
Pragmatic Primitives for
Non-blocking Data Structures

PODC 2013

Trevor Brown, University of Toronto
Faith Ellen, University of Toronto

Eric Ruppert, York University

June 27, 2013

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Goal: non-blocking data structures

Data structures that can be accessed concurrently by many
processes are

important
hard to design
hard to prove correct

We focus on linearizable, non-blocking data structures.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Software transactional memory

Transactional memory
Enclose each data structure operation in an atomic transaction.

Pros:
simple to design
simple to prove correct

Cons:
less efficient than hand-crafted data structures
coarse-grained transactions limit concurrency

Right solution for “casual” data structure designers.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Direct implementations

Handcrafted non-blocking implementations from hardware
primitives.

Pros:
allows good efficiency
allows high degree of concurrency

Cons:
hard to get implementation (provably) right

Right solution for designing libraries of data structures.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Why is it hard to use hardware primitives?

Key difficulty of implementing data structures from hardware
primitives:

Data structure operations access several words atomically
Hardware primitives operate only on single words

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Example: multiset

Multiset can be represented as a sorted, singly linked list
with nodes storing keys and multiplicities.

DELETE(B,2):

A 3 B 2 D 4

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Example: multiset

Multiset can be represented as a sorted, singly linked list
with nodes storing keys and multiplicities.

DELETE(B,2):

A 3 B 2 D 4

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Example: multiset

How to add some copies of a key to the multiset.

INSERT(B,3):

A 3 B 2 D 4

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Example: multiset

How to add some copies of a key to the multiset.

INSERT(B,3):

A 3 B 2 D 45

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Example: multiset

Problems arise if we concurrently
INSERT(B,3) and DELETE(B,2).

A 3 B 2 D 4

1 Each operation prepares
to do its CAS.

2 INSERT occurs
3 DELETE occurs, three

copies of B are lost.

DELETE should succeed only
if node B is unchanged.

Need multi-word primitives.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Example: multiset

Problems arise if we concurrently
INSERT(B,3) and DELETE(B,2).

A 3 B 2 D 45

1 Each operation prepares
to do its CAS.

2 INSERT occurs
3 DELETE occurs, three

copies of B are lost.

DELETE should succeed only
if node B is unchanged.

Need multi-word primitives.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Example: multiset

Problems arise if we concurrently
INSERT(B,3) and DELETE(B,2).

A 3 B 2 D 45

1 Each operation prepares
to do its CAS.

2 INSERT occurs
3 DELETE occurs, three

copies of B are lost.

DELETE should succeed only
if node B is unchanged.

Need multi-word primitives.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Example: multiset

Problems arise if we concurrently
INSERT(B,3) and DELETE(B,2).

A 3 B 2 D 45

1 Each operation prepares
to do its CAS.

2 INSERT occurs
3 DELETE occurs, three

copies of B are lost.

DELETE should succeed only
if node B is unchanged.

Need multi-word primitives.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Our approach

Build “medium-level” primitives that can access multiple words.
higher-level than CAS or LL/SC
lower-level than full transactional memory

Advantages:
General enough to be used in many data structures
Specialized enough to create quite efficient
implementations
Modular proof of correctness: large parts can be reused

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Data records

Our primitives work on data records.

Each data record has
some mutable fields (one word each)
some immutable fields

Use a data record for some natural “unit” of a data structure
node in a tree
entry in a table

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Our primitives

Our primitives extend load-link (LL) and store-conditional (SC).

LL/SC object
stores a single word
LL reads value stored
SC(v ) (store-conditional) writes v only if value has not
changed since last LL by process performing SC.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



LLX and SCX

LLX(r) returns a snapshot of the mutable fields of r

SCX(V, R, field, new) by process p
writes value new into field ,
which is a mutable field of a data record in V
finalizes all data records in R ⊆ V
only if no record in V has changed since p’s LLX on it

After a data record is finalized, no further changes allowed.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Example: removing all copies of a key in multiset

DELETE(B,2) using
LLX and SCX.
Use one data record
for each node.

A 3 B 2 D 4

1 LLX(A)
→ 〈A.count = 3,A.next = B〉

2 LLX(B)
→ 〈B.count = 2,B.next = D〉

3 SCX(〈A,B〉, 〈B〉,A.next ,D)
changes A.next to D
finalizes B
succeeds only if no
changes since LLXs on A
and B

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Example: removing all copies of a key in multiset

DELETE(B,2) using
LLX and SCX.
Use one data record
for each node.

A 3 B 2 D 4

1 LLX(A)
→ 〈A.count = 3,A.next = B〉

2 LLX(B)
→ 〈B.count = 2,B.next = D〉

3 SCX(〈A,B〉, 〈B〉,A.next ,D)
changes A.next to D
finalizes B
succeeds only if no
changes since LLXs on A
and B

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Other multi-word primitives

Others have built medium-level multi-word primitives.

Large LL/SC objects (Anderson Moir 1995, ...)
⇒ unable to access multiple objects atomically
Multi-word CAS (Israeli Rappoport 1994, ...)
⇒ more general, less efficient
Multi-word RMW (Afek Merritt Taubenfeld Touitou 1997, ...)
⇒ even more general, less efficient
k -compare-single-swap (Luchangco Moir Shavit 2009)
⇒ lacks ability to finalize
⇒ less efficient for some applications

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Other multi-word primitives

Others have built medium-level multi-word primitives.

Large LL/SC objects (Anderson Moir 1995, ...)
⇒ unable to access multiple objects atomically
Multi-word CAS (Israeli Rappoport 1994, ...)
⇒ more general, less efficient
Multi-word RMW (Afek Merritt Taubenfeld Touitou 1997, ...)
⇒ even more general, less efficient
k -compare-single-swap (Luchangco Moir Shavit 2009)
⇒ lacks ability to finalize
⇒ less efficient for some applications

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Other multi-word primitives

Others have built medium-level multi-word primitives.

Large LL/SC objects (Anderson Moir 1995, ...)
⇒ unable to access multiple objects atomically
Multi-word CAS (Israeli Rappoport 1994, ...)
⇒ more general, less efficient
Multi-word RMW (Afek Merritt Taubenfeld Touitou 1997, ...)
⇒ even more general, less efficient
k -compare-single-swap (Luchangco Moir Shavit 2009)
⇒ lacks ability to finalize
⇒ less efficient for some applications

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Other multi-word primitives

Others have built medium-level multi-word primitives.

Large LL/SC objects (Anderson Moir 1995, ...)
⇒ unable to access multiple objects atomically
Multi-word CAS (Israeli Rappoport 1994, ...)
⇒ more general, less efficient
Multi-word RMW (Afek Merritt Taubenfeld Touitou 1997, ...)
⇒ even more general, less efficient
k -compare-single-swap (Luchangco Moir Shavit 2009)
⇒ lacks ability to finalize
⇒ less efficient for some applications

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



More detailed specification: LLX

LLX(r ) can return one of the following results.
a snapshot of mutable fields of r
FINALIZED (iff r has been finalized by an SCX)
FAIL (in our implementation this happens only if a
concurrent SCX accesses r )

We also allow reads of individual mutable fields.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



More detailed specification: SCX

Before calling SCX(V ,R, field ,new), process p
must get a snapshot from an LLX(r ) on each record r in V .

For each r in V , the last LLX(r ) by p is linked to the SCX.

If any r in V was changed since the linked LLX(r )
⇒ SCX returns FAIL.

Non-failed SCX sets field ← new and finalizes records in R.

Spurious failures of SCX are allowed.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Progress properties of LLX and SCX

Individual LLXs and SCXs are wait-free, but may fail.

If LLXs and SCXs are performed infinitely often, they
succeed infinitely often.
If SCXs are performed infinitely often, they succeed
infinitely often.

Also, if no overlap between V -sets of SCX’s, all will succeed.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Progress properties of LLX and SCX

Individual LLXs and SCXs are wait-free, but may fail.

If LLXs and SCXs are performed infinitely often, they
succeed infinitely often.
If SCXs are performed infinitely often, they succeed
infinitely often.

Also, if no overlap between V -sets of SCX’s, all will succeed.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Progress properties of LLX and SCX

Individual LLXs and SCXs are wait-free, but may fail.

If LLXs and SCXs are performed infinitely often, they
succeed infinitely often.
If SCXs are performed infinitely often, they succeed
infinitely often.

Also, if no overlap between V -sets of SCX’s, all will succeed.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Key idea of implementation

Lock-free Locks
“Locks” on data records acquired by SCX operations
If a record you need is locked by another SCX,
you can help that SCX and release lock
Finalized records remain permanently locked

Based on cooperative technique of
Turek et al. [1992] and Barnes [1993]

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



SCX records

Each SCX creates an SCX record.

An SCX record contains all information needed to help SCX.

V R field new

expected values

state bit

(for CAS steps)

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Add two fields to each data record r :
info: pointer to SCX record of last SCX that locked r
marked : boolean used to finalize r

A 3 B 2 D 4
0 00

Expected value for CAS comes from LLX.
⇒ CAS succeeds only if info field unchanged since LLX

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Add two fields to each data record r :
info: pointer to SCX record of last SCX that locked r
marked : boolean used to finalize r

A 3 B 2 D 4
0 00

V R field new

expected values

state bit

Expected value for CAS comes from LLX.
⇒ CAS succeeds only if info field unchanged since LLX

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Add two fields to each data record r :
info: pointer to SCX record of last SCX that locked r
marked : boolean used to finalize r

A 3 B 2 D 4
0 00

V R field new

expected values

state bit

Expected value for CAS comes from LLX.
⇒ CAS succeeds only if info field unchanged since LLX

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Structure of SCX algorithm

SCX(V ,R, field ,new)
create SCX record s
for each r in s.V

[lock r ]
CAS s.new into s.field
s.state← committed

end SCX

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Structure of SCX algorithm

SCX(V ,R, field ,new) HELP(s)
create SCX record s
for each r in s.V

[lock r ]
CAS s.new into s.field
s.state← committed

end SCX HELP

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Help algorithm

HELP(s)
for each r in s.V

try to CAS s into r .info
if r .info 6= s then

if s.locksSucceeded then
return TRUE % Someone else finished the operation

else
s.state← aborted
return FALSE

s.locksSucceeded ← TRUE

r .marked ← TRUE for each data record in R
CAS s.new into s.field
s.state← committed
return TRUE

end HELP

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Key things to prove

Locking correctly protects all mutable fields of a record
All helpers of an SCX agree on outcome (failed/succeeded)
No ABA problems on fields accessed by CAS
Progress properties

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Progress: livelock

Problems arise if different SCX operations lock records in
different orders.

A B

1 p locks A, B
q locks B, A

2 Real locks: deadlock!
3 Lock-free locks: abort & retry,

but repeat forever⇒ livelock!

Need SCXs to “lock” in consistent order
(⇒ one will eventually succeed)

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Progress: livelock

Problems arise if different SCX operations lock records in
different orders.

p locked q locked

A B

1 p locks A, B
q locks B, A

2 Real locks: deadlock!
3 Lock-free locks: abort & retry,

but repeat forever⇒ livelock!

Need SCXs to “lock” in consistent order
(⇒ one will eventually succeed)

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Progress: livelock

Problems arise if different SCX operations lock records in
different orders.

p locked q locked

A B
p acquireq acquire

1 p locks A, B
q locks B, A

2 Real locks: deadlock!
3 Lock-free locks: abort & retry,

but repeat forever⇒ livelock!

Need SCXs to “lock” in consistent order
(⇒ one will eventually succeed)

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Progress: livelock

Problems arise if different SCX operations lock records in
different orders.

p locked q locked

A B
p acquireq acquire

1 p locks A, B
q locks B, A

2 Real locks: deadlock!
3 Lock-free locks: abort & retry,

but repeat forever⇒ livelock!

Need SCXs to “lock” in consistent order
(⇒ one will eventually succeed)

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Progress: livelock

Problems arise if different SCX operations lock records in
different orders.

p locked q locked

A B
p acquireq acquire

1 p locks A, B
q locks B, A

2 Real locks: deadlock!
3 Lock-free locks: abort & retry,

but repeat forever⇒ livelock!

Need SCXs to “lock” in consistent order
(⇒ one will eventually succeed)

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Progress: livelock

Problems arise if different SCX operations lock records in
different orders.

p locked q locked

A B
p acquireq acquire

1 p locks A, B
q locks B, A

2 Real locks: deadlock!
3 Lock-free locks: abort & retry,

but repeat forever⇒ livelock!

Need SCXs to “lock” in consistent order
(⇒ one will eventually succeed)

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Avoiding livelock intelligently

Constraint
After SCX’s stop succeeding, eventually all new SCX’s must
have consistent order on V-sets.

Easy to satisfy, because you can ignore concurrency.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Complexity

With no contention:
SCX performs

k + 1 CAS steps if it depends on k LLXs
f + 2 writes if it finalizes f data records

LLX only performs reads.

With contention, LLXs and SCXs may have to help and/or retry.

Future work: Amortized complexity bounds with contention.

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Summary

Contributions:
Semantics of LLX and SCX
(could be implemented, e.g., with HTM)
Vastly simplifies proofs of correctness for non-blocking
data structure implementations

Further work:
VLX (generalizes validate instruction)
Non-blocking balanced BSTs
(and template for building other trees)
Experimental results

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



Extra slides

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures



When k-compare-single-swap (kCSS) is inefficient

Example: tree where each node has 32 child pointers (or keys).

α δ

c

Delete(c)
α δ(nil)

Requires a 33-compare-single-swap operation

With no contention:
kCSS: 2 CASs, 2 writes, 66 non-cached reads
SCX+LLXs: 2 CASs, 1 write, ≤ 13 non-cached reads

Trevor Brown Pragmatic Primitives for Non-blocking Data Structures


