits. For simplicity, assume that a
lock’s state is zero if it is not held by any thread, and is non-zero
otherwise. Then, the states of all locks read by the transaction can
be aggregated in a thread-local variable by using bitwise-OR, so
that a single branch instruction performed just before committing is
sufficient to check if any locks were held throughout the transaction.

Delaying these lock state checks can violate opacity within the
transaction, since it effectively lets the transaction ignore locks un-
til commit time. However, all of the problems that are created by
violating opacity are resolved elegantly by Intel’s HTM implemen-
tation, because it sandboxes transactions: Any exceptions, such as
segmentation faults, that occur inside a transaction simply cause the
it to abort1.

The same optimization can also be applied to writes. Each time
a hardware transaction tries to acquire a lock as a writer, rather than
immediately checking whether it successfully acquired the lock (and,
if not, aborting), it can simply save the lock state, and check the
return value just before the transaction commits. As above, the lock
states can be aggregated in a thread-local variable using bitwise-OR,
and checked using a single branch instruction.

4.4 Ensuring progress with a global lock
As we mentioned above, the slow (STM) path uses a global
reader/writer-lock to guarantee progress. Each transaction on the
slow path starts with a budget for the number of times it can abort
before it must take a global lock to ensure progress. Whenever a
transaction is retried on the STM path, if it has not yet exhausted its
budget, it acquires the global lock as a reader. Since many readers
can acquire the lock, this allows concurrency with other threads on
the slow path. However, if the transaction has exhausted its budget,
it acquires the global lock as a writer, which blocks all other threads
on the slow path. This makes it impossible for indefinite livelock
to occur on the slow path, because, eventually, threads will exhaust
their budgets and resort to taking the global lock as writers, which
will serialize them.

Although a transaction that has acquired the global lock as a
writer does not run concurrently with any other transaction on the
slow path, it still acquires all of its per-address locks. This allows
transactions on the HTM fast path to continue running concurrently
with a single transaction that holds the global lock as a writer.
Figure 1 summarizes whether transactions on each pair of paths
can run concurrently.

5. PHyTM implementation
In this section, we give the full details of the PHyTM implemen-
tation. The fast and slow path each provide a set of operations for
starting and committing transactions, and reading and writing mem-
ory locations. These functions are not directly called from user code.
Instead, a user simply invokes primitives provided by the compiler
for starting and committing transactions, and the compiler automati-
cally instruments the user’s code so that it executes transactions (on

1 Infinite loops that occur because opacity is violated are slightly trickier.
However, within a transaction, they will eventually terminate, because of
an internal buffer overflow, an exception, or a context switch. Of course, if
infinite loops are a significant concern, one can simply skip this optimization.

1 type thread_log_t
2 // data for write-set logging (persistent)
3 int wsize // size of the write-set
4 word* wset[] // addresses in the write-set
5 word wdata[] // data to be written by the txn
6 bool logged // true if the log entry is complete
7

8 // data for read-set (volatile)
9 int rsize // size of the read-set

10 word* rset[] // addresses in the read-set
11

12 // variables for control flow (volatile)
13 int attempts // attempts on the current path
14 bool lockfail // true if a lock-failure occurred
15

16 shared thread_log_t entries[]
17 shared rwlock_t locks[]
18 shared rwlock_t globallock
19 shared const int MAX_HTM_ATTEMPTS
20 shared const int MAX_STM_ATTEMPTS

Figure 2. Data structures for PHyTM

the appropriate path) using the functions we provide. We begin by
describing the underlying data structures.

5.1 Data structures
The data structures for the PHyTM implementation appear in
Figure 2. Broadly, they consist of per-thread log entries, locks to
protect memory addresses, the global reader/writer-lock introduced
in Section 4, and a pair of constants. The per-thread log entries
are stored in an array, entries, which has one entry per thread. The
locks used transactions to protect memory addresses are stored
in an array called locks. (Note: on a real system, the locks and
entries arrays must be padded to avoid false sharing.) The two
constants, MAX_HTM_ATTEMPTS and MAX_STM_ATTEMPTS,
store the maximum number of times a transaction can be attempted
on the fast path and slow path, respectively.

5.1.1 Reducing the number of locks
To avoid the enormous space overhead of dedicating a unique lock
to each memory address, we use a fixed number of locks, which
are stored in an array called locks. These locks are accessed via
a function, GetLockAddr, which hashes a memory address into
the array of locks. Although mapping multiple addresses to the
same lock dramatically reduces the space complexity of PHyTM
(from half of all memory to an additive constant), it can cause false
conflicts if threads simultaneously try acquire locks on two different
addresses that map to the same lock. The same approach was taken
by Dice et al. in possibly the most well known STM, TL2 [6].

5.1.2 Per-thread log entries
We now describe the contents of the per-thread log entries. The
variables in a log entry can be divided into three categories: variables
for the write-set, for the read-set, and for managing the movement
of transactions between paths.

The write-set is represented by four variables: wsize, wset, wdata
and logged. wsize contains the number of addresses in the write-set.
wset is an array that contains all of the addresses in the write-set.
wdata in an array that contains the values written by the transaction
to the addresses in the write-set. logged is a bit that is true if the
log entry is complete, meaning that all of its data has been written
and flushed to NVM by the thread performing the transaction. This
bit indicates to the recovery thread that this log entry should be
replayed, should a power failure occur.

The read-set is represented by two variables: rsize and rset, which
are analogous to wsize and wset. Unlike the write-set, the read-set is
not flushed to NVM, and is never used by the recovery thread. The

21 void STM_Begin(thread_log_t* rec)
22 rec->attempts++
23 if rec->attempts <= MAX_STM_ATTEMPTS then
24 ReadLock(globallock)
25 else
26 WriteLock(globallock)
27

28 word STM_Read(word* addr, thread_log_t* rec)
29 rwlock_t* lock = GetLockAddr(addr)
30 if !TryReadLock(lock) then
31 ResetLogEntry(rec)
32 Unlock all locks (including globallock)
33 retry the transaction
34 val = *addr
35

36 // add addr to read-set (so it is unlocked later)
37 rec->rset[rec->rsize] = addr
38 rec->rsize++
39 return val
40

41 // precondition: STM_Read(addr, rec) has previously
been invoked in this transaction

42 void STM_Write(word* addr, word val, thread_log_t* rec)
43 rwlock_t* lock = GetLockAddr(addr)
44 if !TryWriteLock(lock) then
45 ResetLogEntry(rec)
46 Unlock all locks (including globallock)
47 retry the transaction
48

49 // add <addr, val> to the write-log
50 rec->addr[rec->wsize] = addr
51 rec->wdata[rec->wsize] = val
52 rec->wsize++
53

54 bool STM_Finalize(thread_log_t* rec)
55 // transparently flush the log entry
56 FlushLog(rec)
57

58 // log entry is ready to be replayed
59 rec->logged = 1
60 TFLUSH(rec->logged)
61

62 // replay the log entry to perform & flush all writes
63 ReplayLogEntry(rec, true /* perform writes */)
64 Unlock all locks (including globallock)
65

66 ResetLogEntry(rec)
67 rec->attempts = 0
68 return true

Figure 3. Operations for the STM path

read-set is only used by transactions on the slow path, which use it
simply to keep track of which addresses they’ve locked as readers.

The variables used to manage the movement of transactions
between paths are attempts and lockfail. attempts stores the number
of attempts that the transaction has made on the current path. On
the fast path, the transaction will move to the slow path once this
number reaches MAX_HTM_ATTEMPTS. On the slow path, the
transaction will acquire the global lock as a writer once this number
reaches MAX_STM_ATTEMPTS. lockfail is a thread-local temporary
variable used to store the bitwise-OR of the lock states to implement
the optimization described in Section 4.3. Neither of these variables
are flushed to NVM.

5.2 The slow path
The slow path provides four operations: STM_Begin, which starts a
transaction, STM_Read, which replaces a standard read from mem-
ory, STM_Write, which replaces a standard write, and STM_Finalize,
which commits a transaction. The pseudocode for the slow path op-
erations appears in Figure 3.

An STM_Begin operation increments the number of transactional
attempts stored in the transaction’s log entry, and acquires the global

lock as a reader (if the tranasction’s budget for attempts has not yet
been exhausted) or a writer (if it has).

An STM_Read operation acquires a read-lock, reads the address,
and saves it in its read-set. An STM_Write operation acquires a
write-lock, which serves two purposes. This lock grants exclusive
access to the address being written, and exclusive permission to
store that address in its write-log entry. The STM_Write then adds
the address and the value to be written to its write-log entry (but
does not yet make any effort to flush it to NVM2). If STM_Read
or STM_Write fails to acquire a lock, the transaction is aborted, all
locks are released, and the transaction is retried from scratch.

To commit an STM transaction, a thread invokes STM_Finalize.
STM_Finalize flushes the write-log entry to NVM, and then sets
and flushes a logged bit in the log entry, which indicates that it
is ready to be replayed by the recovery thread if a power failure
occurs. The transaction is committed precisely when the logged
bit reaches NVM. Next, STM_Finalize invokes a function called
ReplayLogEntry (which appears in Figure 5) to replay its own
log entry, performing all of its writes and flushing them to NVM.
ReplayLogEntry also clears and flushes the logged bit to indicate that
the log entry no longer needs to be replayed. Finally, STM_Finalize
unlocks all of its locks and prepares its log entry for reuse by the
thread’s next transaction.

5.3 The fast path
The fast path provides the same operations as the slow path, but their
names have an “HTM” prefix instead of “STM.” The implementation
of these operations appears in Figure 4.

An HTM_Begin operation first increments the number of transac-
tional attempts stored in the transaction’s log entry. If the transaction
has exceeded its budget of attempts on the fast path, the thread resets
the attempts counter, and moves the transaction to the software path.

An HTM_Read operation reads the lock state for the address
being read, and saves this state in the lockfail variable of the log
entry, as per the optimization described in Section 4.3. Then, it reads
and returns the address. An HTM_Write operation tries to lock the
address being written as a writer, and saves the resulting lock state
in the lockfail variable of the log entry, using the aforementioned
optimization. This lock grants exclusive access to the address being
written, and exclusive permission to store that address in its write-
log entry. Next, HTM_Write adds the address and the value to be
written to the transaction’s write-log entry. Finally, it performs its
actual write.

To commit a transaction on the fast path, a thread invokes
HTM_Finalize. HTM_Finalize begins by checking the lockfail
variable in the transaction’s log entry at line 106. If HTM_Read
sees an address that is already locked by a writer at line 80, or
HTM_Write fails to acquire a lock at line 86, then the lockfail
variable will be non-zero, and the transaction will abort. This ensures
that transactions on the fast and slow paths do not interfere with
one another. Next, HTM_Finalize flushes the write-log entry to
NVM, and then executes a tx_end_log instruction at line 106. This
instruction simultaneously commits the transaction, and sets and
flushes the logged bit in the log entry (indicating that the log entry
is ready to be replayed by the recovery thread if a power failure
occurs). The transaction is committed precisely when this instruction
is executed. After this, HTM_Finalize invokes ReplayLogEntry
(see Figure 5) to replay its own log entry, flushing its writes to
NVM. ReplayLogEntry also clears and flushes the logged bit to
indicate that the log entry no longer needs to be replayed. (Unlike
the invocation of ReplayLogEntry in STM_Finalize, this invocation

2 In our model, the contents of the write-log entry may be flushed to NVM
automatically at any time by the hardware. Here, we are simply remarking
that the thread does not explicitly flush its modifications to its log entry, yet.

69 void HTM_Begin(thread_log_t* rec)
70 rec->attempts++
71 if rec->attempts <= MAX_HTM_ATTEMPTS then
72 start hardware transaction
73 else
74 rec->attempts = 0
75 goto STM path
76

77 word HTM_Read(word* addr, thread_log_t* rec)
78 // check if addr is write-locked
79 rwlock_t* lock = GetLockAddr(addr)
80 rec->lockfail = rec->lockfail | IsWriteLocked(lock)
81 return *addr
82

83 void HTM_Write(word* addr, word val, thread_log_t* rec)
84 // try to write-lock addr
85 rwlock_t* lock = GetLockAddr(addr)
86 bool succmark = TryWriteLock(lock)
87 rec->lockfail = rec->lockfail | !succmark
88

89 // add <addr, val> to the write-log
90 int wsize = rec->wsize
91 rec->wset[wsize] = addr
92 rec->wdata[wsize] = val
93 rec->wsize++
94 // perform the write
95 *addr = val
96

97 void HTM_Finalize(thread_log_t* rec)
98 // transaction experienced a lock-failure
99 if rec->lockfail then abort transaction and retry

100

101 // transparently flush the log entry
102 FlushLog(rec)
103 // atomically commit (to cache) and
104 // simultaneously set rec->logged in NVM
105 // to indicate the log entry is ready to be replayed
106 tx_end_log(rec->logged)
107

108 // replay the log entry to flush all writes
109 ReplayLogEntry(rec, false)
110 Unlock all locks
111

112 ResetLogEntry(rec)
113 rec->attempts = 0

Figure 4. Operations for the HTM fast path

of ReplayLogEntry does not need to perform the transaction’s writes,
since they are already performed as part of the hardware transaction.)
Finally, HTM_Finalize unlocks all of its locks and prepares its log
entry for reuse by the thread’s next transaction.

5.4 Recovery
After a power failure, the recovery thread runs a simple procedure
called Recovery (see Figure 5). Locks are not flushed explicitly
to NVM, but some of them may have been flushed to NVM
automatically by the hardware, and they have to be released before
threads can resume normal operation. So, Recovery begins by
unlocking all threads’ locks. (The recovery thread has the freedom
to do this, because it is running alone in the system.) Next, it
invokes ReplayLogEntry for each log entry in the log. This is the
same procedure that is used by STM_Finalize and HTM_Finalize to
complete a transaction once its log entry is flushed.

ReplayLogEntry first checks if the log entry has its logged bit set.
If so, the transaction has been committed, and it must be persisted
in NVM. Next, the transaction’s writes are performed at line 138
(because doWrites = true when ReplayLogEntry is invoked by
Recovery). (Note that the recovery thread performs these (apparently
redundant) writes even for hardware transactions, despite the fact
that HTM_Finalize invokes ReplayLogEntry with doWrites = false,
and does not perform these writes. Here, these writes are necessary,
because after a hardware transaction commits, but before its writes

114 void ResetLogEntry(thread_log_t* rec)
115 // prepare log entry for the next txn attempt
116 rec->lockfail = 0
117 rec->wsize = 0
118 rec->rsize = 0
119

120 void FlushLog(thread_log_t* rec)
121 TFLUSH(rec->wsize)
122 int wsize = rec->wsize
123 for i = 1..wsize
124 TFLUSH(rec->wset[i])
125 TFLUSH(rec->wdata[i])
126

127 void Recovery(int nthreads)
128 Unlock all locks for all threads
129 for i = 1..n
130 ReplayLogEntry(entries[i], true)
131

132 void ReplayLogEntry(thread_log_t* rec, bool doWrites)
133 if rec->logged then
134 int wsize = rec->wsize
135 if doWrites then
136 // perform all writes
137 for i = 1..wsize
138 *rec->wset[i] = rec->wdata[i])
139

140 // transparently flush all writes
141 for i = 1..wsize
142 TFLUSH(*rec->wset[i])
143 // the log entry no longer needs replaying
144 rec->logged = 0
145 TFLUSH(rec->logged)

Figure 5. Functions common to HTM and STM paths

are flushed to NVM, they may be lost to a power failure.) We
briefly argue that, when the power failure occurred, the thread
performing the transaction held locks on all of the addresses in
the transaction’s write-set (so it is correct to perform these writes).
Observe that the log entry’s logged bit reset to zero at the end of
ReplayLogEntry. It follows that a power failure occurred before the
thread that was running this transaction could finish its invocation
of ReplayLogEntry at line 63 in STM_Finalize, or line 109 in
HTM_Finalize. In either case, the thread still held locks on all of the
addresses in the transaction’s write-set. ReplayLogEntry concludes
by flushing all of the writes to NVM, and setting the logged bit to
zero and flushing it to NVM.

5.5 Optimizing with non-transactional reads
In this section, we describe an optimization to PHyTM that can
be applied in HTM system that allow threads to perform non-
transactional reads and writes while inside a transaction. Note that
the HTM_Read function reads both the value stored at an address
and the state of its lock. A paper by Riegel et al. [16] observed that
it is sufficient to subscribe only to the lock (which is acquired by
both HTM and STM), and use a non-transactional read for the data
itself. In PHyTM, this optimization is quite natural, since locks are
already taken by HTM for logging, and not simply because of its
interactions with the STM-based slow path. PHyTM can also use
non-transactional reads and writes to maintain its redo-log, which is
local to a single thread (with the exception of the recovery process,
which runs alone in the system).

6. Correctness
In this section, we formally prove that the PHyTM algorithm
implements transactional memory with opacity and linearizable
transactions, and that the algorithm is deadlock- and livelock-free.

6.1 Progress
It is straightforward to informally argue that the algorithm is
deadlock- and livelock-free. The algorithm is deadlock-free because

it uses a non-blocking TryLock primitive for all locks except the
global reader/writer-lock (which cannot cause deadlock), and re-
leases all locks and restarts the transaction whenever an invocation of
TryLock sees that a lock is already held. To show livelock-freedom,
we suppose that transactions stop committing after some point in
time, and obtain a contradiction. Intuitively, threads will eventually
exhaust their budgets for transactional attempts on the fast path and
slow path, and will all take the global lock as writers, at which point
one of them will acquire the lock and commit a transaction, yielding
a contradiction. However, the formal proof is deceptively subtle.

Definition 1. HTM_Begin, HTM_Read, HTM_Write and HTM_Finalize
are fast-path operations. STM_Begin, STM_Read, STM_Write and
STM_Finalize are slow-path operations. Collectively, these are
referred to as PHyTM operations.

Lemma 1. Every PHyTM operation is wait-free (terminates after a
finite number of steps), except for STM_Begin.

Proof. Recall that we assumed TryReadLock and TryWriteLock re-
turn immediately if the lock is held. Because of this assumption,
STM_Read, STM_Write, HTM_Read, HTM_Write and HTM_Begin
are straightline code. HTM_Finalize and STM_Finalize are straight-
line code, apart from their invocations of FlushLog and ReplayLo-
gEntry. FlushLog and ReplayLogEntry are straightline code except
for their loops, which each perform k iterations, where k is the value
of wsize in the transaction’s log entry. It is easy to verify that wsize
is always positive and finite, since the only places it is modified are
at line 117 in ResetLogEntry, where it is set to zero, and at line 52
in HTM_Write and line 52 in STM_Write, where it is incremented
exactly once per write in the transaction.

Theorem 2. PHyTM is deadlock- and livelock-free. (Formally, if
all transactions have finite read- and write-sets, and all threads take
steps infinitely often, then transactions commit infinitely often.)

Proof. Suppose not, to obtain a contradiction. Then, in some exe-
cution, after time t, all threads take steps infinitely often, but no
transaction commits.
Claim 1. Eventually, every thread invokes only slow-path opera-
tions.

Suppose not, to obtain a contradiction. Then, some thread p
executes fast-path operations infinitely often. Since no transactions
can commit after time t, p must perform infinitely many fast-path
operations without ever executing line 113. Furthermore, p cannot
execute line 74, since it would then begin executing on the slow
path, never to return to the fast path (and never again to execute
a fast-path operation). Therefore, the attempts counter in the log
entry is never reset to zero. Since transactions have finite read-
and write-sets, p’s transaction must abort infinitely often, which
means p must invoke HTM_Begin for its transaction infinitely often,
incrementing attempts each time. However, each transaction has
a finite budget MAX_HTM_ATTEMPTS for attempts on the fast
path, so p must eventually move to the slow path and stop executing
fast-path operations, which is a contradiction.
Claim 2. Eventually, every thread either invokes STM_Begin in-
finitely often, or spins forever at line 24 or line 26 in STM_Begin.

Suppose not, to obtain a contradiction. Then, some thread p
invokes STM_Begin finitely many times, and does not spin forever
in STM_Begin (the only place in the code where unbounded spinning
occurs). Since all other PHyTM operations are wait-free, and
transactions have finite read- and write-sets, p must successfully
commit a transaction after t, which is a contradiction.

We can now prove the theorem. Let σ be the set of threads that
invoke STM_Begin infinitely often. Since the global lock used by
PHyTM is deadlock-free, it is impossible for every thread to spin
forever in STM_Begin. Thus, Claim 2 implies that σ is non-empty.

By a similar argument to the proof of Claim 1, every thread in σ
eventually exhausts its budget of transactional attempts on the slow
path. Therefore, eventually, every invocation of STM_Begin by a
thread in σ attempts to acquire the global lock as a writer at line 26.
Since the global lock is deadlock-free, eventually some thread in σ
will successfully acquire the lock as a writer, at which point it will
run alone on the STM path, so its transaction will be guaranteed to
commit (which is a contradiction).

6.2 Linearizability and opacity
In this section, we show that PHyTM transactions are linearizable,
they satisfy opacity on the slow path, and they are sandboxed on
the fast path so that they are not susceptible to the problems that
can arise when opacity is not satisfied. In this section, we assume
no power failures occur. (In the next section, we consider how they
change things.)

Definition 2. A transaction attempt by a thread p is any interval
starting with an HTM_Begin (STM_Begin) by p and ending with the
next HTM_Finalize (STM_Finalize) by p.

In the course of trying to perform a transaction, a process may
make several transaction attempts. One can think of a transaction as
a collection transaction attempts3.

Definition 3. A transaction attempt on the fast path commits at its
execution of tx_end_log at line 106. A transaction attempt on the
slow path commits at its execution of TFLUSH at line 60.

We now give the linearization points for committed and aborted
transactions on the fast- and slow-path.

Linearization points
• Each committed transaction attempt on the fast path is linearized

at its execution of tx_end_log at line 106 of HTM_Finalize.
• Each committed transaction attempt on the slow path is lin-

earized at its TFLUSH instruction at line 60 of STM_Finalize.
• Each aborted transaction attempt on the fast path is linearized

at its last execution of line 80 in HTM_Read or line 86 in
HTM_Write before the lockfail bit was set.

• Each aborted transaction attempt on the slow path is linearized
at its last execution of line 30 in STM_Read or line 44 in
STM_Write.

Observe that committed transactions are linearized precisely at
the moment they are committed.

Lemma 3. Suppose a transaction attempt T changes an address
addr in main memory that is not a lock or part of a log entry. Then,
the following statements hold.
1. T must commit.
2. T adds addr to its write-log entry at lines 50-52 or lines 91-93.
3. T locks addr as a writer at line 44 or line 86, before adding
addr to its write-log entry, and before writing to addr. T
continuously holds this lock until after it commits.

Proof. Suppose T is a software transaction. Then T must write to
addr at line 138 of ReplayLogEntry. Prior to invoking ReplayLo-
gEntry at line 63, it commits at line 60 (proving Claim 1). Claim 2
and Claim 3 are immediate from the code.

Now, suppose T is a hardware transaction. Trivially, T must
commit in order to change main memory (Claim 1). Claim 2 is
immediate from the code. From the code, T must write to addr at
line 95. Just prior to this, T tries to lock addr as a writer at line 86.

3 Formally, a transaction by a thread p is the collection of transaction attempts
by p, where the first transaction attempts begins when p’s log entry contains
attempts = 0, and the last transaction attempt ends when p’s log entry next
contains attempts = 0.

If T succeeds, then Claim 3 is immediate from the code. However,
if T fails to acquire the lock, then the log entry’s lockfail bit is set,
and the transaction will abort at line 99, which is a contradiction.
Therefore, this case is impossible, and Claim 3 is proved.

Lemma 4. Every invocation of STM_Read on an address addr
returns the most recent value written to addr by a committed
transaction.

Proof. Let R be an invocation of STM_Read on an address addr, r
be the execution of line 34 in R, T be the last transaction with addr
in its write-set that committed prior to r, and v be the value that T
writes to addr. Our goal is to prove that addr contains v when step
r is executed.

By Lemma 3, and a simple inspection of the code, T ’s write to
addr is flushed to main memory at some time t after it commits, but
before it releases its locks (at the very latest, in ReplayLogEntry, but
possibly earlier if the system automatically flushes the write). Since
STM_Read sees that addr is not locked at line 30 just before step r,
we know that r happens after tine t. Thus, addr contains v at time
t, after T commits, but before r.

We argue that addr does not change between t and r. Suppose,
to obtain a contradiction, that addr changes between t and r. Since
addr can be changed only by a committed transaction, and only
while it holds writer-locks on every address in its write-set, if addr
is changed between t and r, another committed transcaction T ′ must
hold a write-lock on addr at some point between t and r. Since T
and T ′ cannot both hold write-locks on addr at the same time, and
addr can only be changed while it is write-locked, T ′ must have
locked addr after T . However, T ′ must commit while it holds a
write-lock on addr, so T ′ must commit (and be linearized) after T ,
which is a contradiction.

Corollary 5. Every invocation of HTM_Read made by a transaction
prior to its linearization point returns the most recent value written
to addr by a committed transaction

Proof. For committed transactions, HTM_Read subscribes to the
state of the lock for each address it reads, and sees that the lock is
not held. Thus, the value it reads at line 81 is identical to value it
would read if it had explicitly acquired a read-lock on the address.
Consequently, the proof is identical to the proof of Lemma 4.

Aborted transactions are linearized at the first point where it
sees a lock is already held by another thread at line 80 or fails
to acquire a lock at line 86. Therefore, for every read prior to the
linearization point, the transaction subscribes to the state of the lock
at line 81, and sees that the lock is not held. From this point onward,
the argument is the same as above.

Theorem 6. PHyTM provides opacity on the slow path, and sand-
boxes transactions on the fast path.

Proof. Immediate from Lemma 4, Lemma 5 and the fact that fast
path transactions are automatically sandboxed by the implementa-
tion of HTM.

6.3 Recovery
In this section, we prove the correctness of the Recovery procedure
that is invoked by the recovery thread after a power failure. Intu-
itively, this entails showing that the log is always well formed, and
that no committed transactions are lost to a power failure.

Definition 4. A transaction attempt is logged whenever the logged
bit in its log entry is set.

Observe that a committed transaction attempt is linearized, and
becomes committed and logged at precisely the moment that their
logged bit is flushed to NVM (so that they will be replayed by the
recovery thread if a power failure occurs).

Lemma 7. At all times, the set of log entries that have their logged
bits set contains at most one instance of each memory address.

Proof. By inspection of the code, a transaction attempt can be logged
only while it holds all locks in its write-set.

Lemma 8. Every transaction attempt that commits before a power
failure either terminates (meaning its invocation of HTM_Finalize
or STM_Finalize terminates) prior to the power failure, or it is
logged.

Proof. Let T be a transaction that commits (and, consequently, is
linearized) before a power failure. Suppose T does not terminates
prior to the power failure. Then, since T commits before the power
failure (and transactions commit and are logged at precisely the
same time), T is logged before the power failure.

Theorem 9. Immediately after the recovery thread finishes execut-
ing the Recovery procedure, the contents of shared memory are
exactly what they would be if all transaction attempts that had
committed (and linearized) but not yet terminated when the power
failure occurred had actually run to completion.

Proof. Let T be a transaction attempt that committed but had not
yet terminated when the power failure occurred. Since T committed
before the power failure, it is logged, and it held write-locks on all
addresses in its write-set when the power failure occurred. So, if T
ran to completion, then it would have performed all of its writes and
flushed them to NVM. Since T is logged, the Recovery procedure
will perform all of its writes.

It remains to prove that the transactions whose log entries are
replayed by the Recovery procedure will not interfere with one
another. Since all of the transactions whose log entries will be
replayed by the Recovery procedure are logged, Lemma 7 implies
that all logged transactions operate on disjoint write-sets.

7. Related work
Non-volatile RAM is expected to replace DRAM, either partially or
entirely, as main memory [13]. There are already working prototypes
of NVM such as phase-change memory (PCM) [13], spin-torque-
transfer RAM (STT-RAM) [11], and memristors [17], and the
new Intel architecture added special instructions (CLFLUSHOPT,
PCOMMIT) [1] to access data in NVM. As memory becomes
persistent, it is natural to make persistent transactional memory,
i.e. to support full ACID TM transactions.

NV-Heaps [3] and Mnemosyne [18] are full system solutions.
They include allocating persistent memory to applications, defining
non-volatile variables in the compiler, and preventing illegal states
such as a persistent object pointing to a volatile one. As part of their
NVM support, they also provide persistent STM.

NV-Heaps includes an object-based persistent STM. It provides
transactional objects, which can be opened for writing. Once an
STM transaction T opens an object for writing, T copies the object
to an undo log, and locks it. NV-Heaps maintain a volatile read log
and a non-volatile undo log for each transaction. If a power failure
occurs, any transactions in progress are aborted, and the undo log,
which is persistent, is used to reverse any changes they made.

Mnemosyne persistent STM [18], which was published at
the same time as NV-Heaps, is word-based, and is derived from
TinySTM [7]. Mnemosyne buffers writes to avoid the maintenance
of an undo log, and to work around the fact that writes can be flushed

to NVM at any time. Buffering writes results in slower commits.
Mnemosyne logs writes in per-thread redo logs, and logged writes
are totally ordered by a global clock, which is taken from TinySTM.

Unfortunately, these software-based algorithms exhibit poor
performance due to bookkeeping overhead and/or poor scalability
due to locking serialization. Thus database transactions use fine-
grained locking and no commercial database uses STM. Some
database implementations [14, 19] use HTM for synchronization.
However, these databases still use flush data to disk to achieve
persistence.

PHTM [2] is a persistent version of HTM for machines that
provide NVM. It writes a persistent bit in NVM at HTM commit-
time, and logs the write-set in NVM, so that, at any time, if a power
or hardware failure occurs, then the contents of shared memory
can be recovered. PHTM executes reads at hardware speed, and
its commits are instantaneously persistent at commit-time. PHTM
provides both synchronization and durability for an in-memory
database, but it carries the limitations of best effort HTM, and cannot
commit large transactions (except sequentially, on a fallback path).
PHyTM improves on PHTM by offering both persistent HTM and
highly concurrent STM, to gain the performance benefit of HTM
while maintaining parallelism when a transaction must execute in
software.

The limitations of HTM were mentioned already in the seminal
paper of Herlihy and Moss [10], but the first algorithms that allow
a fast path concurrency with the slow path were introduced in
2006 [5, 12]. Since then, research on hybrid TM algorithms has
been focused on optimizations to improve performance.

Optimizations for hybrid TMs have progressed in two directions:
• Reducing overhead by letting the slow path take a global

sequential lock, which is sampled by the fast path on each
access, in the HyNORec algorithms [4]. (In this direction, HTM
is also used in the commit phase of an STM transaction, which
eliminates the need for HTM to sample locks [15].)

• Attaching a versioned lock or a traditional lock to each address,
which is sampled on each HTM read, and acquired by both paths
for each write, in the HyLSA algorithm [16]. This algorithm
greatly increases the size of HTM transactions, because locks
must be sampled for each HTM read. However, this problem can
be mitigated with the use of non-transactional reads and writes.

The NORec family of algorithms has lower overhead, but is less
scalable, so we chose to pursue the same direction as HyLSA for
PHyTM. Reads of data in PHyTM can be non-transactional. Since
both persistent HTM and STM transactions acquire locks on each
address in their write-sets (to ensure that no other transaction can
write to these addresses until the current transaction’s changes are
flushed), it is sufficient for each transaction to subscribe to the state
of the lock for each address (instead of subscribing both to the
lock state and to the address it protects). Since each STM read also
acquires a lock, separating the STM read-lock from the write-lock
may also reduce unnecessary aborts caused by conflicts between
STM reads and HTM reads.

8. Conclusion
Efficient, persistent hybrid TM will allow in-memory databases to
benefit from the research accumulated in the TM literature. More
than two decades ago, transactional memory started as a hardware
proposal for efficient execution of short transactions, and, later,
expanded to efficient synchronization of general transactions in
memory. Recently, databases have begun to move away from disks
and become fully in-memory. PHyTM’s line of research promises
to connect transactional memory with cutting-edge in-memory
databases.

References
[1] Intel architecture instruction set extensions programming reference.

https://software.intel.com/sites/default/files/managed/0d/53/319433-
022.pdf.

[2] H. Avni, E. Levy, and A. Mendelson. Hardware transactions in
nonvolatile memory. In Proceedings of 29th International Symposium,
DISC 2015, pages 617–630. Springer, 2015.

[3] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson. Nv-heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories. In Proceedings of the
Sixteenth International Conference, ASPLOS XVI, pages 105–118,
New York, NY, USA, 2011. ACM.

[4] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott,
and M. F. Spear. Hybrid norec: a case study in the effectiveness of
best effort hardware transactional memory. In Proceedings of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2011, Newport Beach, CA,
USA, March 5-11, 2011, pages 39–52, 2011.

[5] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid transactional memory. In Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA,
October 21-25, 2006, pages 336–346, 2006.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In
S. Dolev, editor, Distributed Computing, volume 4167 of Lecture Notes
in Computer Science, pages 194–208. Springer Berlin Heidelberg,
2006.

[7] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of
word-based software transactional memory. In PPoPP ’08: Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 237–246. ACM, 2008.

[8] R. Guerraoui and M. Kapalka. On the correctness of transactional
memory. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pages 175–184. ACM,
2008.

[9] T. Harris, J. Larus, and R. Rajwar. Transactional memory. Synthesis
Lectures on Computer Architecture, 5(1):1–263, 2010.

[10] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th Annual
International Symposium on Computer Architecture, ISCA ’93, pages
289–300, New York, NY, USA, 1993. ACM.

[11] Y. Huai. Spin-transfer torque MRAM (STT-MRAM): Challenges and
prospects. AAPPS Bulletin, 18(6), 2008.

[12] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. D. Nguyen.
Hybrid transactional memory. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
PPOPP 2006, New York, New York, USA, March 29-31, 2006, pages
209–220, 2006.

[13] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and
D. Burger. Phase-change technology and the future of main memory.
IEEE Micro, 30(1):143, 2010.

[14] V. Leis, A. Kemper, and T. Neumann. Exploiting hardware transactional
memory in main-memory databases. In IEEE 30th International
Conference on Data Engineering, Chicago, ICDE 2014, IL, USA,
March 31 - April 4, 2014, pages 580–591, 2014.

[15] A. Matveev and N. Shavit. Reduced hardware norec: A safe and
scalable hybrid transactional memory. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 59–71, New
York, NY, USA, 2015. ACM.

[16] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimizing
hybrid transactional memory: the importance of nonspeculative opera-
tions. In SPAA 2011: Proceedings of the 23rd Annual ACM Symposium
on Parallelism in Algorithms and Architectures, San Jose, CA, USA,
June 4-6, 2011 (Co-located with FCRC 2011), pages 53–64, 2011.

[17] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The
missing memristor found. Nature, 453(7191):80–83, May 2008.

[18] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight
persistent memory. SIGPLAN Not., 47(4):91–104, Mar. 2011.

[19] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted transactional
memory to build a scalable in-memory database. In Proceedings of the
Ninth European Conference on Computer Systems, EuroSys ’14, pages
26:1–26:15, New York, NY, USA, 2014. ACM.

