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ABSTRACT
There has been significant progress in understanding the paral-

lelism inherent to iterative sequential algorithms: for many classic

algorithms, the depth of the dependence structure is now well un-

derstood, and scheduling techniques have been developed to exploit

this shallow dependence structure for efficient parallel implemen-

tations. A related, applied research strand has studied methods

by which certain iterative task-based algorithms can be efficiently

parallelized via relaxed concurrent priority schedulers. These allow

for high concurrency when inserting and removing tasks, at the

cost of executing superfluous work due to the relaxed semantics of

the scheduler.

In this work, we take a step towards unifying these two research

directions, by showing that there exists a family of relaxed priority

schedulers that can efficiently and deterministically execute classic

iterative algorithms such as greedy maximal independent set (MIS)

and matching. Our primary result shows that, given a randomized

scheduler with an expected relaxation factor of k in terms of the

maximum allowed priority inversions on a task, and any graph on

n vertices, the scheduler is able to execute greedy MIS with only an

additive factor of poly(k ) expected additional iterations compared

to an exact (but not scalable) scheduler. This counter-intuitive result

demonstrates that the overhead of relaxation when computing MIS

is not dependent on the input size or structure of the input graph.

Experimental results show that this overhead can be clearly offset

by the gain in performance due to the highly scalable scheduler. In

sum, we present an efficient method to deterministically parallelize

iterative sequential algorithms, with provable runtime guarantees

in terms of the number of executed tasks to completion.
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1 INTRODUCTION
Given the now-pervasive nature of parallelism in computation,

there has been a tremendous amount of research into efficient par-

allel algorithms for a wide range of tasks. A popular approach has

been to map existing sequential algorithms to parallel architectures,

by exploiting their inherent parallelism. In this paper, we will focus

on two specific variants of this strategy.

The deterministic approach, e.g. [5–8, 18, 25] has been to study

the directed-acyclic graph (DAG) step dependence in classic, widely-

employed sequential algorithms, showing that, perhaps surpris-

ingly, this dependence structure usually has low depth. One can

then design schedulers which exploit this dependence structure

for efficient execution on parallel architectures. As the name sug-

gests, this approach ensures deterministic outputs (i.e. outputs

uniquely determined by the input), and can yield good practical

performance [7], but requires a non-trivial amount of knowledge

about the problem at hand, and the use of carefully-constructed

parallel schedulers [7].

To illustrate, let us consider the classic sequential greedy strat-

egy for solving the maximal independent set (MIS) problem on

arbitrary graphs: the algorithm examines the set of vertices in the

graph following a fixed, random sequential priority order, adding a

vertex to the independent set if and only if no neighbor of higher

priority has already been added. The basic insight for parallelization

is that the outcome at each node may only depend on a small subset

of other nodes, namely its neighbors which are higher priority in

the random order. Blelloch, Fineman and Shun [7] performed an

in-depth study of the asymptotic properties of this dependence

structure, proving that, for any graph, the maximal depth of a chain

of dependences is in factO (log2 n) with high probability, where n is

the number of nodes in the graph. Recently, an impressive analytic

result by Fischer and Noever [13] provided tight Θ(logn) bounds
on the maximal dependency depth for greedy sequential MIS, effec-

tively closing this problem for MIS. Beyond greedy MIS, there has

been significant progress in analyzing the dependency structure

of other fundamental sequential algorithms, such as algorithms
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for matching [7], list contraction [25], Knuth shuffle [25], linear

programming [5], and graph connectivity [5].

An alternative approach has been to employ relaxed data struc-
tures to schedule task-based programs. Starting with Karp and

Zhang [19], the general idea is that, in some applications, the sched-

uler can relax the strict order induced by following the sequential

algorithm, and allow tasks to be processed speculatively ahead of

their dependencies, without loss of correctness. A standard example

is parallelizing Dijkstra’s single-source shortest paths (SSSP) algo-

rithm, e.g. [1, 20, 22]: the scheduler can retrieve vertices in relaxed

order without breaking correctness, as the distance at each vertex is

guaranteed to eventually converge to the minimum. The trade-off

is between the performance gains arising from using simpler, more

scalable schedulers, and the loss of determinism and the wasted

work due to relaxed priority order. This approach is quite popular

in practice, as several high-performance relaxed schedulers have

been proposed, which can attain state-of-the-art results in settings

such as graph processing and machine learning [14, 20]. At the

same time, despite good empirical performance, this approach still

lacks analytical bounds, and results are no longer deterministic.

In this paper, we ask: is it possible to achieve both the simplicity

and good performance of relaxed schedulers as well as the pre-

dictable outputs and runtime upper bounds of the “deterministic"

approach?

Contribution. In a nutshell, this work shows that a natural family

of fair relaxed schedulers—providing upper bounds on the degree

of relaxation, and on the number of inversions that a task can

experience—can execute a range of iterative sequential algorithms

deterministically, preserving the dependence structure, and prov-
ably efficiently, providing analytic upper bounds on the total work

performed. Our results cover the classic greedy sequential graph al-

gorithms for maximal independent set (MIS), matching, and coloring,
but also algorithms for list contraction and generating permutations
via the Knuth shuffle. We call this class iterative algorithms with
explicit dependencies. Our main technical result is that, for MIS

and matching in particular, the overhead of relaxed scheduling

is independent of the graph size or structure. This analytical result
suggests that relaxed schedulers should be a viable alternative, a

finding which is also supported by our preliminary concurrent

implementation.

Specifically, we consider the following framework. Given an

input, e.g., a graph, the sequential algorithm defines a set of tasks, e.g.
one per graph vertex, which should be processed in order, respecting

some fixed, arbitrary data dependencies, which can be specified as

a DAG. Tasks will be accessible via a scheduler, which is relaxed,
in the sense that it could return tasks out of order. This induces
a sequential model,

1
where at each step, the scheduler returns a

new task: for simplicity, assume for now that the scheduler returns

at each step a task chosen uniformly at random among the top-k
available tasks, in descending priority order. (Wewill model realistic

relaxed schedulers [2, 21] precisely in the following section.)

Assume a thread receives a task from the scheduler. Crucially,

the thread cannot process the task if it has data dependencies on

1
We consider this sequential model, similar to [7], since there currently are no precise

ways to model the contention experienced by concurrent threads on the scheduler.

Instead, we validate our findings via a fully concurrent implementation.

higher-priority tasks: this way, determinism is enforced. (We call

such a failed delete attempt by the thread a wasted step.) However,

threads are free to process tasks which do not have such outstand-

ing dependencies, potentially out-of-order (we call these successful
steps.) We measure work in terms of the total number of scheduler

queries needed to process the entire input, including both successful

and unsuccessful removal steps.

We provide a simple yet general approach to analyze this relaxed

scheduling process, by characterizing the interaction between the

dependency structure induced by a given problem on an arbitrary

input, and the relaxation factor k in the scheduling mechanism,

which yields bounds on expected work when executing such al-

gorithms via relaxed schedulers. Our approach extends to general

iterative algorithms, as long as task dependencies are explicit, i.e.,
can be statically expressed given the input, and tasks can be ran-

domly permuted initially.

The work efficiency of this framework will critically depend on

the rate at which threads are able to successfully remove dependency-

free tasks. Intuitively, this rate appears to be highly dependent on

(1) the problem definition, (2) the scheduler relaxation factor k , but
also on (3) the structure of the input. Indeed, we show that in the

most general case, a k-relaxed scheduler can process an input de-

scribed by a dependency graphG on n nodes andm edges and incur

O (mn poly(k )) wasted steps, i.e. n +O (mn poly(k )) total steps. This
result immediately implies a low “cost of relaxation” for problems

whose dependency graph is inherently sparse, such as Greedy Col-

oring on sparse graphs, Knuth Shuffle and List Contraction, which

are characterized by a dependency structure with onlym = O (n)
edges. Hence, in general, such sparse problems incur negligible

relaxation cost when k ≪ n.
Our main technical result is a counter-intuitive bound for greedy

MIS: our framework equipped with a k-relaxed scheduler can ex-

ecute greedy MIS on any graph G and experience only poly(k )
wasted steps (i.e. n + poly(k ) total steps), regardless of the size or
structure of G. This result is surprising as well as technically non-

trivial, and demonstrates that for MIS on large graphs, operation-

level speedups provided by relaxation come with a negligible global

trade-off. A similar result holds for maximal matching.

In the broader context of the parallel scheduling literature, our

results suggest that task priorities can be supported in a scalable

manner, through relaxation, without loss of determinism or work ef-

ficiency.We believe this is the first time this observation is made.We

validate our results empirically, via a preliminary implementation

of the scheduling framework in C++, based on a lock-free extension

of the MultiQueue relaxed schedulers [21]. Our broad finding is

that this relaxed scheduling framework can ensure scalable execu-

tion, with minimal overheads due to contention and verifying task

dependencies. For MIS on large graphs, we obtain a solution, with

6x speedup at 24 threads versus an optimized sequential baseline.

Related Work. Our work is inspired by the line of research by

Blelloch et al. [5–7, 18, 25], as well as [11–13], whose broad goal

has been to examine the dependency structure of a wide class of

iterative algorithms, and to derive efficient scheduling mechanisms

given such structure.

At the same time, there are several differences between these

results and our work. First, at the conceptual level, [7, 25] start from
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analytical insights about the dependency structure of algorithms

such as greedy MIS, and apply them to design scheduling mecha-

nisms which can leverage this structure, which require problem-

specific information. In some cases, e.g. [7], the scheduling mecha-

nisms found to perform best in practice differ from the structure of

the schedules analyzed. By contrast, we start from a realistic model

of existing high-performance relaxed schedulers [21], and show

that such schedulers can automatically and efficiently execute a

broad set of iterative algorithms. Second, at the technical level, the

methods we develop are different: for instance, the fact that the iter-
ative algorithms we consider have low dependency depth [5, 7, 25]

does not actually help our analysis, since a sequential algorithm

could have low dependency depth and be inefficiently executable

by a relaxed scheduler: the bad case here is when the dependency

depth is low (logarithmic), but each “level" in a breadth-first tra-

versal of the dependency graph has high fanout. Specifically, we

emphasize that the notion of prefix defined in [7] to simplify analy-

sis is different from the set of positions S which can be returned by

the relaxed stochastic scheduler: for example, the parallel algorithm

in [7] requires each prefix to be fully processed before being re-

moved, whereas S acts like a sliding window of positions in our case.

The third difference is in terms of analytic model: references such

as [7] express work bounds in the CRCW PRAM model, whereas

we count work in terms of number of tasks processing attempts.

Our analysis is sequential, and we implement our algorithms on

a shared memory architecture to demonstrate empirically good

performance.

To our knowledge, the first instance of a relaxed scheduler is

in work by Karp and Zhang [19], for parallelizing backtracking

strategies in a (synchronous) PRAM model. This area has recently

become extremely active, with several such schedulers (also called

relaxed priority queues) being proposed over the past decade, see [1,

2, 4, 15, 20, 21, 23, 24, 26] for recent examples. In particular, we

note that state-of-the-art packages for graph processing [20] and

machine learning [14] implement such relaxed schedulers.

Recent work by a subset of the authors [2] showed that a sim-

ple and popular priority scheduling mechanism called the Mul-

tiQueue [14, 15, 21] enforces strong probabilistic guarantees on

the rank of elements returned, in an idealized model. Concurrent

work [3] proves that these guarantees in fact hold in asynchronous

concurrent executions, under some analytic assumptions. Based on

this result, our work bounds should hold when using MultiQueues

as relaxed schedulers, in concurrent executions.

Parallel scheduling [9, 10] is an extremely vast area and a com-

plete survey is beyond our scope. We do wish to emphasize that

standard work-stealing schedulers will not provide this type of

work bounds, since they do not provide any guarantees in terms of

the rank of elements removed: the rank becomes unbounded over

long executions, since a single random queue is sampled at every

stealing step [2]. To our knowledge, there is only one previous

attempt to add priorities to work-stealing schedulers [17], using

a multi-level global queue of tasks, partitioned by priority. This

technique is different, and provides no work guarantees.

2 EXECUTING ITERATIVE ALGORITHMS
VIA PRIORITY SCHEDULERS

2.1 Modeling Relaxed Priority Schedulers
In the following, we will provide the sequential specification of

a generic relaxed priority scheduler Q , which contains a set of

⟨task, priority⟩ pairs. A relaxed priority scheduler will provide the

following methods:

• ApproxGetMin(), which returns a ⟨task, priority⟩ pair and
deletes it from the structure, if a task is available, or ⊥, oth-

erwise. The relaxation guarantees of this operation are pre-

cisely defined below;

• Empty(), which returns whether the scheduler still has tasks

or not;

• Insert( ⟨task, priority⟩ ), which inserts a new task into Q .

Let rank(t ) be the rank of the task which is returned by the t th

ApproxGetMin operation, among all tasks present inQ . We say that

task u ∈ Q experiences a priority inversion at an ApproxGetMin
step if a task v of lower priority than u is retrieved at that step. For

any task u, let inv(u) be the number of inversions which the task u
experiences before being removed.

Definition 2.1. Fix a relaxed priority scheduler Q , with parame-

ters k ≥ 1, the rank bound, and ϕ, the fairness bound. We say that

Q is an (k,ϕ)-relaxed priority scheduler if it ensures the following:

(1) Rank Bound. For any time t , and any integer ℓ > 1,

Pr[rank(t ) ≥ ℓ] ≤ exp (−ℓ/k ).
(2) Fairness Bound. For any task u, and any integer ℓ ≥ 1,

Pr[inv(u) ≥ ℓ] ≤ exp (−ℓ/ϕ).

Relation to Practical Schedulers. Upon inspection, both the

SprayList [1] and the MultiQueue [21] relaxed priority schedulers

ensure these exponential tail bounds on both rank and fairness,

under some analytic assumptions. These conditions are trivially

ensured by deterministic implementations such as [26]. In par-

ticular, the SprayList ensures these bounds with parameters k
and ϕ in O (p polylogp), where p is the number of processors [1].

MultiQueues ensure these bounds with parameters k = O (m),
and ϕ = O (m logm), where m is the number of distinct priority

queues [2]. This holds even in concurrent executions [3].

In the following, it will be convenient to assume a single pa-

rameter k , which upper bounds both the rank and the relaxation

parameters. We call the (k,k )-relaxed scheduler simply a k-relaxed
scheduler.

2.2 A General Scheduling Framework
We now present our framework for executing task-based sequential

programs, whose pseudocode is given in Algorithm 1. We assume

a permutation π which dictates an execution order on tasks. If u

is the ith element in π , we will write π (i ) = u and ℓ(u) = i (ℓ
for label). Algorithm 1 encapsulates a large number of common

iterative algorithms on graphs, including Greedy Vertex Coloring,

Greedy Matching, Greedy Maximal Independent Set, Dijkstra’s

SSSP algorithm, and even some algorithms which are not graph-

based, such as List Contraction and Knuth Shuffle [5]. We show

sample instantiations of the framework in Section 2.3.
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Algorithm 1: Generic Task-based Framework

Data: Dependency Graph G = (V , E )
Data: Vertex permutation π

1 // Q is an exact priority queue

2 Q ← vertices in V with priorities π (V )

3 for each step t do
4 // Get new element from the buffer

5 vt ← Q .GetMin()
6 Process(v )
7 Remove vt from Q
8 if Q .empty() then
9 break

Algorithm 2: Relaxed Scheduling Framework

Data: Dependency Graph G = (V , E )
Data: Vertex permutation π
Data: Parameter k

1 // Q is a k-relaxed scheduler

2 Q ← vertices in random order

3 for each step t do
4 // Get new element from the buffer

5 vt ← Q .ApproxGetMin()
6 if vt has unprocessed predecessor then
7 Q .inser t (vt , π (vt )) // Failed; reinsert

8 continue
9 else Process(v )

10 if Q .empty() then break

Algorithm 2 gives a method for adapting Algorithm 1 to use a re-
laxed queue, given an explicit dependency graphG = (V ,E) whose
nodes are the tasks, and whose edges are dependencies between

tasks. Importantly, given the dependency graph G, Algorithm 2

gives the same output as Algorithm 1, irrespective of the relax-

ation factor k . As usual, we write |V | = n and |E | =m. We assume

that the permutation π represents a priority order so that an edge

e = (u,v ) ∈ E means that v depends on u if ℓ(v ) > ℓ(u) and vice-

versa. In the former case, we say that v is a successor of u and u is a

predecessor of v .
Our main result regarding Algorithm 2, proven formally in Sec-

tion 3.1, argues that if π is chosen uniformly at random from among

all vertex permutations, then Algorithm 2 completes in at most

n+O (mn poly (k )) iterations (compared to exactly n for Algorithm 1).

This result demonstrates that providedG is not too dense, the “cost

of relaxation” is low for the class of problems which admit uni-

formly random task permutations. Notably, this class includes all

of the problems mentioned above, except for Dijkstra’s algorithm

(since there, π needs to respect the ordering of nodes sorted by

distance from the source).

2.3 Example Applications
Applying the sequential task-based framework of Algorithm 1 only

requires an implementation of Process(v). Implementing the re-

laxed framework in Algorithm 2 further requires G (either explic-

itly or via a predecessor query method). We now give examples for

Greedy Vertex Coloring and List Contraction, whose dependency

graph is implicit.

Greedy Vertex Coloring. Vertex Coloring is the problem of as-

signing a color (represented by a natural number) to each vertex

of the input graph, G, such that no adjacent vertices share a color.

The Greedy Vertex Coloring algorithm simply processes the ver-

tices in some permutation order, π , and assigns each vertex in turn

the smallest available color. The implementation of Process(v) for
Greedy Vertex Coloring needs to determine the color of v , which
can be done as described below:

Algorithm 3: Greedy Vertex Coloring Process(v )
Data: Input Graph G = (V , E )
Data: Permutation π
Data: Partial coloring c : V → N

1 Function Process(v) :
2 S ← ∅
3 foreach (u, v ) ∈ G, s.t. ℓ(u ) < ℓ(v ) do
4 S ← S ∪ {c (u ) }
5 c (v ) ← mini∈N i < S

Since the underlying dependency graph is just the input graph

with edge orientations given by π , this is all that needs to be pro-

vided.

List Contraction. List Contraction takes a doubly linked list,

L, and iteratively contracts its nodes. Contracting a node v con-

sists of swinging two pointers: v .next.previous← v .previous and
v .previous.next← v .next, effectively removingv from the list. List

Contraction is useful, e.g., for cycle counting. Although List Con-

traction is not inherently a graph problem, we can still construct

a dependency graph G whose nodes are list elements and with an

edge between elements which are adjacent in L. If we induce a pri-
ority order on list elements (e.g. uniformly at random), then there

is an induced orientation of the edges of the dependency graph

which forms a DAG. Then a predecessor query on v consists of

checking whether either v .next or v .prev is an unprocessed prede-

cessor. Process(v ) can be implemented with just the two steps of

contraction above (possibly along with the metrics the application

is computing).

2.4 Greedy Maximal Independent Set
We give a variant of Algorithm 2 adapted for Greedy Maximal

Independent Set (MIS), which makes use of some exploitable sub-

structure. In particular, once some neighbor,u, of a vertexv is added

to the MIS, then v can never be added to the MIS, at which point

v’s dependents no longer have to wait for v to be processed. Algo-

rithm 4 implements MIS in the framework of Algorithm 2 while

also making use of this observation. Interestingly, Algorithm 4 can

also be used to find a maximal matching by taking the input graph

G of the matching instance and converting it to a graph G ′, where
G ′ has a vertex for each edge in G and there is an edge between

vertices of G ′ if the corresponding edges of G share an incident

vertex. (One can view matching as an “independent set” of edges,

no two of which are incident to the same vertex.)
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Algorithm 4: Relaxed Queue MIS

Data: GraphG = (V , E )
Data: Vertex permutation π
Data: Parameter k

1 // Q is a k-approximate priority queue

2 Q ← vertices in random order, all marked live
3 for each step t do
4 // Get new element from the buffer

5 vt ← Q .ApproxGetMin()
6 if vt marked dead then continue

7 else if vt has live predecessor inQ then
8 Q .inser t (vt , π (vt )) // Failed; reinsert

9 continue
10 else
11 Add vt to MIS

12 Mark all of vt ’s neighbors dead
13 Remove vt fromQ
14 if Q .empty() then break

As we will show in Section 3, the simple improvement Algo-

rithm 4 makes over Algorithm 2 results in only a negligible number

of extra iterations due to relaxation.

3 ANALYSIS
In this section, we will bound the relaxation cost for the general

framework (Algorithm 2) and for Maximal Independent Set (Al-

gorithm 4). Algorithm 2 is easier to analyze and will serve as a

warmup. Note that in both cases, n iterations are required to pro-

cess all nodes and are necessary even with no relaxation. Thus,

we can think of the “cost” of relaxation as the number of further

iterations beyond the first n, which can be equivalently counted as

the number of re-insertions performed by the algorithm. We will

sometimes refer to executing such a re-insertion as a “failed delete”

by Q .
Our primary goal will be to bound the number of iterations of

the for loops in Algorithm 2 and 4 when running them sequentially

with a k-relaxed priority queue. Although the initial analysis is

sequential, the algorithms are parallel: threads can each run their

own for loops concurrently and correctness is maintained. The

difficulty in extending the analysis to the asynchronous setting is

that it is not clear how to model failed deletes of dependents of a

node that is being processed. The likelihood of such deletes depend

on particulars of both the problem (i.e. how long processing and

dependency checking steps actually take) and the thread scheduler

and so are hard to model in our generic framework. Instead, we

show empirically that our bounds hold in practice on a realistic

asynchronous machine where threads run the loops fully in parallel.

The theorems we will prove are the following. Given a depen-

dency graph G = (V ,E) with |V | = n vertices and |E | = m edges,

we first bound the number of iterations of Algorithm 2:

Theorem 3.1. Algorithm 2 runs for n +O
(
m
n

)
poly(k ) iterations

in expectation.

By contrast to Algorithm 2, we show that using a relaxed queue

for computing Maximal Independent Sets on large graphs has essen-

tially no cost at all, even for dense graphs! In particular, Algorithm 4

incurs a relaxation cost with no dependence at all on the size or

structure of G, only on the relaxation factor k :

Theorem 3.2. Algorithm 4 runs for n + poly(k ) iterations in ex-
pectation.

…

Figure 1: Simple illustration of the process. The blue thread
queries the relaxed scheduler, which returns one of the top
k tasks, on average (in brackets). Some of these tasks (green)
can be processed immediately, as they have no dependencies.
Tasks with dependencies (red) cannot be processed yet, and
therefore result in failed deletes.

Before delving into the individual analyses, we first consider

some key characteristics of a particular relaxed queue which will be

at play, and quantify them in terms of the fairness and rank error of
Q . As discussed in Section 2.1, we will assume that Q is k-relaxed:
that is, Q provides exponential tail bounds on the rank error and

on the number of inversions experienced by an element, in terms

of the parameter k . Intuitively, it may help to think of a queue

which returns a uniformly random element of the top-k at each

step as the “canonical” k-relaxed Q . See Figure 1 for an illustration.

(As discussed in Section 2.1, real schedulers have slightly different

properties, which are captured in our framework.) We state and

prove two technical lemmas parameterized by k .
First, we characterize the probability that, for some edge e =

(u,v ) in the dependency graph where u is a predecessor of v , v
experiences an inversion beforeu is processed. We say that vertexu
experiences an inversion on or above node v at some point during

the execution if ℓ(u) < ℓ(v ), but some node with label at least ℓ(v )
is returned by Q before u is processed during the execution.

Lemma 3.3. Consider running Algorithm 2 (or Algorithm 4) using
a k-relaxed queue Q on input graph G = (V ,E). For a fixed edge
e = (u,v ), the probability that u experiences an inversion on or above
v during the execution is bounded by O (k2 logk/n).

Proof. We begin by proving a few immediate claims.

Claim 1. At any time t , the probability of removing the element
of top rank from Q is at least 1/k .

Proof. By the rank bound, we have that Pr[rank(t ) ≥ 2] ≤

(1/e )2/k < 1 − 1/k . It therefore follows that Pr[rank (t ) = 1] ≥

1/k . □

Let tu be the first time when u experiences an inversion, and let

Ru be its rank at that time. Since an element of rank ≥ u must be

chosen at tu , we have that, for any ℓ ≥ 1,

Pr[Ru ≥ ℓ] ≤ exp(−ℓ/k ).

In particular, Pr[Ru ≥ ck logk] ≤ (1/k )c , for any constant c ≥ 1.

That is, u has rank ≤ ck logk at the time where it experiences its

first inversion, w.h.p. in k . We now wish to bound the number of

removals between the point when u experiences its first inversion,

and the point when u is removed. Let this random variable be ∆k .
By Claim 1, the top element is always removed within O (k ) trials
in expectation, and hence we can show that

∆k ≥ (c + 2)k2 logk, with probability at most 1/kc ,
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for c ≥ 1, by bounding the time until all elements with rank ≥ u get

removed, and connecting with the negative binomial distribution.

We now wish to know the probability that one of these steps

is an inversion experienced by u on or above v . Fix a step t , and
pessimistically assume that u is at the top of the queue at this time.

Node v has lesser priority than u, chosen uniformly at random. Let

j be the position of v , noting that Pr[j = π (u) + ℓ] ≤ 1/n, for any
integer ℓ ≥ 1.

Fixing j, we have that the probability that u experiences an

inversion on or above v is ≤ (1/e ) j/k . Fixing ∆k , and bounding

over all choices of j, we have that the probability that v is chosen

is ≤
∑n
j=1

1

n

(
1

e

) j/k
= O (1/n).

Finally, bounding over all possible values of ∆k and their proba-

bilities, we get that the probability that u experiences an inversion

on v during the execution is at most O (k2 logk/n). □

Furthermore, the above proof directly implies the following corol-

lary:

Corollary 3.4. Consider running Algorithm 2 (or Algorithm 4)
using a k-relaxed queue Q on input graph G = (V ,E). For a fixed
edge e = (u,v ), the probability that u experiences an inversion on or
above v during an execution on a random permutation π conditioned
on ℓ(u) = t , ℓ(v ) > t is bounded by O (k2 logk/(n − t )).

In AppendixA,we also prove a slightly tighter version of Lemma 3.3

for the case where the implementation of Q provides the further

guarantee of only returning elements from the top-k. Note that such

a queue is always k-rank bounded, but is not necessarily k-fair.
Our second technical lemma quantifies the expected number

of priority inversions incurred by an element, u, of Q once u’s de-
pendencies have been processed—that is, the number of times an ele-

ment ofQ with lower priority thanu is returned byGetApproxMin()
before u is. If a vertex u has no predecessor inQ at some time t , we
call u a root.

Lemma 3.5. Consider running Algorithm 2 (or Algorithm 4) using
a k-relaxed queue Q on input graph G = (V ,E). For a fixed node u,
if u is a root at some time t , at most O (k ) other elements of Q with
lower priority than u are deleted after t in expectation.

Proof. Follows immediately from the k-fairness provided by

Q . □

We stress that these two lemmas quantify the entire contribution

of (the randomness of) the relaxation ofQ to the analysis. The major

burden of the analysis, particularly for MIS, is instead to manage the

interaction between the randomness of the permutation π (which

is not inherently related to the relaxation of Q) and the structure

of G. Equipped with these lemmas, we are ready to do just that.

3.1 Algorithm 2: The General Case
The following theorem shows that the relaxed queue in Algorithm 2

has essentially no cost for sparse dependency graphs withm = O (n)
and still completes in O (nk ) iterations even for dense dependency

graphs whenm = O (n2). For example, Theorem 3.1 demonstrates

that task-based problems which are inherently sparse such as Knuth

Shuffle and List Contraction [5] incur only negligible “wasted work”

when utilizing a k-relaxed queue with k ≪ n. Furthermore, graph

problems with edge dependencies such as greedy vertex coloring

incur a cost proportional to the sparsity of the underlying graph.

Although the result is not technically challenging, it is tight up to

factors of k .

Theorem 3.1. For a dependency graph G = (V ,E) with |V | = n
vertices and |E | =m edges, Algorithm 2 runs for n +O

(
m
n

)
poly(k )

iterations.

Proof. We will compute the expected number of failed deletes

directly as follows: Whenever a failed delete occurs on a node w ,

charge it to the lexicographically first edge, e = (u,v ), for which
u and v are both unprocessed and ℓ(v ) ≤ ℓ(w ) (i.e., with possibly

v = w). Note that (1) such an edge must exist or else a failed

delete could not have occurred, (2) the failed delete must represent

a priority inversion on u, and (3) u must be a root (because e is

lexicographically first). The first time an edge e is charged, we call e
the active edge untilu is processed. Sinceu is a root for the duration

of e’s status as active edge, by Lemma 3.5, u only experiences O (k )
priority inversions in expectation while e is active, which upper

bounds the number of failed deletes charged to e .
Let Ae be the event that edge e = (u,v ) ever becomes ac-

tive. Ae can only occur if u experiences an inversion on or above

v during the execution, which is bounded by O (k2 logk/n) by
Lemma 3.3. Thus, the total expected cost of e is at most E[c (e )] =

Pr [Ae ]E[c (e )
���Ae ] = O (k3 logk )/n = poly(k )/n. There arem edges

so the total cost is Θ
(
m
n

)
poly(k ) as claimed. □

Briefly, to see that Theorem 3.1 is tight (up to factors of k), con-
sider executing a greedy graph coloring problem on a clique. In

this case, at any step, only the highest priority node can ever be

processed, and for each such node, u, it takes O (k ) delete attempts

before u is processed. Thus in total, the algorithm runs for O (nk )
iterations.

3.2 Algorithm 4: Maximal Independent Set
The following theorem bounds the number of iterations of Algo-

rithm 4. By contrast to Algorithm 2, we show that using a relaxed

queue for computing Maximal Independent Sets on large graphs

has essentially no cost at all, even for dense graphs! In particular,

Algorithm 4 incurs a relaxation cost with no dependence on the

size or structure of G, only on the relaxation factor k .

Theorem 3.2. Algorithm 4 runs for n + poly(k ) iterations.

Proof. Denote the lexicographically first MIS of G with respect

to π as MISπ . We first identify the key edges in the execution of

Algorithm 4. We will say an edge e = (u,v ) is a hot edge w.r.t. π if

u is the smallest labeled neighbor of v inMISπ . Note that if (u,v )
is a hot edge, v is not in MISπ and u has a smaller label than v .
Let He be the event that e is a hot edge w.r.t. π . Importantly, He
depends only on the randomness of π and not on the randomness

of the relaxation of Q . We make two key observations about hot

edges that will allow us to prove the theorem:

Claim 2. There is exactly one hot edge incident to each vertex
v ∈ V \MISπ , and therefore the total number of hot edges is strictly
less than n.
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This is clear from the condition that u is the smallest labeled

neighbor of v in MISπ and the fact that if v is not in the MISπ ,
v must have at least one neighbor in MISπ , or else MISπ isn’t

maximal.

Claim 3. A nodew is only re-inserted by Algorithm 4 if there is
at least one hot edge e = (u,v ) with u a root and ℓ(w ) ≥ ℓ(v ) (with
possibly v = w). If e is such an edge, we say e is active. Furthermore,
at least one active hot edge satisfies ℓ(u) < ℓ(w ).

If w is re-inserted, then w must be live and adjacent to some

smaller labeled live vertex u. Either u is a root, in which case (u,w )
is the claimed hot edge, or else u must be adjacent to an even

smaller labeled live vertex. In the latter case, we can recurse the

argument down to u and eventually find a hot edge. In either case,

both nodes incident to the discovered active hot edge will have a

label no greater thanw’s.

Proof Outline. The strategy from here is a follows: whenever a

failed delete occurs on a nodew , we will charge it to an arbitrary

hot edge e = (u,v ) with u a root and ℓ(w ) ≥ ℓ(v ) (of which there

must be at least one by Claim 3). Similar to Theorem 3.1, we will

say that e is active during the interval between the first time u
experiences an inversion on or above v and the time u is processed.

We say that the cost, c (e ), of an edge, e , is the number of failed

deletes charged to it (which is notably 0 unless e is both hot and,

at some point, active). We then separately bound (1) the expected

number of active hot edges which ever exist over the execution of

Algorithm 4 and (2) the expected number of failed deletes charged

to an edge, given that it is an active hot edge. Combining these will

give the result.

In order to quantify the distribution of hot edges, we will need

one more definition. Fix e = (u,v ) and let Ge be the subgraph of

G induced by V ′ = V \ {u,v} and let πe be π restricted to V ′. Let
Le,t be the event that neither u nor v has a neighbor w ∈ MISπe
with ℓπe (w ) < t . Informally, Le,t is the event that both u and v are

still live inG after running Algorithm 4 with an exact queue (k = 1)

for t − 1 iterations but with u,v excluded from Q . Like He , Le,t
depends only on π and not on the randomness of the relaxation of

Q ; furthermore, Le,t is independent from ℓ(u) and ℓ(v ). Using this

definition, we can compute:

Pr [He ] =
∑
t

Pr

[
Le,t

]
Pr [ℓ(u) = t] Pr

[
ℓ(v ) > ℓ(u)���ℓ(u) = t

]

=
∑
t

Pr

[
Le,t

] 1

n

n − t

n − 1
.

and

Pr

[
ℓ(u) = t ���He

]
=

Pr

[
He

���ℓ(u) = t
]
Pr [ℓ(u) = t]

Pr [He ]

=
Pr

[
Le,t

]
Pr

[
ℓ(v ) > t ���ℓ(u) = t

]
Pr [ℓ(u) = t]

Pr [He ]

=
Pr

[
Le,t

] n−t
n−1

1

n∑
t ′ Pr

[
Le,t ′

]
1

n
n−t ′
n−1

=
Pr

[
Le,t

]
(n − t )∑

t ′ Pr
[
Le,t ′

]
(n − t ′)

.

Next, we use the above formulations to bound the probability

that a hot edge e is ever active. Suppose we are given that e is a hot
edge and ℓ(u) = t . Then e becomes active if and only if u suffers an

inversion on or above v before u is processed by the algorithm. Let

Ae be the event that e becomes active. At this point, we might wish

to apply Lemma 3.3 directly, but unfortunately it is not clear that

Pr [Ae ] is independent fromHe , which we will need. However, note

that He entails ℓ(v ) > ℓ(u) but given only that, ℓ(v ) is otherwise
independent from He . Thus, if we condition on ℓ(u) = t and ℓ(v ) >
ℓ(u), then ℓ(u) is fixed and ℓ(v ) is (conditionally) independent from
He , and therefore Ae also becomes (conditionally) independent

from He . Now we can apply Corollary 3.4, giving

Pr

[
Ae

���ℓ(u) = t ,He
]
= Pr

[
Ae

���ℓ(u) = t , ℓ(v ) > ℓ(u)
]

= O

(
k2 logk

n − t

)
.

Then:

Pr

[
Ae

���He
]
=

∑
t

Pr

[
ℓ(u) = t ���He

]
Pr

[
Ae

���ℓ(u) = t ,He
]

=
∑
t

Pr

[
Le,t

]
(n − t )∑

t ′ Pr
[
Le,t ′

]
(n − t ′)

O (k2 logk )

n − t

= O (k2 logk )

∑
t Pr

[
Le,t

]∑
t ′ Pr

[
Le,t ′

]
(n − t ′)

.

Observe that for fixed e = (u,v ), Pr
[
Le,t

]
is decreasing in

t . In particular, for any permutation π in which the event Le,t
occurs, Le,t−1 occurs also, but the reverse is not true. Let µ =
1

n
∑
t Pr

[
Le,t

]
. Using Chebyshev’s sum inequality, we obtain:

Pr

[
Ae

���He
]
≤ O (k2)

nµ∑
t ′ µ (n − t ′)

= O (k2 logk )
n∑

t ′ (n − t ′)

= O

(
k2 logk

n

)
.

Finally, since u is a root and we only charge e for failed deletes

on nodes with a larger label than v , and therefore a larger label

than u as well, the number of times we charge e is upper bounded
by the total number of priority inversions suffered by u while a

root, which, by Lemma 3.5, is given by O (k ) in expectation. Thus

E[c (e )���Ae ,He ] = O (k ).

Combining all the parts, we have a final bound on the total cost:

E


∑
e

c (e )

=

∑
e

Pr [He ] Pr [Ae |He ] Pr [c (e ) |Ae ,He ]

=
∑
e

Pr [He ] ·O

(
k2 logk

n

)
·O (k ))

= O

(
k3 logk

n

)
E [#{He }]

Claim 2

< O

(
k3 logk

n

)
· n

= O (k3 logk ) = poly(k ), q.e.d. □
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k

|V | |E | 4 8 16 32 64

1000

10000 12.8 56.8 148.8 308.6 583.0

30000 7.0 40.8 108.6 264.2 478.6

100000 12.4 40.0 100.6 225.8 427.2

10000

10000 11.0 43.2 145.4 336.4 738.6

30000 16.6 71.4 196.0 437.6 890.2

100000 13.0 56.2 144.4 290.6 529.6

Table 1: Simulation results for varying parameters of Maxi-
mal Independent Set. k is the relaxation factor, n is the num-
ber of nodes andm is the number of edges. The number of
extra iterations is averaged over 2 runs.

4 EXPERIMENTAL RESULTS
Synthetic Tests. To validate our analysis, we implemented the

sequential relaxed framework described in Algorithm 2, and used

it to solve instances of MIS, matching, Knuth Shuffle, and List

Contraction using a relaxed scheduler which uses the MultiQueue

algorithm [21], for various relaxation factors. We record the average

number of extra relaxations, that is, the number of failed deletes

during the entire execution, across five runs. Results are presented

in Table 1. We considered graphs of various densities with 10
3
and

10
4
vertices. The results appear to confirm our analysis: the number

of extra iterations required for MIS is low, and scales only in K and

not in |V | + |E |. There is some variation for fixed K and varying

|V | + |E |, but it is always within a factor of 2 for our trials and does

not appear to be obviously correlated with |V | + |E |.

Concurrent Experiments. We implemented a simple version of

our scheduling framework, using a variant of the MultiQueue [21]

relaxed priority queue data structure.We assume a settingwhere the

input, that is, the set of tasks, is loaded initially into the scheduler,

and is removed by concurrent threads. We use lock-free lists to

maintain the individual priority queues and we hold pointers to the

adjacency lists of each node within the queue elements, in order

to be able to efficiently check whether a task still has outstanding

dependencies.

We compared to the exact scheduling framework using the Wait-

free Queue as Fast as Fetch-and-Add [27]. Since there could still

be some reordering of tasks due to concurrency, we elect to use a

backoff scheme wherein if an unprocessed predecessor is encoun-

tered, we wait for the predecessor to process. In practice this rarely

occurs.

Setup. Our experiments were run on an Intel Xeon Gold 6150

machine with 4 sockets, 18 cores per socket and 2 hyperthreads per

core, for a total of 36 threads per socket, and 144 threads total. The

machine has 512GB of memory, with 128GB local to each socket.

Accesses to local memory are cheaper than accesses to remote

memory. We pinned threads to avoid unnecessary context switches

and to fill up sockets one at a time. The machine runs Ubuntu 14.04

LTS. We used the GNU C++ compiler (G++) 6.3.0 with optimization

level -O3.
Experiments are performed on G (n,p) random graphs in three

classes; sparse graphs with 10
8
nodes and 10

9
edges, small dense

graphs with 10
6
nodes and 10

9
edges, and large dense graphs with

10
7
nodes and 10

10
edges. Our experiments were bottlenecked by

graph generation and loading time so we were limited to these

graph sizes.

For each data point, we run five trials. In each trial, a graph is

generated in parallel by 144 threads, and then we measure the time

for n threads to compute an MIS. Note that, even when n = 1, we

generate the graph using 144 threads. To ensure that this does not

change memory locality in a way that would invalidate our results,

we used the numactl utility to cause memory to be allocated locally

on only the sockets where n threads will compute the MIS. We

verified that this yields the same behavior as experiments where

the graph is generated with only n threads. (Without using numactl,
we observed significant slowdowns in the sequential algorithm.)

The number of queues in the MultiQueue is 4× the number of

threads. In our graphs, we plot the average run time on a logarithmic

y-axis versus the number of concurrent threads. Error bars show

minimum and maximum run times.

Discussion. Figure 2 shows that our framework using a relaxed

scheduler scales with respect to the time to compute MIS over

the target graph all the way up to max thread count. The exact

framework using the fast wait-free queue also scales, but not as well.

In the sparse graphs, the relaxed scheduler is up to ∼ 18.2× faster

than optimized sequential code, compared to the exact scheduler,

which peaks at ∼ 5.0× faster. In the small dense graphs, where

the time spent traversing edges in the MIS algorithm dominates

the minor cost of dequeuing nodes, the exact scheduler achieves

a peak speedup of ∼ 17.8× over the sequential algorithm, which

is approaching the relaxed scheduler’s peak speedup of ∼ 24.6×.

However, in the large dense graphs, even though many edges are

still traversed by the MIS algorithm, there are sufficiently many

nodes to be dequeued that the performance advantage of the relaxed

scheduler shows through: it achieves speedup of up to ∼ 16.3×

compared to the exact scheduler, which manages only ∼ 6.9×. Note

that the single threaded performance of the relaxed scheduler is

also quite close to the sequential algorithm. In contrast, the exact

scheduler is orders of magnitude slower with a single thread.

5 FUTUREWORK
From a theoretical perspective, the natural next step would be to

tighten the poly(k ) bound on failed deletes, both for the generic al-

gorithm and for MIS; in fact, we conjecture that the poly(k ) bounds
in both Theorems 3.1 and 3.2 can be replaced with Θ(k ). However,
proving such a bound seems to require a deep understanding of

the interplay between the structure of G and the effects of the

randomness of a k-relaxed queue, which we had to take care in

our analysis to keep separate. Also of interest is to discover more

applications, and perhaps more instances like MIS in which the

bound in Theorem 3.1 can be improved on.

One shortcoming of our approach is the fact that our cost mea-

sure is the number of vertex accesses in the priority queue. Notice

that in theory our bounds may be substantially different when

expressed in other metrics, such as the number of edge accesses

for the algorithm to terminate, which are closer to standard work
bounds. We plan to investigate such cost measures in future work.
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Sparse graph (10
8
nodes and 10

9
edges)

Small dense graph (10
6
nodes and 10

9
edges)

Large dense graph (10
7
nodes and 10

10
edges)

Figure 2: Results for concurrent MIS experiments.

From the practical perspective, the immediate step would to im-

prove upon our preliminary results, and implement a high-performance

variant of this scheduler, and use this framework in the context of

more general graph processing packages.
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A A TIGHTER VERSION OF LEMMA 3.3.
We now prove a slightly tighter version for the case where only

elements from the top-k may be chosen by the scheduler Q . Note
that the condition in the following Lemma (that u and v are simul-

taneously in the top-k) is a pre-requisite for u to experience an

inversion on or above v , and thus the Lemma is slightly stronger

than necessary.

Lemma A.1. Consider running Algorithm 2 (or Algorithm 4) using
a k-relaxed queue Q on input graph G = (V ,E). For a fixed edge
e = (u,v ), the probability that both u and v are simultaneously in
the top-k of Q during any execution on a random permutation π is
bounded by O (k2/n).

Proof. We will write e ∈ top-k as shorthand for the event that

u and v are simultaneously in the top-k of Q at some time. Note

that no matter what dependencies exist in the top-k ofQ , the entire

top-k is flushed after the rank 1 element gets deleted k times. The

number of iterations it takes to delete the rank 1 element k times

after u enters the top-k (thereby flushing u with certainty) is a

negative binomially distributed random variable Xu with mean k2

and success probability 1/k (due to the fairness of Q), and similarly

for Xv . Since Se entails that either ℓ(u) < ℓ(v ) < ℓ(u) + Xu or

ℓ(v ) < ℓ(u) < ℓ(v ) +Xv , we note that the two cases are symmetric

and compute:

Pr [e ∈ top-k] ≤ Pr [ℓ(u) < ℓ(v ) < ℓ(u) + Xu ]

+ Pr [ℓ(v ) < ℓ(u) < ℓ(v ) + Xv ]

= 2 Pr [ℓ(u) < ℓ(v ) < ℓ(u) + Xu ]

= 2

∑
r

Pr [Xu = r ] Pr [ℓ(u) < ℓ(v ) < ℓ(u) + r ]

= 2

∑
r

Pr [Xu = r ]
r

n

≤
2ck2

n
Pr

[
Xu ≤ ck2

]
+ 2

∑
r>ck2

Pr [Xu = r ]
r

n

≤ O

(
k2

n

)
+ 2

∑
r ′

Pr

[
Xu > r ′k2

] (r ′ + 1)k2

n

≤ O

(
k2

n

)
*
,
1 +

∑
r ′

eO (−r ′) (r ′ + 1)+
-

(*)

= O

(
k2

n

)
,

where (*) uses a standard tail bound on the Negative Binomial

Distribution
2
. □

2
See [16] for a derivation.
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