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ABSTRACT
We define a new set of primitive operations that greatly sim-
plify the implementation of non-blocking data structures in
asynchronous shared-memory systems. The new operations
operate on a set of Data-records, each of which contains
multiple fields. The operations are generalizations of the
well-known load-link (LL) and store-conditional (SC) oper-
ations called LLX and SCX. The LLX operation takes a
snapshot of one Data-record. An SCX operation by a pro-
cess p succeeds only if no Data-record in a specified set has
been changed since p last performed an LLX on it. If suc-
cessful, the SCX atomically updates one specific field of a
Data-record in the set and prevents any future changes to
some specified subset of those Data-records. We provide
a provably correct implementation of these new primitives
from single-word compare-and-swap. As a simple example,
we show how to implement a non-blocking multiset data
structure in a straightforward way using LLX and SCX.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Distributed data structures

Keywords
load-link/store-conditional; non-blocking; multiset

1. INTRODUCTION
Building a library of concurrent data structures is an es-

sential way to simplify the difficult task of developing con-
current software. There are many lock-based data struc-
tures, but locks are not fault-tolerant and are susceptible to
problems such as deadlock [11]. It is often preferable to use
hardware synchronization primitives like compare-and-swap
(CAS) instead of locks. However, the difficulty of this task
has inhibited the development of non-blocking data struc-
tures. These are data structures which guarantee that some
operation will eventually complete even if some processes
crash.
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Our goal is to facilitate the implementation of high-per-
formance, provably correct, non-blocking data structures on
any system that supports a hardware CAS instruction. We
introduce three new operations, load-link-extended (LLX),
validate-extended (VLX) and store-conditional-extended
(SCX), which are natural generalizations of the well known
load-link (LL), validate (VL) and store-conditional (SC) op-
erations. We provide a practical implementation of our new
operations from CAS. Complete proofs of correctness ap-
pear in [7]. We also show how these operations make the
implementation of non-blocking data structures and their
proofs of correctness substantially less difficult, as compared
to using LL, VL, SC, and CAS directly.
LLX, SCX and VLX operate on Data-records. Any num-

ber of types of Data-records can be defined, each type con-
taining a fixed number of mutable fields (which can be up-
dated), and a fixed number of immutable fields (which can-
not). Each Data-record can represent a natural unit of a
data structure, such as a node of a tree or a table entry. A
successful LLX operation returns a snapshot of the mutable
fields of one Data-record. (The immutable fields can be read
directly, since they never change.) An SCX operation by a
process p is used to atomically store a value in one mutable
field of one Data-record and finalize a set of Data-records,
meaning that those Data-records cannot undergo any fur-
ther changes. The SCX succeeds only if each Data-record
in a specified set has not changed since p last performed an
LLX on it. A successful VLX on a set of Data-records sim-
ply assures the caller that each of these Data-records has
not changed since the caller last performed an LLX on it.
A more formal specification of the behaviour of these oper-
ations is given in Section 3.

Early on, researchers recognized that operations access-
ing multiple locations atomically make the design of non-
blocking data structures much easier [5, 13, 17]. Our new
primitives do this in three ways. First, they operate on
Data-records, rather than individual words, to allow the
data structure designer to think at a higher level of abstrac-
tion. Second, and more importantly, a VLX or SCX can
depend upon multiple LLXs. Finally, the effect of an SCX
can apply to multiple Data-records, modifying one and fi-
nalizing others.

The precise specification of our operations was chosen to
balance ease of use and efficient implementability. They
are more restricted than multi-word CAS [13], multi-word
RMW [1], or transactional memory [17]. On the other hand,
the ability to finalize Data-records makes SCX more general
than k-compare-single-swap [15], which can only change one



word. We found that atomically changing one pointer and
finalizing a collection of Data-records provides just enough
power to implement numerous pointer-based data structures
in which operations replace a small portion of the data struc-
ture. To demonstrate the usefulness of our new operations,
in Section 5, we give an implementation of a simple, lin-
earizable, non-blocking multiset based on an ordered, singly-
linked list.

Our implementation of LLX, VLX, and SCX is designed
for an asynchronous system where processes may crash. We
assume shared memory locations can be accessed by single-
word CAS, read and write instructions. We assume a safe
garbage collector (as in the Java environment) that will not
reallocate a memory location if any process can reach it by
following pointers. This allows records to be reused.

Our implementation has some desirable performance prop-
erties. A VLX on k Data-records only requires reading k
words of memory. If SCXs being performed concurrently
depend on LLXs of disjoint sets of Data-records, they all
succeed. If an SCX encounters no contention with any other
SCX and finalizes f Data-records, then a total of k+1 CAS
steps and f +2 writes are used for the SCX and the k LLXs
on which it depends. We also prove progress properties that
suffice for building non-blocking data structures using LLX
and SCX.

2. RELATED WORK
Transactional memory [12, 17] is a general approach to

simplifying the design of concurrent algorithms by provid-
ing atomic access to multiple objects. It allows a block of
code designated as a transaction to be executed atomically,
with respect to other transactions. Our LLX/VLX/SCX
primitives may be viewed as implementing a restricted kind
of transaction, in which each transaction can perform any
number of reads followed by a single write and then final-
ize any number of words. It is possible to implement gen-
eral transactional memory in a non-blocking manner (e.g.,
[11, 17]). However, at present, implementations of trans-
actional memory in software incur significant overhead, so
there is still a need for more specialized techniques for de-
signing shared data structures that combine ease of use and
efficiency.

Most shared-memory systems provide CAS operations in
hardware. However, LL and SC operations have often been
seen as more convenient primitives for building algorithms.
Anderson and Moir gave the first wait-free implementation
of small LL/SC objects from CAS using O(1) steps per op-
eration [3]. See [14] for a survey of other implementations
that use less space or handle larger LL/SC objects.

Many non-blocking implementations of primitives that ac-
cess multiple objects use the cooperative technique, first de-
scribed by Turek, Shasha and Prakash [19] and Barnes [5].
Instead of using locks that give a process exclusive access to
a part of the data structure, this approach gives exclusive
access to operations. If the process performing an operation
that holds a lock is slow, other processes can help complete
the operation and release the lock.

The cooperative technique was also used recently for a
wait-free universal construction [8] and to obtain non-block-
ing binary search trees [10] and Patricia tries [16]. The ap-
proach used here is similar.

Israeli and Rappoport [13] used a version of the cooper-
ative technique to implement multi-word CAS from single-

word CAS (and sketched how this could be used to imple-
ment multi-word SC operations). However, their approach
applies single-word CAS to very large words. The most ef-
ficient implementation of k-word CAS [18] first uses single-
word CAS to replace each of the k words with a pointer to
a record containing information about the operation, and
then uses single-word CAS to replace each of these pointers
with the desired new value and update the status field of
the record. In the absence of contention, this takes 2k + 1
CAS steps. In contrast, in our implementation, an SCX that
depends on LLXs of k Data-records performs k + 1 single-
word CAS steps when there is no contention, no matter how
many words each record contains. So, our weaker primitives
can be significantly more efficient than multi-word CAS or
multi-word RMW [1, 4], which is even more general.

If k Data-records are removed from a data structure by a
multi-word CAS, then the multi-word CAS must depend on
every mutable field of these records to prevent another pro-
cess from concurrently updating any of them. It is possible
to use k-word CAS to apply to k Data-records instead of
k words with indirection: Every Data-record is represented
by a single word containing a pointer to the contents of the
record. To change any fields of the Data-record, a process
swings the pointer to a new copy of its contents containing
the updated values. However, the extra level of indirection
affects all reads, slowing them down considerably.

Luchangco, Moir and Shavit [15] defined the k-compare-
single-swap (KCSS) primitive, which atomically tests wheth-
er k specified memory locations contain specified values and,
if all tests succeed, writes a value to one of the locations.
They provided an obstruction-free implementation of KCSS,
meaning that a process performing a KCSS is guaranteed
to terminate if it runs alone. They implemented KCSS us-
ing an obstruction-free implementation of LL/SC from CAS.
Specifically, to try to update location v using KCSS, a pro-
cess performs LL(v), followed by two collects of the other
k − 1 memory locations. If v has its specified value, both
collects return their specified values, and the contents of
these memory locations do not change between the two col-
lects, the process performs SC to change the value of v.
Unbounded version numbers are used both in their imple-
mentation of LL/SC and to avoid the ABA problem between
the two collects.

Our LLX and SCX primitives can be viewed as multi-
Data-record-LL and single-Data-record-SC primitives, with
the additional power to finalize Data-records. We shall see
that this extra ability is extremely useful for implementing
pointer-based data structures. In addition, our implemen-
tation of LLX and SCX allows us to develop shared data
structures that satisfy the non-blocking progress condition,
which is stronger than obstruction-freedom.

3. THE PRIMITIVES
Our primitives operate on a collection of Data-records of

various user-defined types. Each type of Data-record has
a fixed number of mutable fields (each fitting into a sin-
gle word), and a fixed number of immutable fields (each of
which can be large). Each field is given a value when the
Data-record is created. Fields can contain pointers that re-
fer to other Data-records. Data-records are accessed using
LLX, SCX and VLX, and reads of individual mutable or
immutable fields of a Data-record. Reads of mutable fields
are permitted because a snapshot of a Data-record’s fields



is sometimes excessive, and it is sometimes sufficient (and
more efficient) to use reads instead of LLXs.

An implementation of LL and SC from CAS has to ensure
that, between when a process performs LL and when it next
performs SC on the same word, the value of the word has not
changed. Because the value of the word could change and
then change back to a previous value, it is not sufficient to
check that the word has the same value when the LL and the
SC are performed. This is known as the ABA problem. It
also arises for implementations of LLX and SCX from CAS.
A general technique to overcome this problem is described
in Section 4.1. However, if the data structure designer can
guarantee that the ABA problem will not arise (because
each SCX never attempts to store a value into a field that
previously contained that value), our implementation can be
used in a more efficient manner.

Before giving the precise specifications of the behaviour of
LLX and SCX, we describe how to use them, with the im-
plementation of a multiset as a running example. The multi-
set abstract data type supports three operations: Get(key),
which returns the number of occurrences of key in the mul-
tiset, Insert(key, count), which inserts count occurrences
of key into the multiset, and Delete(key, count), which
deletes count occurrences of key from the multiset and re-
turns True, provided there are at least count occurrences
of key in the multiset. Otherwise, it simply returns False.

Suppose we would like to implement a multiset using a
sorted, singly-linked list. We represent each node in the list
by a Data-record with an immutable field key, which con-
tains a key in the multiset, and mutable fields: count, which
records the number of times key appears in the multiset, and
next, which points to the next node in the list. The first and
last elements of the list are sentinel nodes with count 0 and
with special keys −∞ and ∞, respectively, which never oc-
cur in the multiset.

Figure 5 shows how updates to the list are handled. In-
sertion behaves differently depending on whether the key is
already present. Likewise, deletion behaves differently de-
pending on whether it removes all copies of the key. For
example, consider the operation Delete(d, 2) depicted in
Figure 5(c). This operation removes node r by changing
p.next to point to a new copy of rnext. A new copy is used
to avoid the ABA problem, since p.next may have pointed to
rnext in the past. To perform the Delete(d, 2), a process
first invokes LLXs on p, r, and rnext. Second, it creates a
copy rnext′ of rnext. Finally, it performs an SCX that de-
pends on these three LLXs. This SCX attempts to change
p.next to point to rnext′. This SCX will succeed only if
none of p, r or rnext have changed since the aforementioned
LLXs. Once r and rnext are removed from the list, we want
subsequent invocations of LLX and SCX to be able to detect
this, so that we can avoid, for example, erroneously insert-
ing a key into a deleted part of the list. Thus, we specify in
our invocation of SCX that r and rnext should be finalized
if the SCX succeeds. Once a Data-record is finalized, it can
never be changed again.
LLX takes (a pointer to) a Data-record r as its argu-

ment. Ordinarily, it returns either a snapshot of r’s mutable
fields or Finalized. If an LLX(r) is concurrent with an
SCX involving r, it is also allowed to fail and return Fail.
SCX takes four arguments: a sequence V of (pointers to)
Data-records upon which the SCX depends, a subsequence
R of V containing (pointers to) the Data-records to be fi-

nalized, a mutable field fld of a Data-record in V to be
modified, and a value new to store in this field. VLX takes
a sequence V of (pointers to) Data-records as its only argu-
ment. Each SCX and VLX and returns a Boolean value.

For example, in Figure 5(c), the Delete(d, 2) operation
invokes SCX(V,R, fld, new), where V = 〈p, r, rnext〉, R =
〈r, rnext〉, fld is the next pointer of p, and new points to
the node rnext′.

A terminating LLX is called successful if it returns a snap-
shot or Finalized, and unsuccessful if it returns Fail. A
terminating SCX or VLX is called successful if it returns
True, and unsuccessful if it returns False. Our operations
are wait-free, but an operation may not terminate if the
process performing it fails, in which case the operation is
neither successful nor unsuccessful. We say an invocation
I of LLX(r) by a process p is linked to an invocation I ′ of
SCX(V,R, fld, new) or VLX(V ) by process p if r is in V , I
returns a snapshot, and between I and I ′, process p performs
no invocation of LLX(r) or SCX(V ′, R′, f ld′, new′) and no
unsuccessful invocation of VLX(V ′), for any V ′ that con-
tains r. Before invoking VLX(V ) or SCX(V,R, fld, new), a
process must set up the operation by performing an LLX(r)
linked to the invocation for each r in V .

3.1 Correctness Properties
An implementation of LLX, SCX and VLX is correct if,

for every execution, there is a linearization of all successful
LLXs, all successful SCXs, a subset of the non-terminating
SCXs, all successful VLXs, and all reads, such that the
following conditions are satisfied.
C1: Each read of a field f of a Data-record r returns the

last value stored in f by an SCX linearized before the
read (or f ’s initial value, if no such SCX has modified
f).

C2: Each linearized LLX(r) that does not return Finalized
returns the last value stored in each mutable field f of
r by an SCX linearized before the LLX (or f ’s initial
value, if no such SCX has modified f).

C3: Each linearized LLX(r) returns Finalized if and only
if it is linearized after an SCX(V,R, fld, new) with r
in R.

C4: For each linearized invocation I of SCX(V,R, fld, new)
or VLX(V ), and for each r in V , no SCX(V ′, R′, fld′,
new′) with r in V ′ is linearized between the LLX(r)
linked to I and I.

The first three properties assert that successful reads and
LLXs return correct answers. The last property says that
an invocation of SCX or VLX does not succeed when it
should not. However, an SCX can fail if it is concurrent with
another SCX that accesses some Data-record in common.
LL/SC also exhibits analogous failures in real systems. Our
progress properties limit the situations in which this can
occur.

3.2 Progress Properties
In our implementation, LLX, SCX and VLX are techni-

cally wait-free, but this is only because they may fail. So,
we must state progress properties in terms of successful op-
erations. The first progress property guarantees that LLXs
on finalized Data-records succeed.
P1: Each terminating LLX(r) returns Finalized if it be-

gins after the end of a successful SCX(V,R, fld, new)



with r in R or after another LLX(r) has returned Fi-
nalized.

The next progress property guarantees non-blocking progress
of invocations of our primitives.
P2: If operations are performed infinitely often, then oper-

ations succeed infinitely often.
However, this progress property leaves open the possibility
that only LLXs succeed. So, we want an additional progress
property:
P3: If SCX and VLX operations are performed infinitely

often, then SCX or VLX operations succeed infinitely
often.

Finally, the following progress property ensures that up-
date operations that are built using SCX can be made non-
blocking.
P4: If SCX operations are performed infinitely often, then

SCX operations succeed infinitely often.
When the progress properties defined here are used to

prove that an application built from the primitives is non-
blocking, there is an important, but subtle point: an SCX
can be invoked only after it has been properly set up by
a sequence of LLXs. However, if processes repeatedly per-
form LLX on Data-records that have been finalized, they
may never be able to invoke an SCX. One way to prevent
this from happening is to have each process keep track of
the Data-records it knows are finalized. However, in many
natural applications, for example, the multiset implemen-
tation in Section 5, explicit bookkeeping can be avoided.
In addition, to ensure that changes to a data structure can
continue to occur, there must always be at least one non-
finalized Data-record. For example, in our multiset, head
is never finalized and, if a node is reachable from head by
following next pointers, then it is not finalized.

Our implementation of LLX, SCX and VLX in Section 4
actually satisfies stronger progress properties than the ones
described above. For example, a VLX(V ) or SCX(V,R, fld,
new) is guaranteed to succeed if there is no concurrent SCX(
V ′, R′, f ld′, new′) such that V and V ′ have one or more el-
ements in common. However, for the purposes of the speci-
fication of the primitives, we decided to give progress guar-
antees that are sufficient to prove that algorithms that use
the primitives are non-blocking, but weak enough that it
may be possible to design other, even more efficient imple-
mentations of the primitives. For example, our specification
would allow some spurious failures of the type that occur in
common implementations of ordinary LL/SC operations (as
long as there is some guarantee that not all operations can
fail spuriously).

4. IMPLEMENTATION OF PRIMITIVES
The shared data structure used to implement LLX, SCX

and VLX consists of a set of Data-records and a set of
SCX-records. (See Figure 1.) Each Data-record contains
user-defined mutable and immutable fields. It also contains
a marked bit, which is used to finalize the Data-record, and
an info field. The marked bit is initially False and only ever
changes from False to True. The info field points to an
SCX-record that describes the last SCX that accessed the
Data-record. Initially, it points to a dummy SCX-record.
When an SCX accesses a Data-record, it changes the info
field of the Data-record to point to its SCX-record. While
this SCX is active, the info field acts as a kind of lock on the
Data-record, granting exclusive access to this SCX, rather

type Data-record
. User-defined fields
m1, . . . ,my . mutable fields
i1, . . . , iz . immutable fields
. Fields used by LLX/SCX algorithm
info . pointer to an SCX-record

marked . Boolean

type SCX-record

V . sequence of Data-records

R . subsequence of V to be finalized
fld . pointer to a field of a Data-record in V
new . value to be written into the field fld

old . value previously read from the field fld
state . one of {InProgress, Committed, Aborted}
allFrozen . Boolean
infoFields . sequence of pointers, one read from the

. info field of each element of V

Figure 1: Type definitions for shared objects used
to implement LLX, SCX, and VLX.

than to a process. (To avoid confusion, we call this freez-
ing, rather than locking, a Data-record.) We ensure that an
SCX S does not change a Data-record for its own purposes
while it is frozen for another SCX S′. Instead, S uses the
information in the SCX-record of S′ to help S′ complete
(successfully or unsuccessfully), so that the Data-record can
be unfrozen. This cooperative approach is used to ensure
progress.

An SCX-record contains enough information to allow any
process to complete an SCX operation that is in progress.
V,R, fld and new store the arguments of the SCX operation
that created the SCX-record. Recall that R is a subsequence
of V and fld points to a mutable field f of some Data-record
r′ in V . The value that was read from f by the LLX(r′)
linked to the SCX is stored in old. The SCX-record has one
of three states, InProgress, Committed or Aborted, which is
stored in its state field. This field is initially InProgress. The
SCX-record of each SCX that terminates is eventually set to
Committed or Aborted, depending on whether or not it suc-
cessfully makes its desired update. The dummy SCX-record
always has state = Aborted. The allFrozen bit, which is
initially False, gets set to True after all Data-records in
V have been frozen for the SCX. The values of state and
allFrozen change in accordance with the diagram in Fig-
ure 2. The steps in the algorithm that cause these changes
are also indicated. The infoFields field stores, for each r in
V , the value of r’s info field that was read by the LLX(r)
linked to the SCX.

Figure 2: Possible [state, allFrozen] field transitions
of an SCX-record.



We say that a Data-record r is marked when r.marked =
True. A Data-record r is frozen for an SCX-record U if
r.info points to U and either U.state is InProgress, or U.state
is Committed and r is marked. While a Data-record r is
frozen for an SCX-record U , a mutable field f of r can be
changed only if f is the field pointed to by U.fld (and it
can only be changed by a process helping the SCX that cre-
ated U). Once a Data-record r is marked and r.info.state
becomes Committed, r will never be modified again in any
way. Figure 3 shows how a Data-record can change be-
tween frozen and unfrozen. The three bold boxes repre-
sent frozen Data-records. The other two boxes represent
Data-records that are not frozen. A Data-record r can only
become frozen when r.info is changed (to point to a new
SCX-record whose state is InProgress). This is represented
by the grey edges. The black edges represent changes to
r.info.state or r.marked. A frozen Data-record r can only
become unfrozen when r.info.state is changed.

Figure 3: Possible transitions for the marked field
of a Data-record and the state of the SCX-record
pointed to by the info field of the Data-record.

4.1 Constraints
For the sake of efficiency, we have designed our imple-

mentation of LLX, VLX and SCX to work only if the prim-
itives are used in a way that satisfies certain constraints,
described in this section. We also describe general (but
somewhat inefficient) ways to ensure these constraints are
satisfied. However, there are often quite natural ways to
ensure the constraints are satisfied without resorting to the
extra work required by the general solutions.

Since our implementation of LLX, SCX and VLX uses
helping to guarantee progress, each CAS of an SCX might
be repeatedly performed by several helpers, possibly after
the SCX itself has terminated. To avoid difficulties, we must
show there is no ABA problem in the fields affected by these
CAS steps.

The info field of a Data-record r is modified by CAS steps
that attempt to freeze r for an SCX. All such steps per-
formed by processes helping one invocation of SCX try to
CAS the info field of r from the same old value to the same
new value, and that new value is a pointer to a newly cre-
ated SCX-record. Because the SCX-record is allocated a
location that has never been used before, the ABA problem
will not arise in the info field. (This approach is compatible
with safe garbage collection schemes that only reuse an old
address once no process can reach it by following pointers.)

A similar approach could be used to avoid the ABA prob-
lem in a mutable field of a Data-record: the new value could
be placed inside a wrapper object that is allocated a new
location in memory. (This is referred to as Solution 3 of the

ABA problem in [9].) However, the extra level of indirection
slows down accesses to fields.

To avoid the ABA problem, it suffices to prove the follow-
ing constraint is satisfied.
• Constraint: For every invocation S of SCX(V,R,

fld, new), new is not the initial value of fld and no
invocation of SCX(V ′, R′, f ld, new) was linearized be-
fore the LLX(r) linked to S was linearized, where r is
the Data-record that contains fld.

The multiset in Section 5 provides an example of a simple,
more efficient way to ensure that this constraint is always
satisfied.

To ensure property P4, we put a constraint on the way
SCX is used. Our implementation of SCX(V,R, fld, new)
does something akin to acquiring locks on each Data-record
in V . Livelock could occur if different invocations of SCX
do not process Data-records in the same order. To prevent
this, we could define a way of ordering all Data-records (for
example, by their locations in memory) and each sequence
passed to an invocation of SCX could be sorted using this
ordering. However, this could be expensive. Moreover, to
prove our progress properties, we do not require that all
SCXs order their sequences V consistently. It suffices that,
if all the Data-records stop changing, then the sequences
passed to later invocations of SCX are all consistent with
some total order. This property is often easy to satisfy in a
natural way. More precisely, use of our implementation of
SCX requires adherence to the following constraint.
• Constraint: Consider each execution that contains

a configuration C after which the value of no field of
any Data-record changes. There must be a total order
on all Data-records created during this execution such
that, if Data-record r1 appears before Data-record r2
in the sequence V passed to an invocation of SCX
whose linked LLXs begin after C, then r1 < r2.

For example, if one was using LLX and SCX to implement
an unsorted singly-linked list, this constraint would be satis-
fied if the nodes in each sequence V occur in the order they
are encountered by following next pointers from the begin-
ning of the list, even if some operations could reorder the
nodes in the list. While the list is changing, such a sequence
may have repeated elements and might not be consistent
with any total order.

4.2 Detailed Algorithm Description
and Sketch of Proofs

Pseudocode for our implementation of LLX, VLX and
SCX appears in Figure 4. If x contains a pointer to a record,
then x.y := v assigns the value v to field y of this record,
&x.y denotes the address of this field and all other occur-
rences of x.y denote the value stored in this field.

Theorem 1. The algorithms in Figure 4 satisfy proper-
ties C1 to C4 and P1 to P4 in every execution where the
constraints of Section 4.1 are satisfied.

The detailed proof of correctness [7] is quite involved, so we
only sketch the main ideas here.

An LLX(r) returns a snapshot, Fail, or Finalized. At
a high level, it works as follows. If the LLX determines
that r is not frozen and r’s info field does not change while
the LLX reads the mutable fields of r, the LLX returns the
values read as a snapshot. Otherwise, the LLX helps the
SCX that last froze r, if it is frozen, and returns Fail or



1 LLX(r) by process p
2 . Precondition: r 6= Nil.
3 marked1 := r.marked . order of lines 3–6 matters
4 rinfo := r.info
5 state := rinfo.state
6 marked2 := r.marked
7 i f state = Aborted or (state = Committed and not marked2) then . if r was not frozen at line 5
8 read r.m1, ..., r.my and record the values in local variables m1, ...,my

9 i f r.info = rinfo then . if r.info points to the same
10 store 〈r, rinfo, 〈m1, ...,my〉〉 in p’s local table . SCX-record as on line 4
11 return 〈m1, ...,my〉

12 i f (rinfo.state = Committed or (rinfo.state = InProgress and Help(rinfo))) and marked1 then
13 return Finalized
14 else
15 i f r.info.state = InProgress then Help(r.info)
16 return Fail

17 SCX(V,R, fld, new) by process p
18 . Preconditions: (1) for each r in V , p has performed an invocation Ir of LLX(r) linked to this SCX

(2) new is not the initial value of fld
(3) for each r in V , no SCX(V ′, R′, f ld, new) was linearized before Ir was linearized

19 Let infoFields be a pointer to a newly created table in shared memory containing,
for each r in V , a copy of r’s info value in p’s local table of LLX results

20 Let old be the value for fld stored in p’s local table of LLX results
21 return Help(pointer to new SCX-record(V,R, fld, new, old, InProgress,False, infoFields))

22 Help(scxPtr)
23 . Freeze all Data-records in scxPtr.V to protect their mutable fields from being changed by other SCXs
24 for each r in scxPtr.V enumerated in order do
25 Let rinfo be the pointer indexed by r in scxPtr.infoFields
26 i f not CAS(r.info, rinfo, scxP tr) then . freezing CAS
27 i f r.info 6= scxPtr then
28 . Could not freeze r because it is frozen for another SCX
29 i f scxPtr.allFrozen = True then . frozen check step
30 . the SCX has already completed successfully
31 return True
32 else
33 . Atomically unfreeze all nodes frozen for this SCX
34 scxPtr.state := Aborted . abort step
35 return False

36 . Finished freezing Data-records (Assert: state ∈ {InProgress,Committed})
37 scxPtr.allFrozen := True . frozen step
38 for each r in scxPtr.R do r.marked := True . mark step
39 CAS(scxPtr.fld, scxPtr.old, scxPtr.new) . update CAS

40 . Finalize all r in R, and unfreeze all r in V that are not in R
41 scxPtr.state := Committed . commit step
42 return True

43 VLX(V ) by process p
44 . Precondition: for each Data-record r in V , p has performed an LLX(r) linked to this VLX
45 for each r in V do
46 Let rinfo be the info field for r stored in p’s local table of LLX results
47 i f rinfo 6= r.info then return False . r changed since LLX(r) read info
48 return True . At some point during the loop, all r in V were unchanged

Figure 4: Pseudocode for LLX, SCX and VLX.



Finalized. If the LLX returns Fail, it is not linearized.
We now discuss in more detail how LLX operates and is
linearized in the other two cases.

First, suppose the LLX(r) returns a snapshot at line 11.
Then, the test at line 7 evaluates to True. So, either state =
Aborted, which means r is not frozen at line 5, or state =
Committed and marked2 = False. This also means r is not
frozen at line 5, since r.marked cannot change from True
to False. The LLX reads r’s mutable fields (line 8) and
rereads r.info at line 9, finding it the same as on line 4. In
Section 4.1, we explained why this implies that r.info did
not change between lines 4 and 9. Since r is not frozen at
line 5, we know from Figure 3 that r is unfrozen at all times
between line 5 and 9. We prove that mutable fields can
change only while r is frozen, so the values read by line 8
constitute a snapshot of r’s mutable fields. Thus, we can
linearize the LLX at line 9.

Now, suppose the LLX(r) returns Finalized. Then, the
test on line 12 evaluated to True. In particular, r was al-
ready marked when line 3 was performed. If rinfo.state =
InProgress when line 12 was performed, Help(rinfo) was
called and returned True. Below, we argue that rinfo.state
was changed to Committed before the return occurred. By
Figure 3(a), the state of an SCX-record never changes af-
ter it is set to Committed. So, after line 12, rinfo.state =
Committed and, thus, r has been finalized. Hence, the LLX
can be linearized at line 13.

When a process performs an SCX, it first creates a new
SCX-record and then invokes Help (line 21). The Help rou-
tine performs the real work of the SCX. It is also used by
a process to help other processes complete their SCXs (suc-
cessfully or unsuccessfully). The values in an SCX-record’s
old and infoFields come from a table in the local memory of
the process that invokes the SCX, which stores the results of
the last LLX it performed on each Data-record. (In practice,
the memory required for this table could be greatly reduced
when a process knows which of these values are needed for
future SCXs.)

Consider an invocation of Help(U) by process p to carry
out the work of the invocation S of SCX(V,R, fld, new)
that is described by the SCX-record U . First, p attempts to
freeze each r in V by performing a freezing CAS to store a
pointer to U in r.info (line 26). Process p uses the value read
from r.info by the LLX(r) linked to S as the old value for
this CAS and, hence, it will succeed only if r has not been
frozen for any other SCX since then. If p’s freezing CAS
fails, it checks whether some other helper has successfully
frozen the Data-record with a pointer to U (line 27).

If every r in V is successfully frozen, p performs a frozen
step to set U.allFrozen to True (line 37). After this frozen
step, the SCX is guaranteed not to fail, meaning that no
process will perform an abort step while helping this SCX.
Then, for each r in R, p performs a mark step to set r.marked
to True (line 38) and, from Figure 3, r remains frozen from
then on. Next, p performs an update CAS, storing new in
the field pointed to by fld (line 39), if successful. We prove
that, among all the update CAS steps on fld performed by
the helpers of U , only the first can succeed. Finally, p un-
freezes all r in V that are not in R by performing a commit
step that changes U.state to Committed (line 41).

Now suppose that, when p performs line 27, it finds that
some Data-record r in V is already frozen for another invo-
cation S′ of SCX. If U.allFrozen is False at line 29, then

we can prove that no helper of S will ever reach line 37, so
p can abort S. To do so, it unfreezes each r in V that it has
frozen by performing an abort step, which changes U.state
to Aborted (line 34), and then returns False (line 35) to
indicate that S has been aborted. If U.allFrozen is True
at line 29, it means that each element of V , including r,
was successfully frozen by some helper of S and then, later,
a process froze r for S′. Since S cannot be aborted after
U.allFrozen was set to True, its state must have changed
from InProgress to Committed before r was frozen for an-
other SCX-record. Therefore, S was successfully completed
and p can return True at line 31.

We linearize an invocation of SCX at the first update CAS
performed by one of its helpers. We prove that this up-
date CAS always succeeds. Thus, all SCXs that return
True are linearized, as well as possibly some non-terminating
SCXs. The first update CAS of SCX(V,R, fld, new) modi-
fies the value of fld, so a read(fld) that occurs immediately
after the update CAS will return the value of new. Hence,
the linearization point of an SCX must occur at its first up-
date CAS. There is one subtle issue about this linearization
point: If an LLX(r) is linearized between the update CAS
and commit step of an SCX that finalizes r, it might not
return Finalized, violating condition C3. However, this
cannot happen, because, before the LLX is linearized on
line 13, the LLX either sees that the commit step has been
performed or helps the SCX perform its commit step.

An invocation I of VLX(V ) is executed by a process p
after p has performed an invocation of LLX(r) linked to I,
for each r in V . VLX(V ) simply checks, for each r in V ,
that the info field of r is the same as when it was read by
p’s last LLX(r) and, if so, VLX(V ) returns True. In this
case, we prove that each Data-record in V does not change
between the linked LLX and the time its info field is reread.
Thus, the VLX can be linearized at the first time it executes
line 47. Otherwise, the VLX returns False to indicate that
the LLX results may not constitute a snapshot.

We remark that our use of the cooperative method avoids
costly recursive helping. If, while p is helping S, it cannot
freeze all of S’s Data-records because one of them is already
frozen for a third SCX, then p will simply perform an abort
step, which unfreezes all Data-records that S has frozen.

We briefly sketch why the progress properties described
in Section 3.2 are satisfied. It follows easily from the code
that an invocation of LLX(r) returns Finalized if it begins
after the end of an SCX that finalized r or another LLX
sees that r is finalized. To prove the progress properties P2,
P3 and P4, we consider two cases.

First, consider an execution where only a finite number of
SCXs are invoked. Then, only finitely many SCX-records
are created. Each process calls Help(U) if it sees that
U.state = InProgress, which it can do at most once for each
SCX-record U . Since every CAS is performed inside the
Help routine, there is some point after which no process
performs a CAS, calls Help, or sees a SCX-record whose
state is InProgress. A VLX can fail only when an info field
is modified by a concurrent operation and an LLX can only
fail for the same reason or when it sees a SCX-record whose
state is InProgress. Therefore, all LLXs and VLXs that
begin after this point will succeed, establishing P2 and P3.
Moreover, P4 is vacuously satisfied in this case.

Now, consider an execution where infinitely many SCXs
are invoked. To derive a contradiction, suppose only finitely
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Figure 5: Using SCX to update a multiset. LLXs of all shaded nodes are linked to the SCX. Darkly shaded
nodes are finalized by the SCX. Where a field has changed, the old value is crossed out.

many SCXs succeed. Then, there is a time after which no
more SCXs succeed. The constraint on the sequences passed
to invocations of SCXs ensures that all SCXs whose linked
LLXs begin after this time will attempt to freeze their se-
quences of Data-records in a consistent order. Thus, one of
these SCXs will succeed in freezing all of the Data-records
that were passed to it and will successfully complete. This
is a contradiction. Thus, infinitely many of the SCXs do
succeed, establishing properties P2, P3 and P4.

4.3 Additional Properties
Our implementation of SCX satisfies some additional prop-

erties, which are helpful for designing certain kinds of non-
blocking data structures so that query operations can run
efficiently. Consider a pointer-based data structure with a
fixed set of Data-records called entry points. An operation
on the data structure starts at an entry point and follows
pointers to visit other Data-records. (For example, in our
multiset example, the head of the linked list is the sole entry
point for the data structure.) We say that a Data-record is
in the data structure if it can be reached by following point-
ers from an entry point, and a Data-record r is removed from
the data structure by an SCX if r is in the data structure
immediately prior to the linearization point of the SCX and
is not in the data structure immediately afterwards.

If the data structure is designed so that a Data-record is
finalized when (and only when) it is removed from the data
structure, then we have the following additional properties.

Proposition 2. Suppose each linearized SCX(V,R, fld,
new) removes precisely the Data-records in R from the data
structure.
• If LLX(r) returns a value different from Fail or Fi-

nalized, r is in the data structure just before the LLX
is linearized.
• If an SCX(V,R, fld, new) is linearized and new is (a

pointer to) a Data-record, then this Data-record is in
the data structure just after the SCX is linearized.
• If an operation reaches a Data-record r by following

pointers read from other Data-records, starting from
an entry point, then r was in the data structure at
some earlier time during the operation.

The first two properties are straightforward to prove. The
last property is proved by induction on the Data-records
reached. For the base case, entry points are always reach-
able. For the induction step, consider the time when an

operation reads a pointer to r from another Data-record r′

that the operation reached earlier. By the induction hypoth-
esis, there was an earlier time t during the operation when r′

was in the data structure. If r′ already contained a pointer
to r at t, then r was also in the data structure at that time.
Otherwise, an SCX wrote a pointer to r in r′ after t, and
just after that update occurred, r′ and r were in the data
structure (by the second part of the proposition).

The last property is a particularly useful one for lineariz-
ing query operations. It means that operations that search
through a data structure can use simple reads of pointers in-
stead of the more expensive LLX operations. Even though
the Data-record that such a search operation reaches may
have been removed from the data structure by the time it is
reached, the lemma guarantees that there was a time during
the search when the Data-record was in the data structure.
For example, we use this property to linearize searches in
our multiset algorithm in Section 5.

5. AN EXAMPLE: MULTISET
We now give a detailed description of the implementation

of a multiset using LLX and SCX. We assume that keys
stored in the multiset are drawn from a totally ordered set
and −∞ < k < ∞ for every key k in the multiset. As
described in Section 3, we use a singly-linked list of nodes,
sorted by key. To avoid special cases, it always has a sentinel
node, head, with key −∞ at its beginning and a sentinel
node, tail, with key∞ at its end. The definition of Node, the
Data-record used to represent a node, and the pseudocode
are presented in Figure 6.

Search(key) traverses the list, starting from head, by
reading next pointers until reaching the first node r whose
key is at least key. This node and the preceding node p
are returned. Get(key) performs Search(key), outputs r’s
count if r’s key matches key, and outputs 0, otherwise.

An invocation I of Insert(key, count) starts by calling
Search(key). Using the nodes p and r that are returned, it
updates the data structure. It decides whether key is already
in the multiset (by checking whether r.key = key) and, if so,
it invokes LLX(r) followed by an SCX linked to r to increase
r.count by count, as depicted in Figure 5(b). Otherwise,
I performs the update depicted in Figure 5(a): It invokes
LLX(p), checks that p still points to r, creates a node, new,
and invokes an SCX linked to p to insert new between p



type Node
. Fields from sequential data structure
key . key (immutable)
count . occurrences of key (mutable)
next . next pointer (mutable)
. Fields defined by LLX/SCX algorithm
info . a pointer to an SCX-record

marked . a Boolean value

shared Node tail := new Node(∞, 0,Nil)
shared Node head := new Node(−∞, 0, tail)

1 Get(key)
2 〈r,−〉 := Search(key)
3 i f key = r.key then
4 return r.count
5 else return 0

6 Search(key)
7 . Postcondition: p and r point to

Nodes with p.key < key ≤ r.key.
8 p := head
9 r := p.next

10 while key > r.key do
11 p := r
12 r := r.next
13 return 〈r, p〉

14 Insert(key, count) . Precondition: count > 0
15 while True do
16 〈r, p〉 := Search(key)
17 i f key = r.key then
18 localr := LLX(r)
19 i f localr /∈ {Fail,Finalized} then
20 if SCX(〈r〉, 〈〉,&r.count, localr.count + count) then return
21 else
22 localp := LLX(p)
23 i f localp /∈ {Fail,Finalized} and r = localp.next then
24 if SCX(〈p〉, 〈〉,&p.next, new Node(key, count, r)) then return

26 Delete(key, count) . Precondition: count > 0
27 while True do
28 〈r, p〉 := Search(key)
29 localp := LLX(p)
30 localr := LLX(r)
31 i f localp, localr /∈ {Fail,Finalized} and r = localp.next then
32 i f key 6= r.key or localr.count < count then return False
33 else i f localr.count > count then
34 i f SCX(〈p〉, 〈r〉,&p.next,new

Node(r.key, localr.count− count, localr.next)) then
return True

35 else . assert: localr.count = count
36 i f LLX(localr.next) /∈ {Fail,Finalized} then
37 i f SCX(〈p, r, localr.next〉, 〈r, localr.next〉,

&p.next,new copy of localr.next) then return True

Figure 6: Pseudocode for a multiset, implemented with a singly linked list.

and r. If p no longer points to r, the LLX returns Fail or
Finalized, or the SCX returns False, then I restarts.

An invocation I of Delete(key, count) also begins by call-
ing Search(key). It invokes LLX on the nodes p and r and
then checks that p still points to r. If r does not contain at
least count copies of key, then I returns False. If r contains
exactly count copies, then I performs the update depicted
in Figure 5(c) to remove node r from the list. To do so, it in-
vokes LLX on the node, rnext, that r.next points to, makes
a copy rnext′ of rnext, and invokes an SCX linked to p, r
and rnext to change p.next to point to rnext′. This SCX
also finalizes the nodes r and rnext, which are thereby re-
moved from the data structure. The node rnext is replaced
by a copy to avoid the ABA problem in p.next. If r contains
more than count copies, then I replaces r by a new copy r′

with an appropriately reduced count using an SCX linked
to p and r, as shown in Figure 5(d). This SCX finalizes r.
If an LLX returns Fail or Finalized, or the SCX returns
False then I restarts.

A detailed proof of correctness appears in [7]. It begins
by showing that this multiset implementation satisfies some
basic properties.

Invariant 3. The following are true at all times.
• head always points to a node.
• If a node has key ∞, then its next pointer is Nil.
• If a node’s key is not ∞, then its next pointer points

to some node with a strictly larger key.

It follows that the data structure is always a sorted list.
We prove the following lemma by considering the SCXs

performed by update operations shown in Figure 5.

Lemma 4. The Data-records removed from the data struc-
ture by a linearized invocation of SCX(V , R, fld, new) are
exactly the Data-records in R.

This lemma allows us to apply Proposition 2 to prove that
there is a time during each Search when the nodes r and p
that it returns are both in the list and p.next = r.

Each Get and each Delete that returns False is lin-
earized at the linearization point of the Search it performs.
Every other Insert or Delete is linearized at its successful
SCX. Linearizability of all operations then follows from the
next invariant.

Lemma 5. At every time t, the multiset of keys in the
data structure is equal to the multiset of keys that would re-
sult from the atomic execution of the sequence of operations
linearized up to time t.

To prove the algorithm is non-blocking, suppose there
is some infinite execution in which only finitely many op-
erations terminate. Then, eventually, no more Insert or
Delete operations perform a successful SCX, so there is a
time after which the pointers that form the linked list stop
changing. This implies that all calls to the Search subrou-
tine must terminate. Since a Get operation merely calls
Search, all Get operations must also terminate. Thus,
there is some collection of Insert and Delete operations
that take steps forever without terminating. We show that
each such operation sets up and performs an SCX infinitely
often. For any Insert or Delete operation, consider any it-
eration of the loop that begins after the last successful SCX
changes the list. By Lemma 4 and Proposition 2, the nodes
p and r reached by the Search in that iteration were in the



data structure at some time during the Search and, hence,
throughout the Search. So when the Insert or Delete
performs LLXs on p or r, they cannot return Finalized.
Moreover, they must succeed infinitely often by property
P2, and this allows the Insert or Delete to perform an
SCX infinitely often. By property P4, SCXs will succeed
infinitely often, a contradiction.

Thus, we have the following theorem.

Theorem 6. The algorithms in Figure 6 implement a
non-blocking, linearizable multiset.

6. CONCLUSION
The LLX, SCX and VLX primitives we introduce in this

paper can also be used to produce practical, non-blocking
implementations of a wide variety of tree-based data struc-
tures. In [6], we describe a general method for obtaining
such implementations and use it to design a provably correct,
non-blocking implementation of a chromatic tree, which is
a relaxed variant of a red-black tree. Furthermore, we pro-
vide an experimental performance analysis, comparing our
Java implementation of the chromatic search tree to leading
concurrent implementations of dictionaries. This demon-
strates that our primitives enable efficient non-blocking im-
plementations of more complicated data structures to be
built (and added to standard libraries), together with man-
ageable proofs of their correctness.

Our implementation of LLX, SCX and VLX relies on the
existence of efficient garbage collection, which is provided
in managed languages such as Java and C#. However, in
other languages, such as C++, memory management is an
issue. This can be addressed, for example, by the new, effi-
cient memory reclamation method of Aghazadeh, Golab and
Woelfel [2].
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