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Abstract

There has been significant progress in understanding the parallelism inherent to iterative sequential
algorithms: for many classic algorithms, the depth of the dependence structure is now well understood,
and scheduling techniques have been developed to exploit this shallow dependence structure for efficient
parallel implementations. A related, applied research strand has studied methods by which certain it-
erative task-based algorithms can be efficiently parallelized via relaxed concurrent priority schedulers.
These allow for high concurrency when inserting and removing tasks, at the cost of executing superfluous
work due to the relaxed semantics of the scheduler.

In this work, we take a step towards unifying these two research directions, by showing that there
exists a family of relaxed priority schedulers that can efficiently and deterministically execute classic
iterative algorithms such as greedy maximal independent set (MIS) and matching. Our primary result
shows that, given a randomized scheduler with an expected relaxation factor of k in terms of the maxi-
mum allowed priority inversions on a task, and any graph on n vertices, the scheduler is able to execute
greedy MIS with only an additive factor of poly(k) expected additional iterations compared to an exact
(but not scalable) scheduler. This counter-intuitive result demonstrates that the overhead of relaxation
when computing MIS is not dependent on the input size or structure of the input graph. Experimental
results show that this overhead can be clearly offset by the gain in performance due to the highly scal-
able scheduler. In sum, we present an efficient method to deterministically parallelize iterative sequential
algorithms, with provable runtime guarantees in terms of the number of executed tasks to completion.

1 Introduction

Given the now-pervasive nature of parallelism in computation, there has been a tremendous amount of
research into efficient parallel algorithms for a wide range of tasks. A popular approach has been to map
existing sequential algorithms to parallel architectures, by exploiting their inherent parallelism. In this
paper, we will focus on two specific variants of this strategy.

The deterministic approach, e.g. [5, 7, 18, 6, 25, 8] has been to study the directed-acyclic graph (DAG)
step dependence in classic, widely-employed sequential algorithms, showing that, perhaps surprisingly, this
dependence structure usually has low depth. One can then design schedulers which exploit this depen-
dence structure for efficient execution on parallel architectures. As the name suggests, this approach ensures
deterministic outputs (i.e. outputs uniquely determined by the input), and can yield good practical per-
formance [7], but requires a non-trivial amount of knowledge about the problem at hand, and the use of
carefully-constructed parallel schedulers [7].

To illustrate, let us consider the classic sequential greedy strategy for solving the maximal independent
set (MIS) problem on arbitrary graphs: the algorithm examines the set of vertices in the graph following a
fixed, random sequential priority order, adding a vertex to the independent set if and only if no neighbor of
higher priority has already been added. The basic insight for parallelization is that the outcome at each node
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may only depend on a small subset of other nodes, namely its neighbors which are higher priority in the
random order. Blelloch, Fineman and Shun [7] performed an in-depth study of the asymptotic properties of
this dependence structure, proving that, for any graph, the maximal depth of a chain of dependences is in
fact O(log2 n) with high probability, where n is the number of nodes in the graph. Recently, an impressive
analytic result by Fischer and Noever [13] provided tight Θ(logn) bounds on the maximal dependency depth
for greedy sequential MIS, effectively closing this problem for MIS. Beyond greedy MIS, there has been
significant progress in analyzing the dependency structure of other fundamental sequential algorithms, such
as algorithms for matching [7], list contraction [25], Knuth shuffle [25], linear programming [5], and graph
connectivity [5].

An alternative approach has been to employ relaxed data structures to schedule task-based programs.
Starting with Karp and Zhang [19], the general idea is that, in some applications, the scheduler can relax
the strict order induced by following the sequential algorithm, and allow tasks to be processed speculatively
ahead of their dependencies, without loss of correctness. A standard example is parallelizing Dijkstra’s
single-source shortest paths (SSSP) algorithm, e.g. [3, 22, 20]: the scheduler can retrieve vertices in relaxed
order without breaking correctness, as the distance at each vertex is guaranteed to eventually converge to
the minimum. The trade-off is between the performance gains arising from using simpler, more scalable
schedulers, and the loss of determinism and the wasted work due to relaxed priority order. This approach
is quite popular in practice, as several high-performance relaxed schedulers have been proposed, which can
attain state-of-the-art results in settings such as graph processing and machine learning [20, 14]. At the
same time, despite good empirical performance, this approach still lacks analytical bounds, and results are
no longer deterministic.

In this paper, we ask: is it possible to achieve both the simplicity and good performance of relaxed
schedulers as well as the predictable outputs and runtime upper bounds of the “deterministic” approach?
Contribution. In a nutshell, this work shows that a natural family of fair relaxed schedulers—providing
upper bounds on the degree of relaxation, and on the number of inversions that a task can experience—can
execute a range of iterative sequential algorithms deterministically, preserving the dependence structure,
and provably efficiently, providing analytic upper bounds on the total work performed. Our results cover the
classic greedy sequential graph algorithms for maximal independent set (MIS), matching, and coloring, but
also algorithms for list contraction and generating permutations via the Knuth shuffle. We call this class
iterative algorithms with explicit dependencies. Our main technical result is that, for MIS and matching in
particular, the overhead of relaxed scheduling is independent of the graph size or structure. This analytical
result suggests that relaxed schedulers should be a viable alternative, a finding which is also supported by
our preliminary concurrent implementation.

Specifically, we consider the following framework. Given an input, e.g., a graph, the sequential algo-
rithm defines a set of tasks, e.g. one per graph vertex, which should be processed in order, respecting some
fixed, arbitrary data dependencies, which can be specified as a DAG. Tasks will be accessible via a sched-
uler, which is relaxed, in the sense that it could return tasks out of order. This induces a sequential model,1

where at each step, the scheduler returns a new task: for simplicity, assume for now that the scheduler re-
turns at each step a task chosen uniformly at random among the top-k available tasks, in descending priority
order. (We will model realistic relaxed schedulers [21, 2] precisely in the following section.)

Assume a thread receives a task from the scheduler. Crucially, the thread cannot process the task if it has
data dependencies on higher-priority tasks: this way, determinism is enforced. (We call such a failed delete
attempt by the thread a wasted step.) However, threads are free to process tasks which do not have such

1We consider this sequential model, similar to [7], since there currently are no precise ways to model the contention experienced
by concurrent threads on the scheduler. Instead, we validate our findings via a fully concurrent implementation.
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outstanding dependencies, potentially out-of-order (we call these successful steps.) We measure work in
terms of the total number of scheduler queries needed to process the entire input, including both successful
and unsuccessful removal steps.

We provide a simple yet general approach to analyze this relaxed scheduling process, by characterizing
the interaction between the dependency structure induced by a given problem on an arbitrary input, and the
relaxation factor k in the scheduling mechanism, which yields bounds on expected work when executing
such algorithms via relaxed schedulers. Our approach extends to general iterative algorithms, as long as
task dependencies are explicit, i.e., can be statically expressed given the input, and tasks can be randomly
permuted initially.

The work efficiency of this framework will critically depend on the rate at which threads are able to
successfully remove dependency-free tasks. Intuitively, this rate appears to be highly dependent on (1) the
problem definition, (2) the scheduler relaxation factor k, but also on (3) the structure of the input. Indeed, we
show that in the most general case, a k-relaxed scheduler can process an input described by a dependency
graph G on n nodes and m edges and incur O(m

n poly(k)) wasted steps, i.e. n+O(m
n poly(k)) total steps. This

result immediately implies a low “cost of relaxation” for problems whose dependency graph is inherently
sparse, such as Greedy Coloring on sparse graphs, Knuth Shuffle and List Contraction, which are character-
ized by a dependency structure with only m = O(n) edges. Hence, in general, such sparse problems incur
negligible relaxation cost when k� n.

Our main technical result is a counter-intuitive bound for greedy MIS: our framework equipped with
a k-relaxed scheduler can execute greedy MIS on any graph G and experience only poly(k) wasted steps
(i.e. n+ poly(k) total steps), regardless of the size or structure of G. This result is surprising as well as
technically non-trivial, and demonstrates that for MIS on large graphs, operation-level speedups provided
by relaxation come with a negligible global trade-off. A similar result holds for maximal matching.

In the broader context of the parallel scheduling literature, our results suggest that task priorities can
be supported in a scalable manner, through relaxation, without loss of determinism or work efficiency. We
believe this is the first time this observation is made. We validate our results empirically, via a preliminary
implementation of the scheduling framework in C++, based on a lock-free extension of the MultiQueue
relaxed schedulers [21]. Our broad finding is that this relaxed scheduling framework can ensure scalable
execution, with minimal overheads due to contention and verifying task dependencies. For MIS on large
graphs, we obtain a solution, with 6x speedup at 24 threads versus an optimized sequential baseline.
Related Work. Our work is inspired by the line of research by Blelloch et al. [5, 7, 18, 6, 25], as well
as [12, 11, 13], whose broad goal has been to examine the dependency structure of a wide class of iterative
algorithms, and to derive efficient scheduling mechanisms given such structure.

At the same time, there are several differences between these results and our work. First, at the concep-
tual level, [7, 25] start from analytical insights about the dependency structure of algorithms such as greedy
MIS, and apply them to design scheduling mechanisms which can leverage this structure, which require
problem-specific information. In some cases, e.g. [7], the scheduling mechanisms found to perform best
in practice differ from the structure of the schedules analyzed. By contrast, we start from a realistic model
of existing high-performance relaxed schedulers [21], and show that such schedulers can automatically and
efficiently execute a broad set of iterative algorithms. Second, at the technical level, the methods we de-
velop are different: for instance, the fact that the iterative algorithms we consider have low dependency
depth [5, 7, 25] does not actually help our analysis, since a sequential algorithm could have low dependency
depth and be inefficiently executable by a relaxed scheduler: the bad case here is when the dependency depth
is low (logarithmic), but each “level” in a breadth-first traversal of the dependency graph has high fanout.
Specifically, we emphasize that the notion of prefix defined in [7] to simplify analysis is different from the set
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of positions S which can be returned by the relaxed stochastic scheduler: for example, the parallel algorithm
in [7] requires each prefix to be fully processed before being removed, whereas S acts like a sliding window
of positions in our case. The third difference is in terms of analytic model: references such as [7] express
work bounds in the CRCW PRAM model, whereas we count work in terms of number of tasks processing
attempts. Our analysis is sequential, and we implement our algorithms on a shared memory architecture to
demonstrate empirically good performance.

To our knowledge, the first instance of a relaxed scheduler is in work by Karp and Zhang [19], for
parallelizing backtracking strategies in a (synchronous) PRAM model. This area has recently become ex-
tremely active, with several such schedulers (also called relaxed priority queues) being proposed over the
past decade, see [24, 4, 26, 3, 15, 20, 21, 2, 23] for recent examples. In particular, we note that state-of-the-
art packages for graph processing [20] and machine learning [14] implement such relaxed schedulers.

Recent work by a subset of the authors [2] showed that a simple and popular priority scheduling mech-
anism called the MultiQueue [21, 15, 14] enforces strong probabilistic guarantees on the rank of elements
returned, in an idealized model. Concurrent work [1] proves that these guarantees in fact hold in asyn-
chronous concurrent executions, under some analytic assumptions. Based on this result, our work bounds
should hold when using MultiQueues as relaxed schedulers, in concurrent executions.

Parallel scheduling [10, 9] is an extremely vast area and a complete survey is beyond our scope. We do
wish to emphasize that standard work-stealing schedulers will not provide this type of work bounds, since
they do not provide any guarantees in terms of the rank of elements removed: the rank becomes unbounded
over long executions, since a single random queue is sampled at every stealing step [2]. To our knowledge,
there is only one previous attempt to add priorities to work-stealing schedulers [17], using a multi-level
global queue of tasks, partitioned by priority. This technique is different, and provides no work guarantees.

2 Executing Iterative Algorithms via Priority Schedulers

2.1 Modeling Relaxed Priority Schedulers

In the following, we will provide the sequential specification of a generic relaxed priority scheduler Q, which
contains a set of 〈task,priority〉 pairs. A relaxed priority scheduler will provide the following methods:

• ApproxGetMin(), which returns a 〈task,priority〉 pair and deletes it from the structure, if a task is
available, or ⊥, otherwise. The relaxation guarantees of this operation are precisely defined below;

• Empty(), which returns whether the scheduler still has tasks or not;

• Insert( 〈task,priority〉 ), which inserts a new task into Q.

Let rank(t) be the rank of the task which is returned by the tth ApproxGetMin operation, among all tasks
present in Q. We say that task u ∈ Q experiences a priority inversion at an ApproxGetMin step if a task v of
lower priority than u is retrieved at that step. For any task u, let inv(u) be the number of inversions which
the task u experiences before being removed.

Definition 1. Fix a relaxed priority scheduler Q, with parameters k≥ 1, the rank bound, and φ , the fairness
bound. We say that Q is an (k,φ)-relaxed priority scheduler if it ensures the following:

1. Rank Bound. For any time t, and any integer ` > 1,
Pr[rank(t)≥ `]≤ exp(−`/k).
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2. Fairness Bound. For any task u, and any integer `≥ 1, Pr[inv(u)≥ `]≤ exp(−`/φ).

Relation to Practical Schedulers. Upon inspection, both the SprayList [3] and the MultiQueue [21] relaxed
priority schedulers ensure these exponential tail bounds on both rank and fairness, under some analytic
assumptions. These conditions are trivially ensured by deterministic implementations such as [26]. In
particular, the SprayList ensures these bounds with parameters k and φ in O(ppolylog p), where p is the
number of processors [3]. MultiQueues ensure these bounds with parameters k =O(m), and φ =O(m logm),
where m is the number of distinct priority queues [2]. This holds even in concurrent executions [1].

In the following, it will be convenient to assume a single parameter k, which upper bounds both the rank
and the relaxation parameters. We call the (k,k)-relaxed scheduler simply a k-relaxed scheduler.

2.2 A General Scheduling Framework

We now present our framework for executing task-based sequential programs, whose pseudocode is given in
Algorithm 1. We assume a permutation π which dictates an execution order on tasks. If u is the ith element
in π , we will write π(i) = u and `(u) = i (` for label). Algorithm 1 encapsulates a large number of com-
mon iterative algorithms on graphs, including Greedy Vertex Coloring, Greedy Matching, Greedy Maximal
Independent Set, Dijkstra’s SSSP algorithm, and even some algorithms which are not graph-based, such as
List Contraction and Knuth Shuffle [5]. We show sample instantiations of the framework in Section 2.3.

Algorithm 1: Generic Task-based Framework
Data: Dependency Graph G = (V,E)
Data: Vertex permutation π

// Q is an exact priority queue
Q← vertices in V with priorities π(V )
for each step t do

// Get new element from the buffer
vt ← Q.GetMin()
Process(v)
Remove vt from Q
if Q.empty() then

break

Algorithm 2 gives a method for adapting Algorithm 1 to use a relaxed queue, given an explicit de-
pendency graph G = (V,E) whose nodes are the tasks, and whose edges are dependencies between tasks.
Importantly, given the dependency graph G, Algorithm 2 gives the same output as Algorithm 1, irrespective
of the relaxation factor k. As usual, we write |V |= n and |E|= m. We assume that the permutation π repre-
sents a priority order so that an edge e = (u,v) ∈ E means that v depends on u if `(v)> `(u) and vice-versa.
In the former case, we say that v is a successor of u and u is a predecessor of v.

Our main result regarding Algorithm 2, proven formally in Section 3.1, argues that if π is chosen
uniformly at random from among all vertex permutations, then Algorithm 2 completes in at most n +
O(m

n poly(k)) iterations (compared to exactly n for Algorithm 1). This result demonstrates that provided
G is not too dense, the “cost of relaxation” is low for the class of problems which admit uniformly random
task permutations. Notably, this class includes all of the problems mentioned above, except for Dijkstra’s
algorithm (since there, π needs to respect the ordering of nodes sorted by distance from the source).
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Algorithm 2: Relaxed Scheduling Framework
Data: Dependency Graph G = (V,E)
Data: Vertex permutation π

Data: Parameter k
// Q is a k-relaxed scheduler
Q← vertices in random order
for each step t do

// Get new element from the buffer
vt ← Q.ApproxGetMin()
if vt has unprocessed predecessor then

Q.insert(vt ,π(vt)) // Failed; reinsert
continue

else Process(v)
if Q.empty() then break

2.3 Example Applications

Applying the sequential task-based framework of Algorithm 1 only requires an implementation of Process(v).
Implementing the relaxed framework in Algorithm 2 further requires G (either explicitly or via a predecessor
query method). We now give examples for Greedy Vertex Coloring and List Contraction, whose dependency
graph is implicit.
Greedy Vertex Coloring. Vertex Coloring is the problem of assigning a color (represented by a natural
number) to each vertex of the input graph, G, such that no adjacent vertices share a color. The Greedy Vertex
Coloring algorithm simply processes the vertices in some permutation order, π , and assigns each vertex in
turn the smallest available color. The implementation of Process(v) for Greedy Vertex Coloring needs to
determine the color of v, which can be done as described below:

Algorithm 3: Greedy Vertex Coloring Process(v)
Data: Input Graph G = (V,E)
Data: Permutation π

Data: Partial coloring c : V → N
Function Process(v) :

S← /0
foreach (u,v) ∈ G, s.t. `(u)< `(v) do

S← S∪{c(u)}
c(v)←mini∈N i /∈ S

Since the underlying dependency graph is just the input graph with edge orientations given by π , this is
all that needs to be provided.
List Contraction. List Contraction takes a doubly linked list, L, and iteratively contracts its nodes. Con-
tracting a node v consists of swinging two pointers: v.next.previous← v.previous and v.previous.next←
v.next, effectively removing v from the list. List Contraction is useful, e.g., for cycle counting. Although
List Contraction is not inherently a graph problem, we can still construct a dependency graph G whose
nodes are list elements and with an edge between elements which are adjacent in L. If we induce a priority
order on list elements (e.g. uniformly at random), then there is an induced orientation of the edges of the
dependency graph which forms a DAG. Then a predecessor query on v consists of checking whether either
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v.next or v.prev is an unprocessed predecessor. Process(v) can be implemented with just the two steps of
contraction above (possibly along with the metrics the application is computing).

2.4 Greedy Maximal Independent Set

We give a variant of Algorithm 2 adapted for Greedy Maximal Independent Set (MIS), which makes use of
some exploitable substructure. In particular, once some neighbor, u, of a vertex v is added to the MIS, then
v can never be added to the MIS, at which point v’s dependents no longer have to wait for v to be processed.
Algorithm 4 implements MIS in the framework of Algorithm 2 while also making use of this observation.
Interestingly, Algorithm 4 can also be used to find a maximal matching by taking the input graph G of the
matching instance and converting it to a graph G′, where G′ has a vertex for each edge in G and there is
an edge between vertices of G′ if the corresponding edges of G share an incident vertex. (One can view
matching as an “independent set” of edges, no two of which are incident to the same vertex.)

Algorithm 4: Relaxed Queue MIS
Data: Graph G = (V,E)
Data: Vertex permutation π

Data: Parameter k
// Q is a k-approximate priority queue
Q← vertices in random order, all marked live
for each step t do

// Get new element from the buffer
vt ← Q.ApproxGetMin()
if vt marked dead then continue
else if vt has live predecessor in Q then

Q.insert(vt ,π(vt)) // Failed; reinsert
continue

else
Add vt to MIS
Mark all of vt ’s neighbors dead
Remove vt from Q

if Q.empty() then break

As we will show in Section 3, the simple improvement Algorithm 4 makes over Algorithm 2 results in
only a negligible number of extra iterations due to relaxation.

3 Analysis

In this section, we will bound the relaxation cost for the general framework (Algorithm 2) and for Maximal
Independent Set (Algorithm 4). Algorithm 2 is easier to analyze and will serve as a warmup. Note that in
both cases, n iterations are required to process all nodes and are necessary even with no relaxation. Thus,
we can think of the “cost” of relaxation as the number of further iterations beyond the first n, which can be
equivalently counted as the number of re-insertions performed by the algorithm. We will sometimes refer
to executing such a re-insertion as a “failed delete” by Q.

Our primary goal will be to bound the number of iterations of the for loops in Algorithm 2 and 4 when
running them sequentially with a k-relaxed priority queue. Although the initial analysis is sequential, the
algorithms are parallel: threads can each run their own for loops concurrently and correctness is maintained.
The difficulty in extending the analysis to the asynchronous setting is that it is not clear how to model failed
deletes of dependents of a node that is being processed. The likelihood of such deletes depend on particulars
of both the problem (i.e. how long processing and dependency checking steps actually take) and the thread
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…

Figure 1: Simple illustration of the process. The blue thread queries the relaxed scheduler, which returns
one of the top k tasks, on average (in brackets). Some of these tasks (green) can be processed immediately,
as they have no dependencies. Tasks with dependencies (red) cannot be processed yet, and therefore result
in failed deletes.

scheduler and so are hard to model in our generic framework. Instead, we show empirically that our bounds
hold in practice on a realistic asynchronous machine where threads run the loops fully in parallel.

The theorems we will prove are the following. Given a dependency graph G = (V,E) with |V | = n
vertices and |E|= m edges, we first bound the number of iterations of Algorithm 2:

Theorem 1. Algorithm 2 runs for n+O
(m

n

)
poly(k) iterations in expectation.

By contrast to Algorithm 2, we show that using a relaxed queue for computing Maximal Independent
Sets on large graphs has essentially no cost at all, even for dense graphs! In particular, Algorithm 4 incurs a
relaxation cost with no dependence at all on the size or structure of G, only on the relaxation factor k:

Theorem 2. Algorithm 4 runs for n+poly(k) iterations in expectation.

Before delving into the individual analyses, we first consider some key characteristics of a particular
relaxed queue which will be at play, and quantify them in terms of the fairness and rank error of Q. As
discussed in Section 2.1, we will assume that Q is k-relaxed: that is, Q provides exponential tail bounds
on the rank error and on the number of inversions experienced by an element, in terms of the parameter
k. Intuitively, it may help to think of a queue which returns a uniformly random element of the top-k at
each step as the “canonical” k-relaxed Q. See Figure 1 for an illustration. (As discussed in Section 2.1, real
schedulers have slightly different properties, which are captured in our framework.) We state and prove two
technical lemmas parameterized by k.

First, we characterize the probability that, for some edge e = (u,v) in the dependency graph where u is
a predecessor of v, v experiences an inversion before u is processed. We say that vertex u experiences an
inversion on or above node v at some point during the execution if `(u)< `(v), but some node with label at
least `(v) is returned by Q before u is processed during the execution.

Lemma 1. Consider running Algorithm 2 (or Algorithm 4) using a k-relaxed queue Q on input graph
G = (V,E). For a fixed edge e = (u,v), the probability that u experiences an inversion on or above v during
the execution is bounded by O(k3 logk/n).

Proof. We begin by proving a few immediate claims.

Claim 1. At any time t, the probability of removing the element of top rank from Q is at least 1/k.

Proof. By the rank bound, we have that Pr[rank(t) ≥ 2] ≤ (1/e)2/k < 1− 1/k. It therefore follows that
Pr[rank(t) = 1]≥ 1/k.

Let tu be the first time when u experiences an inversion, and let Ru be its rank at that time. Since an
element of rank ≥ u must be chosen at tu, we have that, for any `≥ 1,

Pr[Ru ≥ `]≤ exp(−`/k).
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In particular, Pr[Ru ≥ ck logk] ≤ (1/k)c, for any constant c ≥ 1. That is, u has rank ≤ ck logk at the time
where it experiences its first inversion, w.h.p. in k. We now wish to bound the number of removals between
the point when u experiences its first inversion, and the point when u is removed. Let this random variable
be ∆k. By Claim 1, the top element is always removed within O(k) trials in expectation, and hence we can
show that

∆k ≥ 2ck2 logk, with probability at most 2/kc,

for c≥ 1, by using inequality :

Pr[∆k ≥ 2ck2 logk]≤ Pr[Ru ≥ ck logk]+Pr[∆k ≥ 2ck2 logk|Ru < ck logk]. (1)

We can prove that Pr[∆k ≥ 2ck2 logk|Ru < ck logk] ≤ 1/kc by using bounds for the negative binomial
distribution with success probability at least 1/k, since success in our case is deleting the top element.

We now wish to know the probability that for a fixed ∆k one of these steps is an inversion experienced
by u on or above v. Node v has lesser priority than u, chosen uniformly at random. Let j be the position of
v, noting that Pr[ j = π(u)+ `] ≤ 1/(n− 1) ≤ 2/n, for any integer ` ≥ 1. Fix a step t, and pessimistically
assume that u is at the top of the queue at this time. Note that if u is at the top of the queue, then v has rank
larger than l at time step t. From the fairness bound we know that Pr[inv(u)≥ l/2]≤ (1/e)l/2k. Conditioned
on inv(u) ≤ l/2, we have that rank of v is always at least l/2 until u is removed. This allows us to use the
rank bound for upper bounding the probability of u experiencing inversion on or above v at each step and
then we can union bound over ∆k steps. Hence, we get that the probability that u experiences an inversion
on or above v is at most (1/e)l/2k +∆k(1/e)l/2k. Further, bounding over all choices of l, we get the upper
bound:

2
n

n−1

∑
l=1

(
(1/e)l/2k +∆k(1/e)l/2k

)
≤ 2

n
(2k+2k∆k) =

4k
n
(1+∆k). (2)

Finally, bounding over all possible values of ∆k and their probabilities, we get that the probability that u
experiences an inversion on or above v during the execution is at most:

∞

∑
i=0

2
ki

4k
n
(1+2(i+1)k2 logk) = O(k3 logk/n). (3)

Furthermore, the above proof directly implies the following corollary:

Corollary 1. Consider running Algorithm 2 (or Algorithm 4) using a k-relaxed queue Q on input graph
G = (V,E). For a fixed edge e = (u,v), the probability that u experiences an inversion on or above v during
an execution on a random permutation π conditioned on `(u) = t, `(v)> t is bounded by O(k3 logk/(n− t)).

In Appendix A, we also prove a slightly tighter version of Lemma 1 for the case where the implementa-
tion of Q provides the further guarantee of only returning elements from the top-k. Note that such a queue
is always k-rank bounded, but is not necessarily k-fair.

Our second technical lemma quantifies the expected number of priority inversions incurred by an ele-
ment, u, of Q once u’s dependencies have been processed—that is, the number of times an element of Q
with lower priority than u is returned by GetApproxMin() before u is. If a vertex u has no predecessor in Q
at some time t, we call u a root.

9



Lemma 2. Consider running Algorithm 2 (or Algorithm 4) using a k-relaxed queue Q on input graph
G = (V,E). For a fixed node u, if u is a root at some time t, at most O(k) other elements of Q with lower
priority than u are deleted after t in expectation.

Proof. Follows immediately from the k-fairness provided by Q.

We stress that these two lemmas quantify the entire contribution of (the randomness of) the relaxation of
Q to the analysis. The major burden of the analysis, particularly for MIS, is instead to manage the interaction
between the randomness of the permutation π (which is not inherently related to the relaxation of Q) and
the structure of G. Equipped with these lemmas, we are ready to do just that.

3.1 Algorithm 2: The General Case

The following theorem shows that the relaxed queue in Algorithm 2 has essentially no cost for sparse de-
pendency graphs with m = O(n) and still completes in O(nk) iterations even for dense dependency graphs
when m = O(n2). For example, Theorem 1 demonstrates that task-based problems which are inherently
sparse such as Knuth Shuffle and List Contraction [5] incur only negligible “wasted work” when utilizing
a k-relaxed queue with k� n. Furthermore, graph problems with edge dependencies such as greedy ver-
tex coloring incur a cost proportional to the sparsity of the underlying graph. Although the result is not
technically challenging, it is tight up to factors of k.

Theorem 1. For a dependency graph G = (V,E) with |V |= n vertices and |E|= m edges, Algorithm 2 runs
for n+O

(m
n

)
poly(k) iterations.

Proof. We will compute the expected number of failed deletes directly as follows: Whenever a failed delete
occurs on a node w, charge it to the lexicographically first edge, e = (u,v), for which u and v are both
unprocessed and `(v) ≤ `(w) (i.e., with possibly v = w). Note that (1) such an edge must exist or else a
failed delete could not have occurred, (2) the failed delete must represent a priority inversion on u, and (3)
u must be a root (because e is lexicographically first). The first time an edge e is charged, we call e the
active edge until u is processed. Since u is a root for the duration of e’s status as active edge, by Lemma 2,
u only experiences O(k) priority inversions in expectation while e is active, which upper bounds the number
of failed deletes charged to e.

Let Ae be the event that edge e = (u,v) ever becomes active. Ae can only occur if u experiences an
inversion on or above v during the execution, which is bounded by O(k3 logk/n) by Lemma 1. Thus, the
total expected cost of e is at most E[c(e)] = Pr [Ae]E[c(e)

∣∣Ae] = O(k4 logk)/n = poly(k)/n. There are m
edges so the total cost is Θ

(m
n

)
poly(k) as claimed.

Briefly, to see that Theorem 1 is tight (up to factors of k), consider executing a greedy graph coloring
problem on a clique. In this case, at any step, only the highest priority node can ever be processed, and for
each such node, u, it takes O(k) delete attempts before u is processed. Thus in total, the algorithm runs for
O(nk) iterations.

3.2 Algorithm 4: Maximal Independent Set

The following theorem bounds the number of iterations of Algorithm 4. By contrast to Algorithm 2, we
show that using a relaxed queue for computing Maximal Independent Sets on large graphs has essentially
no cost at all, even for dense graphs! In particular, Algorithm 4 incurs a relaxation cost with no dependence
on the size or structure of G, only on the relaxation factor k.
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Theorem 2. Algorithm 4 runs for n+poly(k) iterations.

Proof. Denote the lexicographically first MIS of G with respect to π as MISπ . We first identify the key edges
in the execution of Algorithm 4. We will say an edge e = (u,v) is a hot edge w.r.t. π if u is the smallest
labeled neighbor of v in MISπ . Note that if (u,v) is a hot edge, v is not in MISπ and u has a smaller label
than v. Let He be the event that e is a hot edge w.r.t. π . Importantly, He depends only on the randomness
of π and not on the randomness of the relaxation of Q. We make two key observations about hot edges that
will allow us to prove the theorem:

Claim 2. There is exactly one hot edge incident to each vertex v ∈V \MISπ , and therefore the total number
of hot edges is strictly less than n.

This is clear from the condition that u is the smallest labeled neighbor of v in MISπ and the fact that if v
is not in the MISπ , v must have at least one neighbor in MISπ , or else MISπ isn’t maximal.

Claim 3. A node w is only re-inserted by Algorithm 4 if there is at least one hot edge e = (u,v) with u a root
and `(w) ≥ `(v) (with possibly v = w). If e is such an edge, we say e is active. Furthermore, at least one
active hot edge satisfies `(u)< `(w).

If w is re-inserted, then w must be live and adjacent to some smaller labeled live vertex u. Either u is a
root, in which case (u,w) is the claimed hot edge, or else u must be adjacent to an even smaller labeled live
vertex. In the latter case, we can recurse the argument down to u and eventually find a hot edge. In either
case, both nodes incident to the discovered active hot edge will have a label no greater than w’s.
Proof Outline. The strategy from here is a follows: whenever a failed delete occurs on a node w, we will
charge it to an arbitrary hot edge e = (u,v) with u a root and `(w) ≥ `(v) (of which there must be at least
one by Claim 3). Similar to Theorem 1, we will say that e is active during the interval between the first time
u experiences an inversion on or above v and the time u is processed. We say that the cost, c(e), of an edge,
e, is the number of failed deletes charged to it (which is notably 0 unless e is both hot and, at some point,
active). We then separately bound (1) the expected number of active hot edges which ever exist over the
execution of Algorithm 4 and (2) the expected number of failed deletes charged to an edge, given that it is
an active hot edge. Combining these will give the result.

In order to quantify the distribution of hot edges, we will need one more definition. Fix e = (u,v) and let
Ge be the subgraph of G induced by V ′ =V \{u,v} and let πe be π restricted to V ′. Let Le,t be the event that
neither u nor v has a neighbor w ∈MISπe with `πe(w)< t. Informally, Le,t is the event that both u and v are
still live in G after running Algorithm 4 with an exact queue (k = 1) for t−1 iterations but with u,v excluded
from Q. Like He, Le,t depends only on π and not on the randomness of the relaxation of Q; furthermore, Le,t

is independent from `(u) and `(v). Using this definition, we can compute:

Pr [He] = ∑
t

Pr [Le,t ]Pr [`(u) = t]Pr
[
`(v)> `(u)

∣∣`(u) = t
]

= ∑
t

Pr [Le,t ]
1
n

n− t
n−1

.
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and

Pr
[
`(u) = t

∣∣He
]
=

Pr
[
He
∣∣`(u) = t

]
Pr [`(u) = t]

Pr [He]

=
Pr [Le,t ]Pr

[
`(v)> t

∣∣`(u) = t
]

Pr [`(u) = t]
Pr [He]

=
Pr [Le,t ]

n−t
n−1

1
n

∑t ′ Pr
[
Le,t ′
] 1

n
n−t ′
n−1

=
Pr [Le,t ] (n− t)

∑t ′ Pr
[
Le,t ′
]
(n− t ′)

.

Next, we use the above formulations to bound the probability that a hot edge e is ever active. Suppose
we are given that e is a hot edge and `(u) = t. Then e becomes active if and only if u suffers an inversion on
or above v before u is processed by the algorithm. Let Ae be the event that e becomes active. At this point,
we might wish to apply Lemma 1 directly, but unfortunately it is not clear that Pr [Ae] is independent from
He, which we will need. However, note that He entails `(v) > `(u) but given only that, `(v) is otherwise
independent from He. Thus, if we condition on `(u) = t and `(v) > `(u), then `(u) is fixed and `(v) is
(conditionally) independent from He, and therefore Ae also becomes (conditionally) independent from He.
Now we can apply Corollary 1, giving

Pr
[
Ae
∣∣`(u) = t,He

]
= Pr

[
Ae
∣∣`(u) = t, `(v)> `(u)

]
= O

(
k3 logk
n− t

)
.

Then:

Pr
[
Ae
∣∣He
]
=∑

t
Pr
[
`(u) = t

∣∣He
]

Pr
[
Ae
∣∣`(u) = t,He

]
=∑

t

Pr [Le,t ] (n− t)

∑t ′ Pr
[
Le,t ′
]
(n− t ′)

O(k3 logk)
n− t

= O(k3 logk)
∑t Pr [Le,t ]

∑t ′ Pr
[
Le,t ′
]
(n− t ′)

.

Observe that for fixed e = (u,v), Pr [Le,t ] is decreasing in t. In particular, for any permutation π in which
the event Le,t occurs, Le,t−1 occurs also, but the reverse is not true. Let µ = 1

n ∑t Pr [Le,t ]. Using Chebyshev’s
sum inequality, we obtain:

Pr
[
Ae
∣∣He
]
≤ O(k3 logk)

nµ

∑t ′ µ(n− t ′)

= O(k3 logk)
n

∑t ′(n− t ′)

= O
(

k3 logk
n

)
.
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k
|V | |E| 4 8 16 32 64

1000
10000 12.8 56.8 148.8 308.6 583.0
30000 7.0 40.8 108.6 264.2 478.6

100000 12.4 40.0 100.6 225.8 427.2

10000
10000 11.0 43.2 145.4 336.4 738.6
30000 16.6 71.4 196.0 437.6 890.2

100000 13.0 56.2 144.4 290.6 529.6

Table 1: Simulation results for varying parameters of Maximal Independent Set. k is the relaxation factor,
n is the number of nodes and m is the number of edges. The number of extra iterations is averaged over 2
runs.

Finally, since u is a root and we only charge e for failed deletes on nodes with a larger label than v, and
therefore a larger label than u as well, the number of times we charge e is upper bounded by the total number
of priority inversions suffered by u while a root, which, by Lemma 2, is given by O(k) in expectation. Thus
E[c(e)

∣∣Ae,He] = O(k).
Combining all the parts, we have a final bound on the total cost:

E
[
∑
e

c(e)
]
= ∑

e
Pr [He]Pr [Ae|He]Pr [c(e)|Ae,He]

= ∑
e

Pr [He] ·O
(

k3 logk
n

)
·O(k)

= O
(

k4 logk
n

)
E [#{He}]

Claim 2
< O

(
k4 logk

n

)
·n

= O(k4 logk) = poly(k), q.e.d.

4 Experimental Results

Synthetic Tests. To validate our analysis, we implemented the sequential relaxed framework described in
Algorithm 2, and used it to solve instances of MIS, matching, Knuth Shuffle, and List Contraction using a
relaxed scheduler which uses the MultiQueue algorithm [21], for various relaxation factors. We record the
average number of extra relaxations, that is, the number of failed deletes during the entire execution, across
five runs. Results are presented in Table 1. We considered graphs of various densities with 103 and 104

vertices. The results appear to confirm our analysis: the number of extra iterations required for MIS is low,
and scales only in K and not in |V |+ |E|. There is some variation for fixed K and varying |V |+ |E|, but it is
always within a factor of 2 for our trials and does not appear to be obviously correlated with |V |+ |E|.
Concurrent Experiments. We implemented a simple version of our scheduling framework, using a variant
of the MultiQueue [21] relaxed priority queue data structure. We assume a setting where the input, that
is, the set of tasks, is loaded initially into the scheduler, and is removed by concurrent threads. We use
lock-free lists to maintain the individual priority queues and we hold pointers to the adjacency lists of each
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node within the queue elements, in order to be able to efficiently check whether a task still has outstanding
dependencies.

We compared to the exact scheduling framework using the Wait-free Queue as Fast as Fetch-and-
Add [27]. Since there could still be some reordering of tasks due to concurrency, we elect to use a backoff
scheme wherein if an unprocessed predecessor is encountered, we wait for the predecessor to process. In
practice this rarely occurs.
Setup. Our experiments were run on an Intel Xeon Gold 6150 machine with 4 sockets, 18 cores per socket
and 2 hyperthreads per core, for a total of 36 threads per socket, and 144 threads total. The machine has
512GB of memory, with 128GB local to each socket. Accesses to local memory are cheaper than accesses
to remote memory. We pinned threads to avoid unnecessary context switches and to fill up sockets one at a
time. The machine runs Ubuntu 14.04 LTS. We used the GNU C++ compiler (G++) 6.3.0 with optimization
level -O3.

Experiments are performed on G(n, p) random graphs in three classes; sparse graphs with 108 nodes and
109 edges, small dense graphs with 106 nodes and 109 edges, and large dense graphs with 107 nodes and
1010 edges. Our experiments were bottlenecked by graph generation and loading time so we were limited to
these graph sizes.

For each data point, we run five trials. In each trial, a graph is generated in parallel by 144 threads, and
then we measure the time for n threads to compute an MIS. Note that, even when n = 1, we generate the
graph using 144 threads. To ensure that this does not change memory locality in a way that would invalidate
our results, we used the numactl utility to cause memory to be allocated locally on only the sockets where
n threads will compute the MIS. We verified that this yields the same behavior as experiments where the
graph is generated with only n threads. (Without using numactl, we observed significant slowdowns in the
sequential algorithm.)

The number of queues in the MultiQueue is 4× the number of threads. In our graphs, we plot the average
run time on a logarithmic y-axis versus the number of concurrent threads. Error bars show minimum and
maximum run times.
Discussion. Figure 2 shows that our framework using a relaxed scheduler scales with respect to the time to
compute MIS over the target graph all the way up to max thread count. The exact framework using the fast
wait-free queue also scales, but not as well. In the sparse graphs, the relaxed scheduler is up to ∼ 18.2×
faster than optimized sequential code, compared to the exact scheduler, which peaks at∼ 5.0× faster. In the
small dense graphs, where the time spent traversing edges in the MIS algorithm dominates the minor cost
of dequeuing nodes, the exact scheduler achieves a peak speedup of ∼ 17.8× over the sequential algorithm,
which is approaching the relaxed scheduler’s peak speedup of∼ 24.6×. However, in the large dense graphs,
even though many edges are still traversed by the MIS algorithm, there are sufficiently many nodes to be
dequeued that the performance advantage of the relaxed scheduler shows through: it achieves speedup of
up to ∼ 16.3× compared to the exact scheduler, which manages only ∼ 6.9×. Note that the single threaded
performance of the relaxed scheduler is also quite close to the sequential algorithm. In contrast, the exact
scheduler is orders of magnitude slower with a single thread.

5 Future Work

From a theoretical perspective, the natural next step would be to tighten the poly(k) bound on failed deletes,
both for the generic algorithm and for MIS; in fact, we conjecture that the poly(k) bounds in both Theorems 1
and 2 can be replaced with Θ(k). However, proving such a bound seems to require a deep understanding
of the interplay between the structure of G and the effects of the randomness of a k-relaxed queue, which
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Sparse graph (108 nodes and 109 edges)

Small dense graph (106 nodes and 109 edges)

Large dense graph (107 nodes and 1010 edges)

Figure 2: Results for concurrent MIS experiments.
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we had to take care in our analysis to keep separate. Also of interest is to discover more applications, and
perhaps more instances like MIS in which the bound in Theorem 1 can be improved on.

One shortcoming of our approach is the fact that our cost measure is the number of vertex accesses in
the priority queue. Notice that in theory our bounds may be substantially different when expressed in other
metrics, such as the number of edge accesses for the algorithm to terminate, which are closer to standard
work bounds. We plan to investigate such cost measures in future work.

From the practical perspective, the immediate step would to improve upon our preliminary results, and
implement a high-performance variant of this scheduler, and use this framework in the context of more
general graph processing packages.
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A A Tighter Version of Lemma 1.

We now prove a slightly tighter version for the case where only elements from the top-k may be chosen
by the scheduler Q. Note that the condition in the following Lemma (that u and v are simultaneously in
the top-k) is a pre-requisite for u to experience an inversion on or above v, and thus the Lemma is slightly
stronger than necessary.

Lemma 3. Consider running Algorithm 2 (or Algorithm 4) using a k-relaxed queue Q on input graph
G = (V,E). For a fixed edge e = (u,v), the probability that both u and v are simultaneously in the top-k of
Q during any execution on a random permutation π is bounded by O(k2/n).

Proof. We will write e ∈ top-k as shorthand for the event that u and v are simultaneously in the top-k of
Q at some time. Note that no matter what dependencies exist in the top-k of Q, the entire top-k is flushed
after the rank 1 element gets deleted k times. The number of iterations it takes to delete the rank 1 element k
times after u enters the top-k (thereby flushing u with certainty) is a negative binomially distributed random
variable Xu with mean k2 and success probability 1/k (due to the fairness of Q), and similarly for Xv. Since
Se entails that either `(u) < `(v) < `(u) +Xu or `(v) < `(u) < `(v) +Xv, we note that the two cases are
symmetric and compute:

Pr [e ∈ top-k]≤ Pr [`(u)< `(v)< `(u)+Xu]

+Pr [`(v)< `(u)< `(v)+Xv]

= 2Pr [`(u)< `(v)< `(u)+Xu]

= 2∑
r

Pr [Xu = r]Pr [`(u)< `(v)< `(u)+ r]

= 2∑
r

Pr [Xu = r]
r
n

≤ 2ck2

n
Pr
[
Xu ≤ ck2]+2 ∑

r>ck2

Pr [Xu = r]
r
n

≤ O
(

k2

n

)
+2∑

r′
Pr
[
Xu > r′k2] (r′+1)k2

n

≤ O
(

k2

n

)(
1+∑

r′
eO(−r′)(r′+1)

)
(*)

= O
(

k2

n

)
,
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where (*) uses a standard tail bound on the Negative Binomial Distribution2.

2See [16] for a derivation.
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