
PREP-UC: A Practical Replicated Persistent Universal
Construction

Gaetano C. Coccimiglio
gccoccim@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

Trevor A. Brown
trevor.brown@uwaterloo.ca

University of Waterloo
Waterloo, Ontario, Canada

Srivatsan Ravi
srivatsr@usc.edu

University of Southern California
Los Angeles, California, USA

ABSTRACT
The process of designing and implementing correct concurrent
data structures is non-trivial and often error prone. The recent com-
mercial availability of non-volatile memory has prompted many
researchers to also consider designing concurrent data structures
that persist shared state allowing the data structure to be recovered
following a power failure. These so called persistent concurrent
data structures further complicate the process of achieving correct
and efficient implementations. Universal constructions (UCs) which
produce a concurrent object given a sequential object, have been
studied extensively in the space of volatile shared memory as a
means of more easily implementing correct concurrent data struc-
tures. In contrast, there are only a handful of persistent universal
constructions (PUCs) which beyond producing a concurrent object
from a sequential object, guarantees that the object can be recovered
following a crash. Existing PUCs satisfy the correctness condition of
durable linearizability which requires that operations are persisted
before they complete. Satisfying the weaker correctness condition
of buffered durable linearizability allows for improved performance
at the cost of failing to recover some completed operations follow-
ing a crash. In this work we design and implement both a buffered
durable linearizable and a durable linearizable PUC based on the
node replication UC. We demonstrate that we can achieve signifi-
cantly better performance satisfying buffered durable linearizability
while also restricting the maximum number of operations that can
be lost after a crash.

CCS CONCEPTS
• Computing methodologies → Concurrent algorithms.

KEYWORDS
Universal construction, Durable linearizability, Buffered durable
linearizability, Non-volatile Memory

ACM Reference Format:
Gaetano C. Coccimiglio, Trevor A. Brown, and Srivatsan Ravi. 2022. PREP-
UC: A Practical Replicated Persistent Universal Construction. In Proceedings
of the 34th ACM Symposium on Parallelism in Algorithms and Architectures

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9146-7/22/07. . . $15.00
https://doi.org/10.1145/3490148.3538568

(SPAA ’22), July 11–14, 2022, Philadelphia, PA, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3490148.3538568

1 INTRODUCTION
Recently, byte-addressable Non-Volatile Memory (NVM) has be-
come commercially available. This has prompted many researchers
to explore designing persistent concurrent data structures for use
with NVM [14, 18–20, 34, 36]. Unfortunately, designing efficient
persistent concurrent data structures has proven to be a challenge.
The main reason for this difficulty is the fact that, currently, NVM
exists only as a portion of main memory while processor caches,
registers and DRAM remain volatile. This work considers system
crashes caused by power failures. If a system crash occurs, only
data in NVM can be recovered. To guarantee that data is written
back to NVM the programmer must explicitly force cached data to
be written back to main memory at key times. This requires the use
of flush (also known as write-back) instructions as well as expensive
persistent fence instructions.

Much of the recent literature has focused on adding persistence
to volatile data structures [7, 11, 12, 14, 18–20, 34, 36]. These works
have proposed hand-crafted approaches and general transforma-
tions, both of which are concerned with precisely where flush and
fence instructions should be used to achieve persistence. Starting
from volatile data structures is logical given that volatile concurrent
data structures have been studied extensively [23]. However, design-
ing volatile concurrent data structures is itself a difficult endeavour,
and adding persistence only increases complexity. By comparison,
sequential data structures are relatively straightforward.

A universal construction (UC) is a generic mechanism which
takes a sequential object as input and produces a concurrent object.
A persistent universal construction (PUC) is a universal construc-
tion which also ensures that the object can be recovered following
a system crash. Using a PUC we can easily obtain persistent con-
current data structures by starting from a volatile sequential data
structure.

Crucially, UCs do not modify the underlying sequential imple-
mentation and instead view it as a black box. In the context of PUCs
this is important because it means that we cannot add flush or fence
instructions between the reads and writes performed by the sequen-
tial implementation. There is a wealth of prior research regarding
UCs [4, 13, 16, 17, 22, 24]. By comparison there is relatively little
prior work studying PUCs [7, 12]. Existing PUCs have focused on
achieving correctness but lack performance and scalability [12].

Volatile concurrent data structures typically satisfy the correct-
ness condition of linearizability [25]. However, linearizability has
no notion of crashes or recovery so it cannot be directly applied
to persistent concurrent data structures. Izraelevitz et al. proposed

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

217

https://doi.org/10.1145/3490148.3538568
https://doi.org/10.1145/3490148.3538568

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Coccimiglio, Brown and Ravi

durable linearizability and buffered durable linearizability for defin-
ing correctness of persistent concurrent objects for failure models
in which all threads fail simultaneously (typically referred to as a
full-system crash) [26]. This work considers the same failure model
which reflects the reality of crashes caused by power failures. In-
formally, an object satisfies durable linearizability if following a
crash, the object state reflects a consistent operation subhistory
that includes all operations that completed prior to the crash. In
other words, durable linearizability allows at most 𝑛 operations to
be lost when a crash occurs for a system with 𝑛 threads (specifically,
a subset of the operations in progress when the crash occurs).

An object that satisfies durable linearizability also satisfies the
weaker buffered durable linearizability. Intuitively, buffered durable
linearizability requires that following a crash, the object state re-
flects a prefix of the operations that completed before the crash. This
means that a buffered durable implementation does not necessarily
bound the number of operations that can be lost as a result of a crash.
Recent work has favored durable linearizability as the correctness
condition for persistent concurrent data structures [7, 11, 12, 14, 18–
20, 34, 36]. Relatively few papers have explored the question of
whether the relaxed constraints of buffered durable linearizability
can be exploited to improve performance (e.g., [30, 35]).
Contributions. In this work we present PREP-UC, a PUC based
on the Node Replication algorithm of Calciu et al. [4]. PREP-UC
utilizes logging along with two persistence-only replicas of the
underlying sequential object which are periodically persisted to
ensure that the data structure can be recovered following a system
crash. We provide both durable linearizable and buffered durable
linearizable implementations of PREP-UC. The node replication UC
is specifically designed for non-uniform memory access (NUMA)
systems. PREP-UC preserves this NUMA-awareness while guar-
anteeing persistence. We perform an empirical evaluation of our
implementations, comparing them to CX-PUC of Correia et al. [12].
We demonstrate that a PUC can achieve significantly better perfor-
mance with a buffered durable linearizable implementation while
still guaranteeing an upper bound on the number of operations that
can be lost in the event of a crash.

2 BACKGROUND
First, we review the definitions and properties of durable lineariz-
ability and buffered durable linearizability. We then describe some
practical details relating to the current implementation of NVM in
real hardware. We also present an overview of related work.

2.1 Durable vs. Buffered Durable Linearizability
Durable linearizability essentially defines how to apply linearizabil-
ity for models where full system crashes are possible. Intuitively it
requires that any operation that completed before a crash will be
reflected in the state of the object after recovery. This also requires
that operations are made persistent at some point before the op-
eration completes. Durable linearizability is a local property [26].
One consequence of this is that durable linearizable objects can be
composed.

Buffered durable linearizability provides weaker guarantees. Fol-
lowing a system crash, it requires that the state of the object reflects
some prefix of the operations that completed prior to the crash.

Buffered durable linearizability does not require operations to be
persisted before they complete and is not a local property as a
result.

2.2 Persistence in Practice
Currently NVM exists as part of main memory while the processor
cache, registers and DRAM are still volatile. Whenever we perform
a write, it first takes effect in the volatile cache. Flush and fence
instructions are required to force data to be written back from the
cache to NVM. The processor may arbitrarily flush data to NVM
(without the programmer’s knowledge) as a result of the cache
coherence protocol. When this occurs we refer to it as a background
flush. Programmers are forced to utilize explicit flush and fence
instructions because they cannot rely on background flushes to
ensure that data is written back to NVM. On Intel platforms fences
correspond to the SFENCE instruction and there are four instruc-
tions that flush data from the cache; The CLFLUSH, CLFLUSHOPT,
and CLWB instructions each force a single cache line to be written
back to NVM. The CLFLUSH instruction blocks until the flush is
completed. CLFLUSHOPT and CLWB are asynchronous and must
be followed by an SFENCE to block until the flush is completed.
TheWBINVD instruction is a privileged instruction that invalidates
and writes back the entire cache (at all levels) of the processor that
executes it. WBVIND can be executed in user space with the help
of a kernel module and system call.

2.3 Related Work
PUCs.Cohen et al. presented theOrder NowLinearize Later (ONLL)
PUC [7]. ONLL is lock-free. It relies on a shared global lock-free
volatile queue and per thread persistent logs. The global queue
represents the state of the underlying object in the form of the
linearization order of all update operations that have ever been
applied on the object. Each entry in one of the persistent logs
stores up to 𝑛 operations (including their arguments) and a unique
index representing the linearization order of the first operation
in the entry. A notable quality of ONLL is that it produces an
implementation in which read-only operations do not flush or fence.
An update operation is added to the global queue before it is added
to the thread’s persistent log along with any previous operations
that are not yet guaranteed to be persistent.

Correia et al. presented CX-PUC [12] which is based on CX-
UC by the same authors [13]. CX-UC utilizes 2𝑛 replicas of the
underlying sequential data structure and maintains a pointer to the
most up-to-date replica. Update operations are added to a shared
global queue which establishes the linearization order of update
operations. Once an update is added to the queue the thread that
invoked the update will lock one of the 2𝑛 replicas. The thread then
brings the replica up-to-date by applying all update operations up
to and including the operation that it invoked. After applying the
update the thread will attempt to declare the current replica as the
most up-to-date replica via a CAS. At any point in time, only one
thread can have write access to a replica but many threads can have
read access. Concurrent access to a replica is managed by a strong
try reader-writer lock. To guarantee durable linearizability CX-PUC
must persist all 2𝑛 replicas since it must recover the most up-to-date
replica which can be any of the 2𝑛 replicas. Moreover, the entire

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

218

PREP-UC: A Practical Replicated Persistent Universal Construction SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

replica must be persisted after applying a single update operation
which is very expensive. CX-PUC requires that the underlying
sequential data structure utilizes a persistent allocator provided
by the PUC which often requires modifications to the sequential
implementation.
Transforms. Some researchers have proposed transforms or recipes
which provide rules and mechanisms for more adding persistence
to existing objects. The most well known of these is the transform
described by Izraelevitz et al. [26]. This transform was designed
for a release consistency memory model and requires adding a sig-
nificant number of fence instructions; one fence per store-release
and load-acquire and two fences per CAS. This amount of fenc-
ing is known to be excessive. Similarly to ONLL, PRONTO from
Memaripour et al. utilizes a form of operation logging for update op-
erations to achieve durable linearizable objects [29]. Unlike ONLL,
PRONTO uses a background thread to asynchronously log an up-
date operation and its arguments which doubles the maximum
number of concurrent threads. The Mirror transform from Fried-
man et al. keeps a volatile replica of every persistent variable and
uses specialized implementations for reads, writes, CASs and fetch-
and-adds [20]. The FliT transform fromWei et al. relies on a custom
persist and associates a counter with every persist variable which
is used to decide when to flush and fence [34]. The custom type is
used to instrument reads and writes. FliT provides durable lineariz-
ability. Montange relies a custom persistent memory allocator and
an epoch based approach to achieve buffered durable linearizability
[35]. Wang et al. presented NAP, an approach that converts an
existing concurrent persistent memory index into a NUMA aware
persistent memory index [32]. NAP primarily focuses on providing
efficient accesses to items when the access pattern is Zipfian.
Transactional Memory. Unlike PUCs persistent transactional
memory (PTM) approaches must interpose reads and writes. There
are many existing PTMs: NV-heaps [5], RedoPTM, CX-PTM [12],
Mnemosyne [31], Romulus [11], DudeTM [28], DHTM [27], PHyTM
[2] and PMDK [10]. All of these works are software TMs except
for PHyTM which is a hybrid TM. Similar to the PUCs that we pre-
viously described, these PTMs rely on techniques such as logging
(both undo and redo logging), data replication and custom mem-
ory management mechanisms/allocators. In general, these PTMs
typically perform better compared to PUCs however TMs require
compiler support or require the programmer to instrument reads
and writes, which is a significant amount of work.

3 NODE REPLICATION
PREP-UC is based on the node replication universal construction
(NR-UC) of Calciu et al. [4]. In this section we provide an overview
of node replication. NR-UC minimizes cross socket memory ac-
cesses and communication for NUMA systems by replicating the
underlying sequential data structure on each NUMA node. As a
result, a system with 𝑁 NUMA nodes requires 𝑁 replicas. Each
replica is protected by a trylock and a reader-writer lock.

Across NUMA nodes, threads communicate via a shared global
log. The log is implemented as a circular buffer. An index called
logTail tracks the next available empty entry in the log. The log
stores update operations and their respective arguments which
must be applied to every replica. Each log entry also stores a flag

Index Name Scope Meaning

localTail Per Replica Last update applied
to the local replica

completedTail Global Last update applied
to any replica

logTail Global Last log entry
Table 1: Summary of the different indexes used in NR-UC

that we refer to as the emptyBit which denotes whether the entry
is full. The emptyBit of a log entry is flipped after a new operation
and its arguments are written to the log entry. In an infinite log an
empty log entry always has an emptyBit equal to zero. For a finite
log, the first time that the log wraps around the meaning of the
emptyBit changes so that 1 means empty and 0 means full. Each
time the log wraps around the parity of the emptyBit’s meaning
flips. The emptyBit allows log entries to be reused and ensures that
a thread will never execute an update operation with incomplete
or stale arguments.

Each replica has a localTail index which points to the log entry
up to which the replica has been updated. A thread can reserve log
entries by atomically updating the logTail index via a compare-and-
swap (CAS). At any point during an execution at most one thread
per replica will contend on updating the logTail (not necessarily the
same thread each time). The node replication UC also keeps track of
the completedTail index which indicates the log entry after which
the entries have not yet been applied to any replica. Note that while
the log itself is finite, the various index variables (logTail, localTail,
and completedTail) are all monotonically increasing. When the log
wraps we get the log entry corresponding to the particular index,
by computing the value index mod the log size.

Within a single NUMA node threads coordinate using flat com-
bining, a technique that was originally presented in [21]. Flat com-
bining relies on batching update operations. A batch consists of
update operations invoked by threads on the NUMA node cor-
responding to the local replica. Each thread on the NUMA node
has its own slot in the batch. The replica also contains an array
of responses for each operation in the batch. These responses are
initially empty. Each thread on the node can add an update oper-
ation to a local batch. A single thread known as the combiner is
responsible for adding the operations in the local batch to the global
log and applying the operations in the batch to the local replica. A
thread becomes the combiner by claiming the trylock of the local
replica. For this reason, the trylock is referred to as the combiner
lock.

When a thread wants to perform an update operation it will first
add its operation to the batch local to the replica corresponding to
the NUMA node on which the thread is running. Next the thread
will attempt to claim the combiner lock. If the thread successfully
installs itself as the combiner it will then reserve enough log entries
to append all operations in the batch to the log by modifying the
logTail. After updating the logTail, the combiner will write its batch
into the log. Next the combiner will claim the reader-writer lock
in write mode. The combiner will then bring the local replica up-
to-date by performing any pending operations up to the previous
logTail, and update the localTail of the replica to the new logTail.

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

219

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Coccimiglio, Brown and Ravi

Next the combiner will attempt to update the completedTail index
to the localTail of the replica via CAS. The combiner then applies
all of the updates in its batch to the local replica and updates the
responses for the completed operations in the batch. Finally the
combiner will release the reader-writer lock and the combiner lock.
If a thread failed to claim the combiner lock it will be blocked
until the combiner lock is released or the response of the update
operation invoked by the thread is updated to a non-empty value.
Threads executing read-only operations claim the reader-writer
lock in read mode and are blocked until the localTail of the replica
is greater than or equal to the completedTail. This is necessary to
ensure that the response of the read-only operation reflects the
effects of all completed update operations.

A user interacts with NR-UC via a procedure called ExecuteCon-
current which takes, as its arguments, the name of an operation
and arguments to be passed to that operation. ExecuteConcurrent
performs the operation on the underlying sequential data structure
and returns the result of completing that operation. The user must
also provide a mechanism for ExecuteConcurrent to determine if an
operation is read-only.

In practice it is typical for threads to be bound to unique pro-
cessors such that there is a fixed mapping of threads to replicas.
One could also imagine a mechanism wherein threads could detect
the NUMA node that the thread is currently running on rather
than pinning threads to specific processors. Calciu et al. utilized
the former approach of binding threads to specific processors.

4 PREP-UC: DESIGN DECISIONS
In this section we provide an overview of PREP-UC, which is based
on the node replication UC (NR-UC) of Calciu et al. [4].

4.1 Extending Node Replication for Persistence
NR-UC has two main design features that make it a good candidate
for extension into a PUC. First, NR-UC already maintains a log of
all update operations and their arguments. Moreover, the use of
batching and flat combining reduces overhead and contention on
the log which is beneficial if we want to persist the log. Second, we
know how up-to-date each of the 𝑁 replicas are based on their lo-
calTails which allows us to think of any single replica as a snapshot
of the data structure.

Storing the log in persistent memory is a natural first step to-
wards achieving persistence, however, unless we allow for an infi-
nite log (and, correspondingly, accept that we will need to invoke
unboundedly many operations to recover after a crash), it is not
sufficient to persist only the log. To limit the size of the persistent
log, one might persist a replica, which could then serve as a sort of
checkpoint from which the log can begin. Of course, extending NR-
UC into a correct and efficient PUC is not as simple as just storing
the log and a replica in persistent memory. We will now discuss
three key ideas of PREP-UC. In particular we will describe how we
go about persisting the operation log, which replicas we persist,
and how we persist consistent replicas without instrumenting reads,
writes and memory (de)allocations.
Operation Log. With regards to persisting the log, we cannot
assume that a log entry fits into a single cache line. Moreover,
we might require multiple writes to store the operation and its

arguments into a log entry. For this reason we must ensure that
we cannot recover an empty or partially full log entry following a
crash.

Recall that NR-UC utilizes a Boolean flag (which we call the
emptyBit) to indicate whether a log entry is full or not. This flag is
updated after the operation and its arguments are written into the
log entry. When adding new entries to the log we first write the
arguments of the operation followed by the operation in the form
of a function pointer. To minimize the number of fences required
to persist this data, when a combiner thread appends a batch of
updates to the log, it will first write the arguments of every update
in the batch followed by the operations, asynchronously flushing
each of the modified cache lines. After all operations and their
arguments are written into the log a single fence is executed. Next,
for each entry that the combiner wrote, it will set the emptyBit to
the appropriate value indicating that the log entry is full.

Since we also plan to persist one or more replicas, following a
crash, we need to know which log entries must be applied to bring
the recovered replicas back up-to-date. For a particular replica the
relevant entries are the ones between the localTail of the replica and
the completedTail. For this reason we also persist the completedTail
index.
Persistent Replicas. In order to ensure that the shared operation
log remains finite, we must persist at least one of the 𝑁 replicas. At
any point in time, any one of the 𝑁 replicas could be the most up-to-
date replica. One could imagine a design that persists all 𝑁 replicas,
but doing so would incur significant overhead. For this reason we
would like to persist the fewest number of replicas required to
guarantee that we can recover the data structure following a crash.

Persisting only one of the𝑁 replicas is not sufficient to guarantee
correctness. This is because during an update operation, a replica
could enter an inconsistent state which could then be written back
to NVM as a result of a background flush. For example, suppose
that the underlying sequential object is a set implemented as a
search tree where the first step of an update operation is to save
a copy of the root pointer then set the root pointer to null. Now
suppose that a background flush occurs writing the null root pointer
to NVM. If a crash occurs at this point the entire data structure
is lost since we would recover only the null root pointer. This is
unavoidable since a PUC utilizes the underlying sequential object
like black box which means that a PUC cannot flush and fence
during an update because it does not know how the sequential
object performs updates. To prevent this problem we introduce two
dedicated persistent replicas and we ensure that only one of the two
replicas is being updated at any time. We keep track of which of
the two replicas was being modified such that following a crash
we know which of the persistent replicas was definitely not being
modified.

The reader might wonder why we introduce dedicated persis-
tence replicas rather than simply persisting two of the existing
replicas. In order to ensure that only one of the persistent repli-
cas is updated at a time, whenever a thread tries to update one
of the persistent replicas we would need to block updates to the
other persistent replica, potentially preventing all threads on the
corresponding NUMA node from making progress. Moreover, since
read-only operations require a replica to be up to date, read-only
operations could also be blocked.

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

220

PREP-UC: A Practical Replicated Persistent Universal Construction SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

To maintain the dedicated persistent replicas, we spawn an ad-
ditional persistence thread. Similarly to threads in NR-UC, we bind
persistence thread to a unique processor. The use of a dedicated per-
sistence thread ensures that we have complete control over when
the persistent replicas are updated without blocking operations
on an entire NUMA node. The persistence thread updates the two
persistent replicas in cycles such that only one of the two replicas
receives updates during a single update cycle. The persistent replica
that receives updates during the current cycle is designated the
active persistent replica and the other is designated the stable per-
sistent replica. The stable persistent replica remains in a quiescent
and consistent state in NVM while the active persistent replica is
being updated.

We periodically persist the active persistent replica in order to
persist a new checkpoint and swap the active and stable replicas.
This occurs when the log is close to being full. In the (hopefully rare)
case that the log becomes completely full before the persistence
thread can bring the active replica up-to-date, the volatile replicas
are prevented from adding new log entries until the active replica
is brought up-to-date. Otherwise we do not block updates to the
volatile replicas.

As in NR-UC, each worker thread (any thread other than the
persistence thread) only accesses one of the 𝑁 volatile replicas. The
worker threads operating on the volatile replicas do not need to
access the persistent replicas, but they do need to know about the
localTails of the two persistent replicas in order to correctly reuse
log entries when the log (a circular buffer) wraps around.
Flushing Persistent Replicas. At the end of an update cycle the
persistence thread must write the active persistent replica back to
NVM. The main challenge arises from the fact that a PUC cannot
interpose reads and writes (because it cannot modify the code for
the sequential object). Existing research has addressed the problem
of persisting data without the ability to interpose reads and writes
through the use of custom memory management mechanisms. Cru-
cially, these approaches rely on isolating the replicas in specific
regions of memory of some predetermined size. CX-PUC utilized
a custom allocator so they could track the locations and sizes of
memory regions containing the persistent replicas. They flush an
entire replica each time it changes. PRONTO used custom page-
fault handlers to allow flushing individual pages instead of an entire
replica. When we want to persist a replica we must flush all of its
addresses that have changed since they were last flushed. If we
could instrument writes then we could track what addresses were
modified and only flush those. Since we cannot instrument writes,
we can flush all addresses like CX-PUC, flush pages like PRONTO
or flush the cache. We choose to flush the cache since it contains all
of the persistent replicas’ modified addresses. There is a trade off, if
the data structure is very small and fits in the cache then flushing
the cache is wasteful but when the data structure is large it is better
to flush the cache. To flush the cache we utilize the same approach
as Cohen et al. [6] which relies on the WBINVD instruction. The
WBINVD instruction invalidates the entire cache hierarchy of the
executing processor and writes modified data back to main mem-
ory. Processors on the same node as the executing processor are
blocked until the write-back and invalidate operation is completed.
We refer the reader to 8.7.13.1 of [8] for further details regarding the
WBINVD instruction. Since only one thread accesses the persistent

replicas we only need to execute the WBINVD instruction on one
processor.
PREP-UC Interface. Users interact with PREP-UC utilizing the
same interface as NR-UC, specifically via a procedure called Exe-
cuteConcurrent. As in NR-UC, the ExecuteConcurrent procedure
utilized by PREP-UC requires that the user provides the operation
to be executed on the underlying sequential data structure, the argu-
ments to that operation and a means to determine if the operation
is read-only. For the latter, we simply utilize an optional Boolean
argument which if true, designates that the operation is read-only.
There are some implementation related details regarding how the
user can provide an operation to PREP-UC which we discuss in
detail in § 5.

4.2 Choice of Correctness Condition
We have already mentioned the different requirements of buffered
durable linearizability compared to durable linearizability. Most
importantly, durable linearizability requires all operations to be
persisted before they are completed whereas buffered durable lin-
earizability allows operations to be persisted at some point after
the operation is completed.

PREP-UC does not change the point at which an operation is
completed compared to NR-UC. A thread can only return from an
update operation after the operation is applied to the local replica
and the response of the operation is stored. This implies the fol-
lowing three facts regarding completed operations: 1) any update
operation that has been appended to the log but not applied to the
local replica of the thread that invoked the update is incomplete
(even if it has been applied to other replicas), 2) all completed update
operations correspond to log entries that precede the completed-
Tail index and 3) the response of a read-only operation will always
reflect a snapshot of the data structure that is up-to-date with the
completedTail. These facts motivated our decision to persist the
operation log, two persistent replicas and the completedTail all
of which contribute to the satisfaction of durable linearizability
without requiring an infinite log.

Durable linearizability guarantees that in the worst case, at most
one operation per thread can be lost as a result of a crash. For
systems with a large number of concurrent threads the number
of operations that can be lost due to a crash is already relatively
high. Moreover, we pay a significant performance cost to guarantee
durable linearizability in terms of extra flushes and fences as well
extra synchronization between threads. In our case, durable lin-
earizability forces us to persist the operation log and completedTail.
This is a performance concern because the operation log is a global
object shared between all NUMA nodes. Due to the fact that the
read and write latency of NVM is higher than DRAM, placing the
log in NVM increases the latency of update operations and placing
the completedTail in NVM increases the latency of both update and
read-only operations.

A buffered durable linearizable implementation could avoid per-
sisting both the operation log and the completedTail index which
would lower the overhead related to persistence. Of course, with a
buffered durable linearizable implementation we could lose many
operations as a result of a crash. Our buffered durable linearizable
implementation of PREP-UC still utilizes the persistence thread and

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

221

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Coccimiglio, Brown and Ravi

two persistent replicas. The number of operations that can be lost
after a crash in the worst case depends on how frequently we per-
sist one of the persistent replicas. If we persist the active persistent
replica after applying 𝜖 operations then the number of completed
operations that can be lost after a single crash is bounded in terms
of 𝜖 . Specifically, a single crash would result in at most 𝜖 + 𝛽 − 1
operations being lost where 𝛽 is the batch size which is the same
as the number of threads per NUMA node. We provide more detail
on this bound in § 5.1.

We argue that for some applications a buffered durable lineariz-
able PUC can be favourable compared to a durable linearizable
PUC. In § 6 we demonstrate that the buffered durable linearizable
implementation of PREP-UC significantly outperforms the durable
linearizable version even when the value of 𝜖 is fairly small.
Correctness. The shared log stores update operations. The order
that operations were added to the log is precisely the linearization
order of the operations. The durability order, i.e., the order in which
operations are persisted, will be a prefix of the linearization order
since we can only apply an update to a persistent replica once it
has been added to the log, at which point its linearization order is
fixed. Durable linearizability requires that all completed operations
are recovered after a crash. After a crash, the durable linearizable
implementation of PREP-UC recovers the entire contents of the
log. An update operation is completed only after it is applied to
the local replica corresponding to the NUMA node of the process
that invoked the update. Since updates can only be applied to a
replica after they are added to the log, recovering the entire contents
of the log guarantees that all completed operations are recovered
following a crash. Buffered durable linearizability requires that
a prefix of the completed operations are recovered after a crash.
After a crash, the buffered durable linearizable implementation of
PREP-UC recovers a prefix of the log which is a prefix of completed
operations. In § 5 we discuss worst case executions in terms of
the number of operations that may be lost after a crash for both
implementations of PREP-UC.
Liveness. PREP-UC, like NR-UC, relies on blocking through the
use of locks, specifically trylocks and reader-writer locks. Our im-
plementation of PREP-UC is deadlock-free however, there are two
simple changes that one could make in order to achieve starvation-
freedom. To understand the liveness guarantees of PREP-UCwe can
examine the points at which worker threads contend on resources.

During update operations in PREP-UC, worker threads add their
operation to the batch associated with the local replica. Each worker
thread has its own slot in the batch thus adding an operation to the
batch does not require any synchronization. Worker threads within
each node contend on the trylock to determine which thread on the
node will become the combiner. Multiple combiners contend on the
shared log, specifically, they must each execute a CAS to reserve
log entries. An adversarial scheduler could schedule threads such
that one thread never completes this CAS. Replacing the CAS with
a fair lock would allow for starvation-free update operations. In
practice we utilize a finite log. A log entry can only be reused once it
has been applied to every replicas. Consequently, slow replicas can
become a progress problem. Our implementation utilizes a simple
helping mechanism which ensures that slow replicas do not cause
deadlock. We discuss this in greater detail in § 5.

1 struct Operation:
2 void* op = null
3 void* args[MAX_ARGS] = null
4 uint argCount = 0

6 struct LogEntry :
7 bool emptyBit = 0
8 Operation op

10 class Replica :
11 DataStructure* ds
12 Operation batch[𝛽]
13 void* responses[𝛽]
14 uint localTail = 0
15 TryLock combinerLock
16 RWLock rwLock

18 class PReplica :
19 DataStructure* ds
20 uint localTail = 0

22 class PREP -UC :
23 LogEntry d_sharedLog[LOG_SIZE]
24 Replica replias[N]
25 PReplica p_replicas [2]
26 uint logMin = LOG_SIZE - 1
27 uint logTail = 0
28 uint d_completedTail = 0
29 uint p_activePReplica = 0
30 uint flushBoundary = 𝜖

Algorithm 1: PREP-UC Data Types. Variables that are always
allocated from NVM are prefixed with p_. Variables that
are allocated from NVM only for the durable linearizable
implementation are prefixed d_. N is the number of NUMA
nodes. 𝛽 is batch size which is the same as the number of
threads per NUMA node

During read-only operations, worker threads contend on the
reader-writer lock of the local replica. The worker thread must
claim the lock in read mode. An adversarial scheduler could sched-
ule threads such that update operations are able to infinitely hold
the reader-writer lock in write mode starving a thread attempting
to claim it in read mode. To allow for starvation-free read-only op-
erations we would simply use a starvation-free reader-write lock.

5 PREP-UC: IMPLEMENTATION DETAILS
In this section we will present the implementation details of PREP-
UC. We will discuss both the buffered durable linearizable imple-
mentation of PREP-UC and the durable linearizable implementation.
To better differentiate between the two implementations we will
refer to the durable linearizable implementation of our PUC as
PREP-Durable and the buffered durable linearizable implementa-
tion as PREP-Buffered. We will continue to use PREP-UC to refer
to both implementations. Since the buffered durable linearizable
implementation is the same as the durable linearizable implementa-
tion with some mechanisms removed we will begin by presenting
the former.

5.1 Buffered Durable Linearizable
PREP-Buffered

Algorithm 1 shows the data types of variables utilized by PREP-
UC. The two variables prefixed with p_, namely the p_replicas

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

222

PREP-UC: A Practical Replicated Persistent Universal Construction SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

array and p_activePRepica are allocated from NVM. The p_replica
array corresponds to the two persistent replicas. The PReplica class
has fewer data members compared to the Replica class. Since the
persistent replicas are only accessed by the persistence thread there
is no need for the persistence thread to utilize flat combining. More
specifically, the persistent replicas do not need to be locked and
they have no use for the batch and response arrays. As with the
volatile replicas, each persistent replica has a pointer to its copy of
the sequential data structure and a localTail.

Each persistent replica, including the replica’s copy of the se-
quential data structure, must be allocated from NVM. Allocating
NVM requires the use of a persistent allocator [1, 15]. A persistent al-
locator services dynamic memory allocations via memory mapped
files backed by NVM (commonly referred to as persistent memory
files). Minimally, a PUC requires a persistent allocator that guar-
antees the following: 1) the allocator’s operations do not corrupt
allocated objects in the event of a crash and 2) after a crash allocated
objects remain at the same virtual address. The second requirement
ensures that pointers utilized by the sequential data structure are
not invalidated after a crash. In practice this requirement would be
fulfilled by requiring that the persistent memory file used by the
PUC is always mapped to the same virtual address.

The underlying sequential implementation may perform dy-
namic memory allocations. In the case of the persistent replicas,
we must ensure that the allocations performed by the sequential
implementation utilize a persistent allocator. Unfortunately, we
cannot globally override the system allocator (for example using
LD_PRELOAD) with a persistent allocator because this would cause
all objects to be allocated from NVM. We also cannot provide a
persistent allocator to the sequential implementation since this
would require modifying the sequential code.

To avoid modifying the sequential implementation we instead
encapsulate the standard memory allocation functions in a wrapper
that allows a thread to swap between the system allocator and a per-
sistent allocator. We utilize a thread local variable which acts as a
flag to enable/disable the persistent memory allocator. A thread can
locally enable the persistent allloctor by setting the flag. Doing so
ensures that all allocations by the thread will utilize the persistent
allocator. When the thread wants to disable the persistent allocator
and return to using the system allocator it simply reverts the flag
back to its initial state. With this mechanism in place, the persis-
tence thread can set the flag to enable the persistent alloctor before
calling any methods on the sequential object. Once control returns
to PREP-UC the persistence thread swaps back to the volatile al-
locator. Worker threads operating on the volatile replicas never
enable the persistent allocator. The mechanism for swapping the
allocator is built into PREP-UC and does not require modifications
to the sequential implementation or intervention from the user.
The sequential implementation cannot dynamically load its own
allocator, however, if the sequential implementation wants to use a
custom allocator it can do so by statically linking the allocator.

Algorithm 2 shows the function executed by the persistence
thread. The function utilizes a single infinite loop. In each iteration
of the loop the persistence thread will attempt to update the active
persistent replica and persist it if necessary. The persistence thread
first utilizes the integer variable p_activePReplica to identify the
active persistent replica. The p_activePReplica variable is allocated

1 def UpdatePersistentReplicas () :
2 while true :
3 auto rep = p_replicas[p_activePReplica]
4 auto tail = d_completedTail
5 if tail <= rep.localTail :
6 continue
7 UpdateFromLog(tail , rep)
8 rep.localTail = tail
9 if flushBoundary <= tail :
10 WBINVD ()
11 SFENCE ()
12 flushBoundary += 𝜖

13 p_activePReplica = !p_activePReplica
14 CLFLUSH(p_activePReplica)

Algorithm 2: UpdatePersistentReplicas function executed by
the persistence thread.

from NVM and is explicitly persisted to ensure that it can be re-
covered and used to identify the active persistent replica following
a crash. Initially the p_activePReplica variable is set to 0 which
corresponds to the first of the two persistent replicas.

Next, the persistence thread reads the completedTail index and
brings the active persistent replica up-to-date with the complet-
edTail via the UpdateFromLog function. The flushBoundary index
tracks the next log entry after which the active persistent replica
must be persisted. Initially the flushBoundary is 𝜖 where 𝜖 is pro-
vided as input at compile time. Generally, we want to wait until
the log is close to being full to flush the active persistent replica. A
smaller 𝜖 means that we will swap between the active and stable
persistent replicas more frequently which requires more writes to
NVM. In § 6 we discuss some reasonable values for 𝜖 .

When the persistence thread finds that the completedTail is
greater than or equal to the flushBoundary it will stop updating
the active persistent replica then persist it. To persist the active
persistent replica we execute a WBINVD instruction via a system
call then execute an SFENCE instruction. This will write the active
persistent replica out of the volatile cache and back to NVM. Next
we advance the flushBoundary index, increasing it by 𝜖 . Finally
the persistence thread will swap the active and stable persistent
replicas by modifying and flushing the p_activePReplica variable.
In the next iteration of the loop a new update cycle will begin and
the persistence thread will begin updating the new active persistent
replica.

Algorithm 4 shows the function utilized by worker threads to
reserve entries in the shared log. A thread is blocked from reserving
new log entries if the flushBoundary is less than the logTail. When
the flushBoundary is less than the logTail this means that the active
persistent replica must be written back to persistent memory. In
this case we cannot allow new operations to be added to the log
otherwise, the number of operations that can be lost after a single
crash occurs would vary depending on the speed of the persistence
thread. Note that log entries contain the emptyBit and an opera-
tion. In the pseudocode we represent the operation as a function
pointer, the number of arguments accepted by the function and an
array of arguments. We require access to this information primarily
for the durable linearizable implementation. The buffered durable
linearizable implementation can (and does) make use of high level
language features such the std::function in C++ to encapsulate this
information.

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

223

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Coccimiglio, Brown and Ravi

Reusing log entries and logMin. Algorithm 3 shows the Upda-
teOrWaitOnLogMin function. This function is necessary to allow
for a finite log since it ensures that a log entry is never overwritten
until all replicas have applied the entry. The bulk of the Update-
OrWaitOnLogMin function implements the algorithm described
in section 5.6 of [4] which primarily involves updating the logMin
index. The logMin index points to the log entry prior to which
all other log entries have been applied to every replica meaning
they can be safely reused. The logMin index is only updated once a
thread reserves the log entry at the lowMark index which is equiva-
lent to the 𝑙𝑜𝑔𝑀𝑖𝑛 − 𝑏𝑒𝑡𝑎. The lowMark is defined in terms of 𝑏𝑒𝑡𝑎
because 𝑏𝑒𝑡𝑎 is the maximum number of log entries that can be
reserved with a single update to the logTail.

When a combiner thread reserves the log entry at the lowMark
it must scan the localTails of every replica and updates the logMin
index to point to the same log entry as the lowest localTail of all
replicas. In our implementation, this is accomplished by setting the
logMin equal to the lowest localTail plus the log size minus 1. This
approach requires that 𝜖 must not be greater than the 𝐿𝑂𝐺_𝑆𝐼𝑍𝐸 −
𝛽 − 1.

The addition of the two persistent replicas does not add signifi-
cant complexity to this function. If a combiner needs to update the
logMin then it must check the localTails of both persistent replicas.
We take some liberties when portraying this in the pesudocode by
abusing the plus operator on arrays. In practice, all replicas can be
stored in a single array or a helper function can be used to iterate
over all replicas. The former is convenient for simplicity but adds
some minor overhead.

Due to the fact that only one of the persistent replicas is updated
at a time, it is likely that the stable persistent replica will be far
behind the logTail. This is especially true if 𝜖 is large since a large
𝜖 means that the stable and active persistent replicas will swap
infrequently. This can be problematic if the lowMark happens to
occur before the next flush boundary since this would mean that
the combiner attempting to update the logMin will be blocked and
the persistence thread will also eventually be blocked due to the
fact that it must apply the operations that the blocked combiner
has not yet written to the log. Note that while this is more likely to
occur with the persistent replicas since they will be updated less
frequently and less quickly compared to the volatile replicas, the
same problem can occur in NR-UC with a slow volatile replica.

Unfortunately, Calciu et al were somewhat vague when describ-
ing the way that they reuse log entries with regards to ensuring
that a slow thread does not cause deadlock. To avoid this problem
we simply implement a mechanism that allows a combiner thread
that is blocked from updating the logMin to signal that the replica
causing the block needs to be updated. For the persistent replicas
this is simply done by reducing the flushBoundary. For the volatile
replicas we use an array of booleans where each replica has a dedi-
cated slot in the array. While a combiner thread is waiting for the
logMin to be updated it will check this array to see if its local replica
needs to be updated. If the slot corresponding to the combiner’s
local replica is true then the combiner will bring its local replica
up to date with the completedTail index. With this mechanism in
place deadlock caused by a slow replica is avoided.
Recovery Procedure. Following a crash, we must recover the
stable persistent replica. At any point in time NVM contains the

1 def UpdateOrWaitOnLogMin(newTail) :
2 uint lowMark = logMin - 𝛽

3 while lowMark < newTail :
4 uint lowest = ∞
5 uint repID = 0
6 for each rep in replicas + p_replicas :
7 uint lt = rep.localTail
8 repID++
9 if lt < lowest :
10 lowest = lt
11 if lowest + LOG_SIZE - 1 == logMin :
12 if repID >= N :
13 if p_activePReplica != repID
14 and flushBoundary >= lowMark :
15 flushBoundary = lowMark - 1
16 else :
17 updateReplicaNow[repID] = true
18 while replicas[repID]. localTail == lowest :
19 # Wait
20 updateReplicaNow[repID] = false
21 continue
22 logMin = lowest + LOG_SIZE - 1
23 SFENCE ()
24 lowMark = logMin - 𝛽

25 else :
26 while lowMark < newTail:
27 if updateReplicaNow[repID]:
28 uint repID = getLocalReplicaID
29 rep = replicas[repID]
30 rep.rwLock.writeLock ()
31 UpdateFromLog(completedTail , rep)
32 rep.rwLock.writeUnlock ()
33 updateReplicaNow[repID] = false
34 lowMark = logMin - 𝛽

Algorithm 3: UpdateOrWaitOnLogMin function responsible
for allowing log entries to be reused.

1 def ReserveLogEntries(replica , numEnts) :
2 while true :
3 uint tail = logTail
4 uint newTail = tail + numEnts
5 while flushBoundary < tail :
6 # Block until stable persistent
7 # replica is up-to-date with tail
8 if CAS(logTail , tail , newTail) :
9 UpdateOrWaitOnLogMin(newTail)
10 return tail

Algorithm 4: ResLogEntries function incorporating blocking
on the flushBoundary.

p_replicas array and the p_activePReplica integer. During recovery
we utilize p_activePReplica to identify which replica was the sta-
ble persistent replica prior to the crash. In order to safely resume
execution, instead of creating a new copy of the sequential object
for each volatile replica, we instantiate all 𝑁 volatile replicas as
copies of the stable persistent replica. We do the same for the other
persistent replica. All other variables will also be set to their initial
values. The localTails of all replicas will be 0, the log will be empty,
both the logTail and completedTail will be 0 and the flushBoundary
will be 𝜖 . At this point we can spawn a new persistence thread then
worker threads can begin to execute operations on the object.
Worst Case Execution. For any single crash event PREP-Buffered
guarantees that at most 𝜖 + 𝛽 − 1 completed update operations
will be lost. It is easy to see that 𝜖 operations can be lost after a
crash since we only persist a replica after applying at least 𝜖 update

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

224

PREP-UC: A Practical Replicated Persistent Universal Construction SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

operations. 𝛽 represents the maximum batch size which is the same
as the number of threads per NUMA node. This also means that
𝛽 is the maximum number of log entries that a combiner thread
can reserve. If the logTail is 𝜖 − 1 then neither persistent replica
has been persisted. The active persistent replica may or may not
be up-to-date with the logTail. A thread operating on one of the
volatile replicas can add at most 𝛽 new update operations to the log.
All 𝛽 update operations could complete before the active persistent
replica is updated and persisted. If a crash occurs at this point then
the stable persistent replica that we recover will be empty since it
was never updated. In this case the original 𝜖 − 1 operations are lost
along with the 𝛽 operations that were last added to the log. Since
the log returns to empty after a crash, for 𝑐 crash events at most
𝑐 (𝜖 + 𝛽 − 1) completed update operations will be lost.

5.2 Durable Linearizable PREP-Durable
The durable linearizable implementation must ensure that all op-
erations are persisted before they complete. To achieve this we
build on top of the buffered durable linearizable implementation
by persisting the log and the completedTail index along with the
two persistent replicas. In practice there is some nuance related to
persisting the log. A log entry contains a pointer to the function
that carries out the update operation along with its arguments.
High level language features, such as std::function in C++, allow
for more easily storing and executing functions with different sig-
natures. Unfortunately, these features were not designed to be used
with NVM. An instance of the std::function in C++ that we per-
sisted would no longer usable following a crash. For this reason we
instead persist the raw function pointers which are valid follow-
ing a crash assuming the functions were not dynamically loaded
at runtime. This makes calling the function more difficult since
we cannot store information about the function signature. In this
case, we rely on an Execute method provided by the underlying
sequential implementation which accepts a function pointer and
its arguments and performs the appropriate function call. This was
the same approach utilized Calicu et al. for NR-UC, although they
could have used a wrapper since NR-UC is not persistent. The Exe-
cute function is essentially a switch statement where we have one
case per public method. When there are few public methods this is
actually faster than wrappers like std::function. While slightly less
convenient, this requires no more work compared to wrappers like
std::function which still require at least one line of code to wrap the
function call. In practice the Execute function could be generated
via preprocessor macros or written by the programmer.

Persisting the completedTail is fairly straightforward. The com-
peltedTail is updated via a CAS. If a thread successfully updates
the completedTail it must then persist it. Since the completedTail is
monotonically increasing it is sufficient to perform a CLFLUSH in-
struction on the address of d_completedTail after the CAS. We can
reduce the number of CLFLUSH instruction performed by marking
the completedTail to indicate whether or not it has been persisted, a
technique that has been utilized in existing hand-crafted persistent
data structures [14, 33].
Recovery Procedure. As with the buffered durable linearizable
implementation, the recovery procedure of PREP-Durable must
identify the stable persistent replica using the p_activePReplica

(a) Hashmap (b) Red-black tree (c) Priority queue

Figure 1: Throughput for volatile UCs: PREP-V (Volatile
PREP) and Global Lock (GL). Y-axis is ops/sec. X-axis is num-
ber of threads. (a) and (b) 90% read-only workload. 1 million
keys. (c) 100% update workload where workers execute pairs
of enqueue and dequeue operations.

variable. The next step of the recovery procedure is to instantiate
the active persistent replica as a copy of the stable persistent replica.
Once we have both persistent replicas, we update the active per-
sistent replica by applying all operations in the log corresponding
to non-empty log entries starting from the localTail of the stable
persistent replica up to the completedTail. After bringing the active
persistent replica up-to-date we persist it and swap the value of
p_activePReplica. At this point we can create the 𝑁 volatile repli-
cas as copies of the stable persistent replica. Finally, we empty
the log and set the localTails of every replica, the logTail and the
completedTail to 0.
Worst Case Execution. PREP-Durable ensures that all operations
are persisted before they complete. In the worst case at most 𝑛
pending update operations can be lost as a result of a crash where
𝑛 is the maximum number of worker threads.

6 EVALUATION
We implemented both PREP-Buffered and PREP-Durable in C++
and compared them against CX-PUC of Correia et al [12]. We test
the performance in terms of throughput, in operations per second,
of these PUCs across various workloads using several different
sequential data structures. We utilize the same benchmark as [3]
for conducting the tests.We ran the experiments on aNUMA system
with 2 Intel Xeon Gold 5220R 2.20GHz processors, each of which
has 24 cores and 48 hardware threads. The system has a 36608K
L3 cache, 1024K L2 cache, 64K L1 cache and 1.5TB of NVRAM.
The NVRAM modules installed on the system are Intel Optane
DCPMMs [9]. The code was compiled with GCC 9.3.0 with the
highest optimization level of -O3. In each test we prefill the data
structure to 50% capacity and begin performance measurements
after prefilling.

All experiments comparing CX-PUC and PREP-UC utilize the
same allocators, specifically jemalloc 5.0.1-25 for the volatile alloca-
tor and the same simple free-list based allocator used by Correia et
al. for the persistent memory allocator. All experiments start with
a freshly created 64GB persistent memory file (much larger than
necessary for these micro-benchmarks). For PREP-UC we utilize a
log size of 1 million for all experiments. We utilize at most 95 of the
96 available hardware threads as worker threads which ensures that
there is an available hardware thread for the persistence thread uti-
lized by PREP-UC. Every thread, including the persistence thread,

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

225

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Coccimiglio, Brown and Ravi
99
%
Re

ad
-o
nl
y

𝜖 = 100 𝜖 = 10000 𝜖 = 100 𝜖 = 10000

90
%
Re

ad
-o
nl
y

1%
Re

ad
-o
nl
y

(a) Resizable Hashmap (b) Red-black tree

Figure 2: Throughput for sets with 1 million keys. Y-axis is ops/sec. X-axis is number of threads.

is bound to a unique processor such that all available processors
on a NUMA node are utilized before utilizing processors on other
nodes. More specifically, experiments for up to 24 threads utilize
the available processors on a single node and 24 to 48 threads uti-
lize all available processors and hyper-threads on a single node;
49 to 72 threads and 72 to 96 threads do the same on the second
node. The results shown here are the average of 3 trials where each
trial lasts for 10 seconds. To compare with a familiar baseline, in
Figure 1 we show the results of using some volatile UCs, specifi-
cally PREP-V, our implementation of PREP-UC with all persistence
related code removed and a simple UC that protects a single copy
of the sequential data structure with a global lock.
Hashmap. Figure 2a shows the throughput for a resizable linked
list based hashmap with 1 million keys implemented via each of the
PUCs. In all workloads keys were accessed according to a uniform
distribution. As expected CX-PUC performs quite poorly for all
workloads. This is primarily due to the fact that CX-PUC must flush
the entire replica after each update operation and reads are also
executed on persistent replicas. By comparison both PREP-Durable
and PREP-Buffered perform significantly better. For the extremely
read-dominant workload PREP-Durable has similar performance
to PREP-Buffered and both scale well. For the other workloads
with more update operations we can see that the performance
difference between the two implementations is larger due to the
added overhead on update operations that results from persisting
the log. The first column of Figure 2a PREP-Buffered and PREP-
Durable used an 𝜖 of 100 which is extremely small and limits scaling

for update-heavy workloads. When 𝜖 is larger we scale well for all
workloads.
Red-black Tree. Figure 2b shows the throughput for a red-black
tree with 1 million keys implemented via each of the PUCs where
keys are accessed according to a uniform distribution. The ex-
periments with the red-black tree produce similar results to the
hashmap. CX-PUC performs poorly while PREP-Durable and PREP-
Buffered have similar performance due to the low value used for
𝜖 .
Effects of 𝜖. Columns one and three of Figure 2 PREP-UC used an
𝜖 of 100 which is extremely small. We can see that with this low
value for 𝜖 the performance of PREP-Durable is very close to the
performance of PREP-Buffered. This is expected since the WBINVD
instruction used to persist a replica is very expensive. As seen in
columns two and four of Figure 2, when 𝜖 is larger, for example
10000 which is only 1% of the log size, there is a significant increase
in throughput. Moreover, 𝜖 is large, the difference between PREP-
Durable and PREP-Buffered is much larger especially for workloads
with more update operations. Figure 3 shows how different values
of 𝜖 effect the throughput of PREP-UC for a hashmap.
Priority Queue. Figure 4 shows the throughput for a persistent
concurrent priority queue implemented via each of the PUCs. The
sequential implementation for this priority queue is the C++ stan-
dard library priority_queue.We prefill the priority queuewith 50000
items. Our experiments with the priority queue consisted of only
100% update workloads. To prevent major changes in the size of the
priority queue, every worker thread performs an enqueue followed

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

226

PREP-UC: A Practical Replicated Persistent Universal Construction SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

(a) 48 threads (b) 95 threads

Figure 3: PREP-UC throughput (ops/sec) for hashmap for
different values of 𝜖. 90% read-only workload 1 million keys.

(a) Average 50k items. 𝜖 = 1000 (b) Average 500k items. 𝜖 = 10000

Figure 4: Throughput for priority queue. Y-axis is ops/sec.
X-axis is number of threads. 100% update workload where
workers execute pairs of enqueue and dequeue operations.

(a) Average 500 items. 𝜖 = 10000 (b) Average 50k items. 𝜖 = 10000

Figure 5: Throughput for stack. Y-axis is ops/sec. X-axis is
number of threads. 100% update workload where workers
execute pairs of push and pop operations.

by a dequeue. In this case the size of the data structure is relatively
small. When 𝜖 is also small the difference in performance between
PREP-UC and CX-PUC is not as large compared to the hashmap
or red-black tree. When 𝜖 is larger PREP-Buffered significantly out
performs the other PUCs while PREP-Durable still significantly
outperforms CX-PUC. In practice if the data structure is very small
could flush the entire address space of a replica rather than using
WBINVD.
Stack. Figure 5 shows the throughput for a persistent concurrent
stack implemented via each of the PUCs. We prefill the stack with
500 items and as with the priority queue we utilize only 100%
workloads where worker threads perform a push followed by a
pop. When 𝜖 is large PREP-Buffered performs much better while
PREP-Durable still performs poorly. CX-PUC performs well in this
case and when 𝜖 is small it outperforms PREP-UC. The main reason
that PREP-UC does not perform as well for this case is the fact

(a) 90% Read-only 1million keys (b) 50% Read-only 1million keys

Figure 6: Throughput of PREP-UC Resizable Hashmap com-
pared to SOFT hashtable with 1k buckets (SOFT-1kB) and
SOFT hashtable with 10k buckets (SOFT-10kB) for different
thread counts. Y-axis is ops/sec. X-axis is number of threads.
𝜖 = 10000 (1% of the key range).

that the size of the data structure is extremely small. This allows
for better performance using the persistence strategy of CX-PUC,
which write-backs a specific address range. PREP-UC suffers from
the large overhead of the WBINVD instruction which must be
executed frequently when 𝜖 is small since the log fills quickly for
update only workloads.
PREP-UC versus Hand-Crafted Hashtable. To frame the per-
formance of PREP-UC relative to hand-crafted data structures we
compare the realizable hashmap implemented via PREP-UC against
the hashtable of Zuriel et al. Zuriel et al. implemented a hand-crafted
persistent concurrent hashtable utilizing their sets with an optimal
flushing technique (SOFT) [36]. The SOFT algorithm maintains two
copies of the data structures keys where each key is stored in both
persistent memory and volatile memory. SOFT persists only one
copy of the data structure keys along with some meta data which
is required to determine if the key was still in the data structure
prior to a crash. Read-only operations in SOFT do not perform any
flushes or fences. The SOFT hashtable has a fixed number of buckets
each of which is a persistent linked-list. The number of buckets can
obviously impact the performance of a non-resizable hashtable. We
compare PREP-UC against the SOFT hashtable using one thousand
buckets (SOFT-1kB in Figure 6) and the SOFT hashtable using ten
thousand buckets (SOFT-10kB in Figure 6).

For this experiment we utilized the same persistent memory
allocator that was used by SOFT for PREP-UC, specifically libvm-
malloc which is part of Intel’s Persistent Memory Development Kit
(PMDK) [10]. In Figure 6 we see that SOFT outperforms PREP-UC
especially for update-heavy workloads.

In general it is expected that a hand-crafted persistent concurrent
data structure should perform better compared to a PUC. There are
two important factors that contribute to the better performance
of SOFT over PREP-UC. Firstly and most importantly, an update
operation in SOFT (and any hand-crafted data structure) can easily
determine the exact memory words modified by the update which
must be written back to persistent memory. SOFT persists only
those modified memory words which are required to recover the
data structure following a crash. This is in contrast to PREP-UC
which relies on periodically executing the expensive WBINVD
instruction to write backmodifications made to the active persistent
replica. PREP-UC could not utilize the same persistence mechanism
as SOFT because PREP-UC views the sequential data structure as

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

227

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Coccimiglio, Brown and Ravi

a black box and therefore it cannot determine the exact memory
words modified by an update operation. Secondly, since SOFT does
not persist data structure links, it avoids any overhead that would be
caused by traversing and updating a data structure stored entirely
in persistent memory. The persistent replicas utilized by PREP-UC
are stored entirely in persistent memory.

7 CONCLUSION
In this work we presented PREP-UC, a PUC based on the node
replication UC [4]. We implemented two versions of PREP-UC
guaranteeing buffered durable linearizability, and durable lineariz-
ability, respectively. PREP-Buffered, bounds the number of opera-
tions that can be lost after a crash based on the input parameter 𝜖 .
We demonstrate that even when 𝜖 is small, our buffered durable
linearizable PUC out performs durable linearizable equivalents for
several different data structures and workloads.

ACKNOWLEDGMENTS
We thank the reviewers for their helpful comments and sugges-
tions. We also thank William Sigouin for his contributions to early
implementations of PREP-UC and we thank Pedro Ramalhete for
his insights that helped inspire this work.

This work was supported by: the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) Collaborative Research
and Development grant: CRDPJ 539431-19, the Canada Foundation
for Innovation John R. Evans Leaders Fund with equal support from
the Ontario Research Fund CFI Leaders Opportunity Fund: 38512,
Waterloo Huawei Joint Innovation Lab project “Scalable Infras-
tructure for Next Generation Data Management Systems”, NSERC
Discovery Launch Supplement: DGECR-2019-00048, NSERC Dis-
covery Program grant: RGPIN-2019-04227, and the University of
Waterloo.

REFERENCES
[1] Kumud Bhandari, Dhruva R Chakrabarti, and Hans-J Boehm. 2016. Makalu: Fast

recoverable allocation of non-volatile memory. ACM SIGPLAN Notices 51, 10
(2016), 677–694.

[2] Trevor Brown and Hillel Avni. 2016. PHyTM: Persistent Hybrid Transactional
Memory. Proc. VLDB Endow. 10, 4 (2016), 409–420.

[3] Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. 2020. Non-Blocking
Interpolation Search Trees with Doubly-Logarithmic Running Time. Association
for Computing Machinery, New York, NY, USA, 276–291. https://doi.org/10.
1145/3332466.3374542

[4] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K Aguilera. 2017.
Black-box concurrent data structures for NUMA architectures. ACM SIGPLAN
Notices 52, 4 (2017), 207–221.

[5] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making persistent objects fast
and safe with next-generation, non-volatile memories. ACM SIGARCH Computer
Architecture News 39, 1 (2011), 105–118.

[6] Nachshon Cohen, David T. Aksun, Hillel Avni, and James R. Larus. 2019. Fine-
Grain Checkpointing with In-Cache-Line Logging. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association
for Computing Machinery, New York, NY, USA, 441–454. https://doi.org/10.
1145/3297858.3304046

[7] Nachshon Cohen, Rachid Guerraoui, and Igor Zablotchi. 2018. The Inher-
ent Cost of Remembering Consistently. In Proceedings of the 30th on Sympo-
sium on Parallelism in Algorithms and Architectures (Vienna, Austria) (SPAA
’18). Association for Computing Machinery, New York, NY, USA, 259–269.
https://doi.org/10.1145/3210377.3210400

[8] Intel Corporation. 2016. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual Volume 3A: System Programming Guide, Part 1. Avail-
able at: intel.com/content/www/us/en/architecture-and-technology/64-ia-32-
architectures-software-developer-vol-3a-part-1-manual.html. , 286 pages.

[9] Intel Corporation. 2017. Intel Optane Persistent Memory. Available
at: https://www.intel.com/content/www/us/en/architecture-and-technology/
optane-dc-persistent-memory.

[10] Intel Corporation. 2018. Persistent Memory Development Kit. https://pmem.io/
pmdk/.

[11] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus: Efficient
Algorithms for Persistent Transactional Memory. In Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures (Vienna, Austria) (SPAA
’18). Association for Computing Machinery, New York, NY, USA, 271–282. https:
//doi.org/10.1145/3210377.3210392

[12] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2020. Persistent Memory
and the Rise of Universal Constructions. In Proceedings of the Fifteenth European
Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20). Association
for Computing Machinery, New York, NY, USA, Article 5, 15 pages. https:
//doi.org/10.1145/3342195.3387515

[13] Andreia Correia, Pedro Ramalhete, and Pascal Felber. 2020. AWait-Free Universal
Construction for Large Objects. Association for Computing Machinery, New York,
NY, USA, 102–116. https://doi.org/10.1145/3332466.3374523

[14] Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor Zablotchi.
2018. Log-Free Concurrent Data Structures. In Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference (Boston, MA, USA) (USENIX
ATC ’18). USENIX Association, USA, 373–385.

[15] Anthony Demeri, Wook-Hee Kim, R. Madhava Krishnan, Jaeho Kim, Mohannad
Ismail, and Changwoo Min. 2020. Poseidon: Safe, Fast and Scalable Persistent
Memory Allocator. In Proceedings of the 21st International Middleware Conference
(Delft, Netherlands) (Middleware ’20). Association for Computing Machinery,
New York, NY, USA, 207–220. https://doi.org/10.1145/3423211.3425671

[16] Panagiota Fatourou and Nikolaos D. Kallimanis. 2011. A Highly-Efficient Wait-
Free Universal Construction. In Proceedings of the Twenty-Third Annual ACM
Symposium on Parallelism in Algorithms and Architectures (San Jose, California,
USA) (SPAA ’11). Association for Computing Machinery, New York, NY, USA,
325–334. https://doi.org/10.1145/1989493.1989549

[17] Panagiota Fatourou and Nikolaos D. Kallimanis. 2020. The RedBlue Family of
Universal Constructions. Distrib. Comput. 33, 6 (dec 2020), 485–513. https:
//doi.org/10.1007/s00446-020-00370-7

[18] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch, and Erez
Petrank. 2020. NVTraverse: In NVRAM Data Structures, the Destination is
More Important than the Journey. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation (London, UK)
(PLDI 2020). Association for Computing Machinery, New York, NY, USA, 377–392.
https://doi.org/10.1145/3385412.3386031

[19] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018. A
Persistent Lock-Free Queue for Non-Volatile Memory. In Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Vienna, Austria) (PPoPP ’18). Association for Computing Machinery, New York,
NY, USA, 28–40. https://doi.org/10.1145/3178487.3178490

[20] Michal Friedman, Erez Petrank, and Pedro Ramalhete. 2021. Mirror: Making
Lock-Free Data Structures Persistent. Association for Computing Machinery, New
York, NY, USA, 1218–1232. https://doi.org/10.1145/3453483.3454105

[21] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat Combining
and the Synchronization-Parallelism Tradeoff. In Proceedings of the Twenty-Second
Annual ACM Symposium on Parallelism in Algorithms and Architectures (Thira,
Santorini, Greece) (SPAA ’10). Association for Computing Machinery, New York,
NY, USA, 355–364. https://doi.org/10.1145/1810479.1810540

[22] Maurice Herlihy. 1991. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 13, 1 (1991), 124–149.

[23] Maurice Herlihy and Nir Shavit. 2008. The art of multiprocessor programming (1st
ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. I–XX, 1–508
pages.

[24] Maurice P. Herlihy. 1988. Impossibility and Universality Results for Wait-
Free Synchronization. In Proceedings of the Seventh Annual ACM Symposium
on Principles of Distributed Computing (Toronto, Ontario, Canada) (PODC ’88).
Association for Computing Machinery, New York, NY, USA, 276–290. https:
//doi.org/10.1145/62546.62593

[25] M. P. Herlihy and J. M.Wing. 1987. Axioms for Concurrent Objects. In Proceedings
of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (Munich, West Germany) (POPL ’87). Association for Computing
Machinery, New York, NY, USA, 13–26. https://doi.org/10.1145/41625.41627

[26] Joseph Izraelevitz, Hammurabi Mendes, andMichael L. Scott. 2016. Linearizability
of Persistent Memory Objects Under a Full-System-Crash Failure Model. In
Distributed Computing - 30th International Symposium, DISC 2016, Paris, France,
September 27-29, 2016. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg,
313–327. https://doi.org/10.1007/978-3-662-53426-7_23

[27] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2018. DHTM:
Durable Hardware Transactional Memory. In Proceedings of the 45th Annual
International Symposium on Computer Architecture (Los Angeles, California)
(ISCA ’18). IEEE Press, 452–465. https://doi.org/10.1109/ISCA.2018.00045

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

228

https://doi.org/10.1145/3332466.3374542
https://doi.org/10.1145/3332466.3374542
https://doi.org/10.1145/3297858.3304046
https://doi.org/10.1145/3297858.3304046
https://doi.org/10.1145/3210377.3210400
intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html
intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://doi.org/10.1145/3210377.3210392
https://doi.org/10.1145/3210377.3210392
https://doi.org/10.1145/3342195.3387515
https://doi.org/10.1145/3342195.3387515
https://doi.org/10.1145/3332466.3374523
https://doi.org/10.1145/3423211.3425671
https://doi.org/10.1145/1989493.1989549
https://doi.org/10.1007/s00446-020-00370-7
https://doi.org/10.1007/s00446-020-00370-7
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1145/62546.62593
https://doi.org/10.1145/62546.62593
https://doi.org/10.1145/41625.41627
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1109/ISCA.2018.00045

PREP-UC: A Practical Replicated Persistent Universal Construction SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

[28] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin
Zheng, and Jinglei Ren. 2017. DudeTM: Building durable transactions with
decoupling for persistent memory. ACM SIGPLAN Notices 52, 4 (2017), 329–343.

[29] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. 2020. Pronto:
Easy and Fast Persistence for Volatile Data Structures. Association for Comput-
ing Machinery, New York, NY, USA, 789–806. https://doi.org/10.1145/3373376.
3378456

[30] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III, Dhruva R.
Chakrabarti, and Michael L. Scott. 2017. Dalí: A Periodically Persistent Hash
Map. In 31st International Symposium on Distributed Computing (DISC 2017)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 91), Andréa W. Richa
(Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
37:1–37:16. https://doi.org/10.4230/LIPIcs.DISC.2017.37

[31] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne: Light-
weight persistent memory. ACM SIGARCH Computer Architecture News 39, 1
(2011), 91–104.

[32] QingWang, Youyou Lu, Junru Li, Minhui Xie, and Jiwu Shu. 2022. Nap: Persistent
Memory Indexes for NUMA Architectures. ACM Trans. Storage 18, 1, Article 2

(jan 2022), 35 pages. https://doi.org/10.1145/3507922
[33] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy lock-free

indexing in non-volatile memory. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). IEEE, 461–472.

[34] Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch, and Erez
Petrank. 2022. FliT: A Library for Simple and Efficient Persistent Algorithms.
In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (Seoul, Republic of Korea) (PPoPP ’22). Association for
Computing Machinery, New York, NY, USA, 309–321. https://doi.org/10.1145/
3503221.3508436

[35] Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin Valpey, and
Michael L Scott. 2020. Montage: A general system for buffered durably linearizable
data structures. arXiv preprint arXiv:2009.13701 (2020).

[36] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank.
2019. Efficient lock-free durable sets. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–26.

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

229

https://doi.org/10.1145/3373376.3378456
https://doi.org/10.1145/3373376.3378456
https://doi.org/10.4230/LIPIcs.DISC.2017.37
https://doi.org/10.1145/3507922
https://doi.org/10.1145/3503221.3508436
https://doi.org/10.1145/3503221.3508436

	Abstract
	1 Introduction
	2 Background
	2.1 Durable vs. Buffered Durable Linearizability
	2.2 Persistence in Practice
	2.3 Related Work

	3 Node Replication
	4 PREP-UC: Design Decisions
	4.1 Extending Node Replication for Persistence
	4.2 Choice of Correctness Condition

	5 PREP-UC: Implementation Details
	5.1 Buffered Durable Linearizable PREP-Buffered
	5.2 Durable Linearizable PREP-Durable

	6 Evaluation
	7 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 46.03, 719.92 Width 518.45 Height 17.37 points
 Origin: bottom left

 1
 0
 BL

 2
 AllDoc
 2

 CurrentAVDoc

 46.0261 719.9213 518.4453 17.3683

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 12
 13
 12
 13

 1

 HistoryList_V1
 qi2base

