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ABSTRACT
There has been a significant amount of research on hardware and

software support for efficient concurrent data structures; yet, the

question of how to build correct, simple, and scalable data struc-

tures has not yet been definitively settled. In this paper, we revisit

this question from a minimalist perspective, and ask: what is the

smallest amount of synchronization required for correct and effi-

cient concurrent search data structures, and how could this minimal

synchronization support be provided in hardware?

To address these questions, we introduce memory tagging, a
simple hardwaremechanismwhich enables the programmer to “tag”

a dynamic set of memory locations, at cache-line granularity, and

later validate whether the memory has been concurrently modified,

with the possibility of updating one of the underlying locations

atomically if validation succeeds. We provide several examples

showing that this mechanism can enable fast and arguably simple

concurrent data structure designs, such as lists, binary search trees,

balanced search trees, range queries, and Software Transactional

Memory (STM) implementations. We provide an implementation

of memory tags in the Graphite multi-core simulator, showing

that the mechanism can be implemented entirely at the level of L1

cache, and that it can enable non-trivial speedups versus existing

implementations of the above data structures.
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1 INTRODUCTION
The advent ofmulti-core processors has spurred a significant amount

of work on fast concurrent data structures, as well as hardware

and software synchronization mechanisms to support the efficient

implementation of such designs. At the hardware level, the most

notable recent development has been hardware transactional mem-

ory (HTM) [1, 2], accompanied by a supporting cast of software or

hybrid techniques aimed at helping programmers take advantage of
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its semantics [3, 4], as well as a myriad of specialized software/hard-

ware techniques for scalable synchronization, e.g. [5–10]. Efficient

concurrent variants are now known for many classic data struc-

tures, such as lists, e.g. [11], [12], [13], hash tables, e.g. [12], [14],

[6], skip lists, e.g. [15], [16], [17], [18], search trees, e.g. [19], [20],

queues [21], stacks [22], [23], or priority queues, e.g. [24], [25], [26].

At a very high level, the field makes progress by eliminating ev-
ery last bit of unnecessary synchronization at the logical level when
implementing a given semantics, as well as mapping the remain-

ing synchronization requirements as efficiently as possible onto the

existing hardware synchronization mechanisms.

Example: The Concurrent Linked List. To illustrate, consider

the classical problem of building a correct concurrent singly-linked

list [11–14]. Several lock-based and non-blocking techniques have

been introduced to address this problem by progressively reduc-

ing the amount of synchronization required by the concurrent

implementation, at the cost of increasing complexity, both in the

algorithmic design, and especially in the correctness arguments.

Concretely, in list implementations, a thread P positioned at node

crt needs to be able to validate that neither node crt nor its pre-
decessor pred have been changed concurrently since P ’s last read.
Intuitively, this is needed since, for correctness, it is important to

enforce the invariants that 1) threads cannot modify a concurrently

deleted node, and 2) should not be able follow the next pointer of

a deleted node.

For instance, hand-over-hand locking [27] ensures these invari-

ants by making sure that thread P holds locks on both the current

node and on its predecessor, and seeks to minimize the amount of

synchronization by releasing locks as the thread progresses through

the list. At the same time, a deleting thread has to hold a lock on

the deleted node and on its predecessor. Unfortunately, locking

operations cause significant synchronization overheads and loss

of parallelism, since readers now have to write, as traversals need
to take locks. A more efficient technique is using marking / mark
bits [14], logically associated with nodes, and modified by threads

to signal a change in the list’s logical structure, such as the removal

of a node. Mark bits can be co-located with the nodes’ next point-

ers, leading to the Harris-Michael pointer marking design [11, 12],

which leads to efficiency that is close to state-of-the-art [6].

Examining the marking technique from a “minimalist” perspec-

tive, one notices that even the limited synchronization required

by mark bits is sub-optimal. Consider the interaction between the

hardware core upon which a traversing thread P is running and the

cache coherence mechanism: when first reading crt, the thread/-
core needs to bring the cache-line corresponding to the node locally

in Shared (S) state. If the node is marked concurrently for deletion,

the node’s cache-line state must have necessarily moved to Invalid

(I), since its value was changed. To check for marking, thread P
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must read the cache-line again, causing it to be elevated to shared

(S) or exclusive (E) state, possibly invalidating other threads’ caches,

and introducing extra delay. This transition is done just to realize

that marking occurred, which will likely cause this operation to

restart. Ideally, one would like to avoid this extra synchronization,

since it adds latency and wastes memory bandwidth.

A Thought Experiment: Memory Tagging. Leaving practical

considerations aside, consider the above example, but where the

thread P is allowed to check, before inspecting whether node crt
has beenmarked, whether the corresponding cache-line has become

Invalid (I) since its previous access, upon which the line had been in

Shared (S) state. If this is the case, thread P could reasonably assume

that its read validation will fail, and avoid the wasted coherence

traffic due to bringing in the corresponding cache line.

The mechanism we introduce, called memory tagging (in short,

MemTags), allows threads to do exactly this: a thread can tag a set

of memory locations before accessing them, read them, and can

then validate any of these tags at any later point in time, or untag
any tagged location so it is no longer tracked. Validation should

fail if the memory location has been invalidated by a concurrent

update since the tag was set. If validation succeeds, then the thread

can be certain that its read value is still current.

In addition, we provide two operations which build on the vali-

dation semantics. The first is the natural counterpart to compare-
and-swap (CAS), called validate-and-swap (VAS), which allows the

thread to swap in a new value in a location conditional on its tag

validations succeeding. VAS is more expressive than CAS, but has

similar cost, and is easier to implement than HTM, since we up-

date a single word. The second operation is Invalidate-and-Swap
(IAS), which atomically invalidates all tagged cache lines, and, if

successful, changes the value at a single location. While the reason

for introducing VAS is intuitively straightforward, the necessity of

the IAS operation is more subtle—in Section 4 we will argue that

IAS is in fact necessary to correctly and efficiently implement data

structures in the absence of marking.

It is natural to ask what are the performance and expressivity

benefits of this mechanism. As a simple example, for linked lists,

tagging enables two efficient variants. The first, called VAS-based
marking, uses tags to alleviate the synchronization issue discussed

above: starting from a Harris-Michael list with pointer marking,

we tag the predecessor pred and successor succ for the key to be

inserted or deleted. If they are logically unmarked, we use VAS on
these two locations to perform the pointer swing corresponding to

the operation. Correctness follows since VAS will only succeed if

the nodes have not been updated since last being read. As discussed,

tagging improves performance if multiple threads attempt to update

the same node, since VAS ensures that validations fail locally, at the

core, instead of causing additional coherence traffic.

The second, more interesting variant is hand-over-hand (HoH)
tagging: threads traverse the list in a hand-over-hand fashion, main-

taining tags on the predecessor and on the current node, and un-

tagging earlier nodes when they are no longer needed. In contrast

to hand-over-hand locking, readers do not write, so we can recover

the simplicity of this technique without the expensive lock acqui-

sitions. Of note, for this design to be correct, the pointer update

corresponding to insert or delete operations must be performed

via invalidate-and-swap (IAS). This variant does not require
pointer marking for correctness, and allows traversals to overtake

eachother.

The benefit of tagging is that checking whether tags are valid

is local, in the sense that it can be done entirely at the level of the

core’s L1 cache, without additional coherence traffic. (We provide

an implementation proposal at the level of L1 cache in the later

sections.) This is in contrast to methods such as marking or locking,

which are not local, and can incur significant overheads.

General Tagging. While the above uses of tagging are straight-

forward, MemTags can bring about non-trivial simplifications and

performance improvements for more complex data structures. This

is the case for binary search trees, skip-lists, balanced search trees

(chromatic trees and (a,b)-trees), as well as NOrec STM [28], k-word

CAS (kCAS) [29] and range query implementations. At a conceptual

level, tagging challenges the data structure designer to ask what is

theminimal amount of state to be validated to ensure data structure

correctness. In particular, we highlight (1) the broad applicability

of hand-over-hand (HoH) tagging for data structure traversals, as it

offers the simplicity of hand-over-hand locking without the perfor-

mance cost, and (2) the performance advantages of VAS over CAS as
its fail-fast behavior leads to markedly lower cache coherence over-

heads, and (3) the fact that HoH tagging can enable a simple and

efficient fast-path mechanism for complex data structures such as

balanced trees, which tend to be notoriously complex, e.g. [30, 31].

The usual trade-off in this area is between the complexity of the

reads–which should avoid coherence traffic–and the complexity of

the updates–which should perform a minimal number of pointer

changes. Primitives such as kCAS [29] or LLX/SCX [8] allow the

programmer to explore this complex trade-off, but unfortunately

tend to have extremely complex implementations, and still require

non-trivial synchronization.

An immediate use of MemTags would be tagging the entire path

from the root to the leaf. Upon further thought, we notice that if we

know an upper bound D on the number of consecutive nodes on a

path which might be deleted by any single operation, then we can

always perform searches via HoH tagging with a “window” of D + 1

nodes. Clearly, upon successful validation, the current node has not
been deleted concurrently, since its entire “neighborhood” must be

unmodified. Furthermore, we show that this idea can be extended in

balanced search trees to perform nodemodifications via a single IAS,
which the updater uses to invalidate all concurrent traversals. The

IAS invalidates the corresponding locations at other cores (if they

are tagged), causing any future validations to fail. The resulting

technique is new, and achieves three desirable properties: (1) it

implements an atomic node modification without synchronizing

on the entire path from the root, (2) without updating more than

one location, and (3) with minimal cache coherence overhead.

Another natural use of MemTags is to obtain cheap lock-free

snapshots: a thread can tag the set of locations, and then validate.

If validation succeeds, the snapshot is valid. This simple idea can

be used to perform efficient range queries, and can be extended

to speed up kCAS implementations [29]. We can further extend

this idea to efficiently implement the single global sequence lock in

NOrec STM [28]: active reader transactions tag the lock, and abort

as soon as the lock becomes invalid. Thanks to the semantics of
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tagging, readers can detect conflicts cheaply and validate read set

significantly faster, removing a key bottleneck in NOrec.

Implementation, Limitations and Experimental Validation.
We present a hardware implementation proposal for MemTags

exclusively at the level of the L1 cache, without changes to the

underlying coherence protocol. We discuss the feasibility of this

proposal, as well as its shortcomings. One main limitation is that

on current systems MemTags are bound to be advisory: validation
can fail spuriously, which implies that MemTags will always have

to be backed by a “fallback path” in order to ensure progress. This

limitation is shared with most HTM implementations. A second

limitation is complexity, as correct application of tagging forces the

programmer to carefully understand the synchronization required

by the implementation. Third, since it would require hardware

modifications, MemTags would be relatively complex to implement.

To address the first issue, we first show that MemTags support

natural fallback paths similar to those used by hardware lock elision

(HLE) [4] and that, marking-based designs and LLX/SCX-based de-

signs provide correct fall-back paths for MemTag-based data struc-

tures. Second, we show that spurious invalidations are negligible in

practice for reasonable data structure sizes. In particular, we show

MemTags can serve as a natural and efficient fast-path for marking

and LLX/SCX-based implementations.

We implement MemTags in the Graphite simulator [32] for a

tiled multi-core processor with variable number of cores, and test

it on standard workloads for a range of data structure designs,

such as linked lists, search trees, as well as NOrec STM [28] on the

STAMP benchmark [33]. Results suggest that MemTags can speed

up the fast path of these implementations. For instance, on standard

search-insert-remove workloads, MemTags can speed up highly

optimized linked list by 10 to 50%, balanced search trees by up to

2× versus the optimized implementations based on LLX/SCX [8],

and NORec by up to 50% versus the pure software implementation.

2 RELATED WORK
Due to the breadth of the area, we will focus on closely related

mechanisms, namely OPTIK [7], LLX/SCX [8], Lease/Release [10],

and HTM with early release [9].

OPTIK. OPTIK [7] is a design pattern relying on version numbers
for detecting conflicting concurrent operations. Version numbers

are integrated into a versioned lock, which allows operations to

read a lock’s version number, try to acquire a particular version
of the lock, and release the lock. The lock’s version number is

incremented at the end of a successful critical section that modifies

the shared state protected by the lock. OPTIK improves performance

in scenarios where threads often perform optimistic reads (outside
of a critical section), then subsequently acquire a lock, and then

validate, only to discover that the validation fails and the lock must

be released. Rather than acquiring the lock only to release it, an

attempt is made to acquire the lock with a particular version, but

the lock acquisition will fail if the data has changed.

Suppose an algorithm uses OPTIK to lock a sequence of nodes.
For this, it might read the version of each lock, then speculate by

reading the contents of nodes, and finally acquire each of the locks

protecting these nodes. Suppose the last node in this sequence is

changed before the algorithm has acquired any of its locks. Then,

the algorithm would acquire all but its last lock before failing, even

though it was doomed to fail before it even began locking. Such

scenarios negatemuch of the benefit of OPTIK. By contrast, consider

a MemTags implementation of this pattern, using VAS to acquire

each lock. One could tag all of the locks and check that they are not
held, perform the desired speculative transaction, and then execute

a sequence of VAS instructions to acquire the locks. In the previous

example, locking would fail immediately, before any changes are

made to shared memory, and failed locking would generate no

coherence traffic.

As a software mechanism, OPTIK is much cheaper to implement

than MemTags. Yet, the cost of failure with OPTIK is much higher

than that of MemTags. Further, unlike MemTags, OPTIK cannot be

applied to relatively simple data structures such as skip-lists. One

can perhaps think of tagging as generalized hardware support for

OPTIK locks, although MemTags provide additional benefits.

LLX/SCX. Reference [8] introduces three new software opera-

tions, load-link-extended (LLX), validate-extended (VLX) and store-

conditional-extended (SCX), which can implement complex syn-

chronization patterns. LLX, SCX and VLX operate on Data-records.

Any number of types of Data-records can be defined, each type

containing a fixed number of mutable fields (which can be updated),

and a fixed number of immutable fields (which cannot). A successful

LLX returns a snapshot of the mutable fields of one Data-record.

(The immutable fields can be read directly, since they never change.)

An SCX operation by a thread P depends on a set D of Data-records,

and is used to atomically store a value in one mutable field of one

Data-record inD and finalize a subset of Data-records inD, meaning

that those Data-records cannot undergo any further changes. Note
that finalizing generalizes marking. SCX succeeds only if each Data-

record it depends on has not changed since P last performed an

LLX on it. A successful VLX ensures that each of the Data-records

has not changed since the caller last performed an LLX on it.

The reader will have noticed that LLX is analogous to tagging,

VLX to validate and SCX to VAS. However, with tagging, we are

able to avoid some of the modifications to data structures that are

needed to use the LLX/SCX primitives, such as the addition of a

marked bit and an extra pointer field to each data structure node,

reducing space overhead. Additionally, given an implementation

of a data structure from LLX/SCX, we can produce an improved

implementation using VAS, with significantly better performance.

This is evident from the pseudocode and experimental results.

Lease/Release. Lease/Release is a hardware mechanism aimed at

improving the performance of contended data structures [10]. It

allows a thread to lease a cache line for a bounded period of time,

during which concurrent accesses will not be able to invalidate it.

This can significantly improve the performance of data structures

such as stacks, queues, or even locks. While tags could be used in

conjunction with leases, they are aimed at a completely different

application—search data structures versus producer/consumer data

structures—and would not benefit search data structures.

Recently, [34] introduced an HTM-based mechanism to reduce

the overheads of contention in the context of implementing concur-

rent queues. The goal of this mechanism is different from tagging,

since we aim to speed up read operations.
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Transactional Memory. It is also interesting to contrast tagging

with HTM [1] implementations such as TSX [2], which assume

by default that all the code between the beginning and end of a

transaction should be executed speculatively. This is known to

lead to spurious conflicts and loss of performance [35]. Techniques

such as teleportation [36] aim to reduce the capacity and coher-

ence overheads of this assumption by allowing the programmer to

split transactions into smaller basic blocks which are less likely to

conflict.

Early release [9] is a mechanism allowing to select memory lo-

cations which should no longer be monitored by HTM as part of

the transaction before the transaction ends. As such, early release

can be seen as a weaker version of tagging: if early release needs

the programmer to explicitly release (untag) all the locations swept

up by the HTM implementation, MemTags allows explicit and dy-

namic tagging, untagging, and VAS/IAS. On the other hand, early

release still supports full transactional semantics. In [9], the authors

provide examples and empirical results on data structures such as

linked lists, AVL trees, and B-trees, suggesting that early release

falls short in terms of the trade-off between programming complex-

ity and performance benefits. However, the examples given do not

significantly innovate upon the underlying data structures. Here,

we show that such fine-grained synchronization mechanisms can

indeed enable simpler and more efficient advanced data structures,

such as balanced search trees. In particular, we note that our IAS
semantics cannot be supported through early release–at the same

time, our example in Section 5.1 suggests that invalidation may

be required for significant performance savings. Compared with

early release, MemTags require specific tag addition, removal, and

validation. This adds more flexibility, but also requires an in-depth

understanding of the underlying data structure. This fits the scope

of our application scenario, which includes advanced performance

optimization for concurrent data structures.

3 SEMANTICS AND IMPLEMENTATION

Semantics. The AddTag (& node, size) method takes as argu-

ment amemory location that needs to be tagged and a range, derives

the cache-line(s) corresponding to this memory location, and stores

them in a set data structure, in tagged state. The RemoveTag (&
node) operation takes an address as argument, and untags it. It

does so by removing the cache lines corresponding to the memory

locations from tagged state. At any point after the first AddTag, if
(1) a cache line that is part of tagged set gets evicted due to cache

replacement policy, or (2) a cache line that is part of the tagged set

gets an invalidation/flush request (due to other threads wanting

to write to this cache line), then those cache lines are added to the

evicted set. The Validate () method returns False if any of the

tagged cache lines have been moved to the evicted set since they

were tagged, and True otherwise. The Validate-and-Swap (VAS)
method takes as argument a target location, and its desired updated

value; it atomically validates that none of the tagged addresses

have been evicted; if this is the case, it performs the update on this

location atomically. The operation returns True if successful, and
False otherwise. VAS will fail due to a failure of tag set validation

(due to an eviction). Notice that this automatically incorporates

CAS semantics, since we expect the target location to have been

read after being tagged—thus, this location cannot be concurrently

updated without invalidating the corresponding line. (Alternatively,

we can augment the VAS semantics to be equivalent to CAS by

requiring an expected value as part of the argument and checking

against it.) The Invalidate-and-Swap (IAS) method atomically

1) checks that none of the currently tagged addresses have been

evicted; 2) invalidates them at other cores; 3) if both these steps are

successful, the operation then performs an update of one location.

The operation returns True if successful, and False otherwise. The
ClearTagSet () operation empties the set of tagged locations.

Hardware Implementation.Weassume basic knowledge ofMESI

cache coherence; please see [37] for a primer. We propose to imple-

ment MemTags at the level of the L1 cache by adding extra state to

each core’s load buffer structure, which serves as a directory keep-

ing track of the current state of all cache lines, and handles cache

misses. In particular, we add two possible states for every cache line,

which are transition-to-tagged, and tagged. The first state means

that the line will be tagged as soon as the corresponding cache miss

gets served. When this request gets served, the line moves to tagged
state. If a tagged line gets invalidated, then it moves to evicted state.

The mechanism needs to maintain metadata for such lines until

the following validation request, at which point this metadata is

reset. Upon validation, the system checks the metadata for all states,

while temporarily pausing the serving of new coherence requests,

to maintain atomicity. If none of the tagged lines have been evicted,

then the validation succeeds. In either case, the contents of the

tagged and evicted buffers are reset to empty. Tag removal and

VAS are implemented similarly. The invalidation step in IAS can be

implemented by piggy-backing on the cache coherence mechanism,

that is, by following the pattern required for elevating the state of

the corresponding cache lines to E/M . The number of tags which

can be held concurrently is upper bounded by a system-wide con-

stant Max_Tags, after which the system will stop accepting tagging

requests.

Tags are compatible with out-of-order execution, in the sense

that a tag operation being “hoisted” ahead of a preceding store

will not affect correctness of the data structure. However, we do

enforce that validation operations are not re-ordered with respect
to tag operations. In addition, the system may recover from branch

misspeculation by evicting all existing tags, which ensures that any

subsequent validation will fail. Similarly, tag set overflow can be

handled gracefully by simply returning False to validation requests

once the size of the validation set has exceeded Max_Tags. Since
tags are advisory, these behaviors are permissible.

We note that this mechanism can be extended to MOESI/MESIF-

style cache coherent implementations. Due to space constraints,

we leave the description to the full version of our paper.

Fall-Back Path. One key issue is that hardware MemTags will not

be able to guarantee progress, since cache lines could in theory be

evicted for many reasons. At the same time, there is no immediate

way to simulate MemTags in software.
To provide a fall-back path for the case when tags would fail

repeatedly in a spurious manner, we use a mechanism similar to

Hardware Lock Elision (HLE) [4]. We allocate a separate Mode line,

which takes values SLOW and FAST, depending on whether the sys-

tem is on the fall-back or fast path, respectively. This line is modified
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only on a mode change. All operations begin by first reading this

line, to determine which code path will be executed, and all tag

validations or VAS operations on the fast path will include this line

as part of their tag set. An operation which experiences a large

number of consecutive validations (higher than some set threshold)

will change the Mode to SLOW and proceed to execute a software-

only variant of the data structure, for instance one based on kCAS

or LLX/SCX. This causes all fast-path MemTags operations to fail

their validation and have no effects. The Mode can be re-set to FAST
after some pre-defined period.

We do not necessarily lose simplicity or generality with this

fallback path. For all the data structures we discuss in the later

sections, it is natural to pair the tagged fast path with either a

fallback path based on hand-over-hand locking, or one based on

lock-free algorithmswith nodemarking. In terms of complexity, this

should be close to free. In terms of performance, this is reasonable

as long as the fallback path is infrequent.

4 EXAMPLE: TAGGED LINKED LIST
We now consider different ways in which tagging can be used to

build efficient data structures. Our example will revolve around the

simple linked-list data structure, but our goal will be to illustrate

the usefulness and pitfalls of using this minimalist technique. The

focus here is less on providing full detail (which we will do for more

complex applications in the later sections), but on isolating more

general patterns.

We will start from the classic Harris-Michael Linked List [11,

12, 14], which implements an ordered set with operations: insert,
delete and search. Recall that this design assumes a singly-linked

list with pointers to head and tail nodes. Each node has a boolean

marked field indicating whether that node is in the set. The algo-

rithm maintains the invariant that every unmarked node is reach-

able; if a node is not found or is marked, then it is logically not in

the set. The algorithm makes heavy use of a helper function called

locate, which takes a target key k as its argument, and returns

nodes pred and curr such that pred .key ≤ k < curr .key. This sub-
routine also removes marked nodes whenever it encounters them

by unlinking them.

VAS-Based Linked-List. The first way to apply tagging is straight-
forward: 1) we can complement value-based validation with tag

validation, and 2) we can replace CASwith VAS. Pseudocode for this

variant can be found in Algorithm 1. For instance, in this case, an

insert of key k works as follows. It first invokes locate to locate

pred and curr for the key. If pred .key ̸= k , then the cache lines con-

taining pred and curr are tagged. Next, we check that these nodes

are unmarked and the next node of pred is still curr—intuitively,
we are checking that both are reachable from the head of the list.

After the mark check, we perform validation on the cache lines

containing pred and curr . If the validation fails, then the tagged

set is cleared and the operation is restarted. The pointer change

needed to finish the insertion is then implemented via VAS, which
atomically: (1) validates that the tagged memory locations (pred
and curr ) have not been modified since they were tagged and (2)

performs the swap. The delete operation is similar.

The benefits of tagging in this case are limited. This design is

very close to the lock-free, but can avoid some cache coherence

head

tag tag tag

Figure 1: Counterexample sketch for naive HoH-tagging list
algorithm without invalidation. Thread 1 (whose tags are
in green) traverses the list, tagging each newly visited node,
and untagging its grandparent at every step in a HoH man-
ner. Thread 2 (red) deletes the first green node concurrently,
by swinging the corresponding pointers in its predecessor
via VAS. If the pointer swing does not invalidate the node
which is pointed to, then there is no way for Thread 1 to
tell that it is accessing a deleted part of the list, for instance
inserting elements there. This counterexample would be cir-
cumvented if Thread 2 would invalidate the nodes which it
is deleting, which would cause Thread 1 to fail its validation
and restart its operation.

traffic due to helping when threads attempt to perform concurrent

swaps on the same location if they are performed via VAS. In this

case, threads which fail will not pay the additional cost of value-

based validation, since their validation fails locally. We note that a

natural backup path for our implementation is the baseline lock-free

implementation itself.

The Hand-over-Hand (HoH) Tagging Puzzle. It is natural to
ask whether we could leverage tagging to obtain a lock-free im-

plementation which completely avoids the use of mark bits. One

tempting approach is to follow the classic hand-over-hand locking

design [14], replacing locking with tagging. Such a design could

work as follows.When a thread P traverses the list, it tags each node

when first visiting it. Tagging can be done in a “hand-over-hand”

fashion, to ensure progress and correctness while simultaneously

minimizing the number of locations which need to be validated:

whenever a new node is first visited by a list traversal, it is tagged,

and validated to ensure that it has not been modified since the last

read. The idea would be to ensure that the node cannot be concur-

rently modified without thread P failing its validation: intuitively,

maintaining tags on consecutive nodes and being able to validate

them achieves that neither of the two nodes has been modified.

Please see the locate method in Algorithm 2 for the precise im-

plementation of this procedure. It is therefore reasonable to ask

whether this intuition can be turned into a correct hand-over-hand

tagging algorithm if we perform the pointer swinging for inserts

and deletes via VAS, as in the previous implementation.

As the attentive reader guessed, VAS and tag validation are not

sufficient to ensures correctness for this hand-over-hand design.

One counterexample is depicted and described in Figure 1. At a

high level, the key shortcoming of this approach is that the thread

P holding tags on a sequence of nodes cannot tell whether the “first”

node in this sequence (in the traversal order) is being removed

by some concurrent operation, since there is no mechanism to

signal this deletion at the node level: the corresponding pointer

change happens at the predecessor of that node. Circumventing

this counterexample is exactly one of the benefits of node marking.
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Figure 2: Throughput versus number of threads for the lock-
free Harris linked list, compared with our VAS-based and
HoH-based implementations with 35% inserts, 35% deletes
workload. As expected, the HoH variant is significantly
more efficient, since it reduces synchronization cost.

Unfortunately, if we were to directly implement marking, we would

end up with the bland VAS-based design.

Efficient Transient Marking via Invalidation.We can resolve

this conundrum by noting that it is sufficient for any concurrent

delete to invalidate the node it is deleting, making sure that any

concurrent traversal which has tagged this now-deleted node fails

its node validation, and therefore restarts. This mechanism is similar

to what would occur if the node were marked, or in a correct

implementation of hand-over-hand locking, where the deleting

node has to hold the lock on the node it is deleting.

The resulting pseudocode is presented in Algorithm 2, and its

performance relative to the lock-free and VAS baselines is presented

in Figure 2. The design has a few notable properties: (1) traversals

can overtake each other; (2) a delete operation does not have to

write to the node it is deleting. (The operation does invalidate the

node. In the unlikely case where all the other threads are tagging

the cache line corresponding to that node, then the cost of writing

and the cost of invalidation are similar—however, this operation

can be significantly cheaper in the simple case where no other

thread has the node in L1 cache.) The performance benefit of these

properties is visible in Figure 2.

Correctness. The correctness of the HoH design rests on the fol-

lowing invariant: at the time a node is successfully validated, it is

guaranteed to be present in the data structure, in the sense that

it can be located via a traversal starting at the head node. This

invariant is preserved inductively. It holds trivially as long as the

head pointer is being validated. Then, every time a thread success-

fully validates all its tagged nodes, after adding a new node to its

traversal, it ensures that (1) the previously validated nodes are still

in the list, and (2) the newly traversed node is pointed to by a node

that is in the list. Together, this guarantees the extension of the

invariant to the newly added node, and allows the thread to untag

the “oldest” traversed node (technique described further in Sec. 5.1).

Lessons Learned. The key property we are leveraging in this im-

plementation is that node marking only needs to be transient: it is
sufficient for the deleting operation to “abort” concurrent traversals

Algorithm 1 VAS-based Linked List

1: type node { key k, node* next }

2: class list { node* head }

3: procedure HelpIfNeeded(node* pred, node* curr)
4: if curr is not marked then return false ▷ curr does not need unlinking-help

5: AddTag(pred, sizeof (node))

6: if pred is marked then ClearTagSet() and return true ▷ restart LOCATE from scratch

7: if pred does not point to curr then ClearTagSet() and return true ▷ restart

8: AddTag(curr, sizeof(node)) ▷ if we get here, curr is marked

9: succ← (curr→ next) ▷ marked nodes do not change (so succ is same for all helpers)

10: Validate-and-swap (&(pred→ next), succ) ▷ help unlinking step

11: ClearTagSet() and return true ▷ restart

12: end procedure
13: procedure LOCATE(key k)

14: curr← head ▷ Note: head (sentinel node with key −∞) cannot be marked

15: do
16: pred← curr

17: curr← (curr→ next)

18: if HelpIfNeeded(pred, curr) then start again

19: while curr→ k < k ▷ continue search until curr→k is too large

20: return ⟨ pred, curr ⟩
21: end procedure
22: procedure INSERT (key k)

23: ⟨ pred, curr ⟩ ← LOCATE(k) ▷ note LOCATE does not perform tagging

24: if curr→ key = k then return false
25: end if
26: AddTag(pred, sizeof(node))

27: AddTag(curr, sizeof(node))

28: if pred or curr is marked, or pred does not point to curr then
29: ClearTagSet() and start again
30: end if
31: node← new Node(k, curr) ▷ node to be inserted between pred and curr

32: if ¬Validate-and-swap(&(pred→ next), node) then
33: ClearTagSet() and start again ▷ failed operation

34: end if
35: ClearTagSet() and return true
36: end procedure
37: procedure DELETE(key k)

38: ⟨ pred, curr ⟩ ← LOCATE(k) ▷ note LOCATE does not perform tagging

39: if curr→ key ̸= k then return false
40: AddTag(pred, sizeof(node))

41: AddTag(curr, sizeof(node))

42: succ← (curr→next)

43: if pred or curr is marked, or pred does not point to curr then
44: ClearTagSet() and start again
45: end if
46: if ¬Validate-and-swap(&(curr→ next), marked succ) then ▷ marking step

47: ClearTagSet() and start again
48: end if
49: Validate-and-swap(&(pred→ next), succ) and CearTagSet() ▷ unlinking step

50: end procedure
51: procedure SEARCH(key k)

52: ⟨ pred, curr ⟩ ← LOCATE(k) ▷ note LOCATE does not perform tagging

53: return (curr→key = k) ▷ return the Boolean result of the comparison

54: end procedure

on the node it is deleting (since traversals that start after a node is
unlinked cannot reach it). Therefore, the correct instantiation of

the hand-over-hand tagging pattern will have to perform IAS, in-

validating the node it is deleting and its predecessor, and swapping

the corresponding pointer accordingly. At the same time, we note

that this pattern can lead to significant performance benefits, since

it minimizes synchronization costs. We build on this observation

in the next section, where we consider more complex applications

of this pattern.

Intuitively, this pattern provides linearization points as follows:

a successful modification is linearized at the VAS/IAS that performs

it. A read-only operation is linearized at the last successful validate.

In the case of hand-over-hand tagging, we must also prove that if

we perform a successful validate/VAS/IAS, then the nodes in the

tag set are reachable from the root/head.
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Algorithm 2 Linked List using HoH tagging

1: type node { key k, node* next } ▷ marking is not used
2: class list { node* head }

3: procedure LOCATE(key k)

4: pred← head

5: AddTag(pred, sizeof(node))

6: curr← (pred→ next)

7: AddTag(curr, sizeof(node)) ▷ validate checks whether pred, curr are in the list

8: do
9: if ¬Validate() then ClearTagSet() and start again
10: RemoveTag(pred, sizeof(node))

11: succ← (curr→next)

12: AddTag(succ, sizeof(node)) ▷ validate checks whether pred, curr, succ are in the list

13: pred← curr

14: curr← succ

15: while succ→ k < k ▷ continue search until succ→ k is too large

16: return ⟨ pred, curr ⟩ ▷ Note: pred and curr remain tagged
17: end procedure
18: procedure INSERT(key k)

19: ⟨ pred, curr ⟩ ← LOCATE(k) ▷ performs hand-over-hand tagging

20: if curr→k = k then ClearTagSet() and return false
21: node← new Node(k, curr) ▷ node to be inserted between pred and curr

22: if ¬Validate-and-swap(&(pred→ next), node) then
23: ClearTagSet() and start again ▷ failed operation

24: end if
25: ClearTagSet() and return true
26: end procedure
27: procedure DELETE(value v)
28: ⟨ pred, curr ⟩ ← LOCATE(k) ▷ performs hand-over-hand tagging

29: if curr→ k ̸= k then ClearTagSet() and return false
30: if ¬Invalidate-and-swap(&(pred→ next), curr→ next) then
31: ClearTagSet() and start again
32: end if
33: ClearTagSet() and return true
34: end procedure
35: procedure SEARCH (key k)

36: ⟨ pred, curr ⟩ ← LOCATE(k) ▷ performs hand-over-hand tagging

37: ClearTagSet() ▷ tagging inside LOCATE established a time when curr was in the list

38: return (curr→key = k) ▷ return the Boolean result of the comparison

39: end procedure

5 APPLICATIONS OF TAGGING
5.1 Tagged (a,b)-Tree

Overview. We now describe a more complex application of Mem-

Tags to implement a balanced tree data structure, notably an (a,b)-

tree, which is a generalization of a B+tree. We build upon the

LLX/SCX based implementation of Brown et al. [8]. In fact, this

section will outline a general way of using MemTags as a fast-path

for data structures designed using LLX/SCX, for which we present

one specific instance.

Like B+trees, (a,b)-trees are leaf-oriented, which means all key-

value pairs in the dictionary are contained in the leaves of the tree.
Excluding the root, each leaf in an (a,b)-tree has between a and b
keys, and each internal node has between a and b child pointers,

where a and b can be any values chosen such that b ≥ 2a − 1. Note
that a B+tree is simply an (a, 2a-1)-tree.

As in B+trees, the balance invariant in (a,b)-trees is quite strict: all

leaves in an (a,b)-tree have the same level (where the level of a leaf

is the number of ancestors it has). Maintaining this strict balance

condition can make rebalancing after insertions and deletions quite

expensive, both in terms of the number of modifications performed

on the tree (in a sequential setting), and in terms of synchronization

(in a concurrent setting). To overcome the high cost of rebalancing

(a,b)-trees in a concurrent setting, the (a,b)-tree properties can be

violated temporarily while updates are in progress.

More specifically, a node can transiently contain fewer than

a keys/pointers, in which case we say a degree violation occurs

at that node (unless that node is the root). Additionally, leaves

can transiently occur at different levels. To keep track of level

differences (so once can rebalance to remove such differences), each

node is augmented with a flag bit. If the flag bit of a node is set,

then that node is not counted towards the level of any leaves below

it. We say that a flag violation occurs at each node whose flag bit is

set. We then define the relaxed level of a node to be its level minus

the number of flag violations at its ancestors. Rebalancing steps are
performed to remove degree and flag violations while maintaining

the invariant: all leaves have the same relaxed level. Once there are
no violations, the tree is balanced.

Chapter 8 of [31] provides a concurrent implementation using

the LLX/SCX primitives. We first give a brief overview of how this

implementation works, and then explain how one can obtain a

faster implementation by using hand-over-hand tagging.

Using LLX and SCX. Searches in this implementation are per-

formed exactly as in a sequential (a,b)-tree. At each node, a thread

compares the key k it is searching for with the various keys in the

node, and determines which child pointer it should follow, then

follows that pointer. This continues until it reaches a leaf, and

determines whether k is in the tree.

To insert a key-value pair (k,v), a thread first performs a search

for k , terminating at a leaf u with parent p. If u already contains

k , then the insertion terminates and returns false.
1
So, suppose

k is not in u. If u contains fewer than b keys, then the operation

attempts to perform the change illustrated in Figure 3(a). This

entails performing LLXs on p and u (which return snapshots of the

contents of these nodes), creating a new copy n of u containing all

of the pairs in u as well as (k,v), and finally using SCX to replace u
with n. (Note thatu does not have to be finalized when it is replaced,

because leaves are never modified.) Note that this SCX will succeed

only if neither p nor u have changed since we performed LLX on

them.

On the other hand, if u already contains b keys, a single node

cannot accommodate the pairs inu as well as (k,v), so the operation
attempts to perform the change illustrated in Figure 3(b). This

entails performing LLXs on p and u, creating two new leaves nL
and nR that evenly share the pairs in u as well as (k,v), creating
a new flagged parent n for nL and nR, and finally using SCX to

replace u with n and finalize u. Note that n is flagged to preserve

the invariant that all leaves have the same relaxed level.

Delete is similar to insert: it replaces u with a new copy that

does not contain the key being deleted.

Whenever a thread performing an insert or delete of key k cre-

ates a violation, it executes a cleanup procedure that repeatedly

searches towards key k , looking for violations and performing any

applicable rebalancing steps, terminating when it no longer finds

any violations. Because each rebalancing step either eliminates a vi-

olation or moves a violation upwards along the path to the root (and

no other movement of violations is possible), the violation created

by the thread will be eliminated before this procedure terminates.

Each rebalancing step is implemented using LLX and SCX, simi-

larly to insert and delete. Note, however, that the rebalancing steps

are slightly more complex, and some involve using SCX to atom-

ically replace and finalize up to three nodes (operating on up to

four nodes atomically, including the ancestor whose pointer is

changed to perform the replacement). LLX and SCX are well suited

1
Here, we consider insert-if-absent functionality. If it is desirable to replace the existing

value with the new value v , the data structure can be modified slightly to allow this.
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Figure 3: Two cases for Insert(k,v); (a) applies if α + γ < b (u is not full); (b) applies if α = b (u is full).

to this task, but their implementations have significant synchroniza-

tion overhead compared to our new tagging mechanism, including

marking each node prior to its removal from the tree, and having

threads participate in a sort of collaborative operation-locking pro-

tocol (in which nodes are locked exclusively for an operation—not

a thread—prior to being modified or finalized). Much more efficient

implementations are enabled by our tagging mechanism.

The Generic Transformation. We now present a set of guide-

lines for obtaining a correct and efficient tagged data structure

from an existing LLX/SCX variant. First, we notice that the LLX

operation can be directly simulated by tagging the corresponding

objects being read. Note that LLX semantics require the operation

to return a snapshot of the corresponding nodes: however, upon

close inspection, we observe that this snapshot return value is never
used.2 Therefore, it is sufficient to simply replace each LLX call with

a tag on the corresponding object, followed by a read on it.

For emulating SCX, we first note that this operation has two
main uses. The first is similar to k-compare-single-swap (KCSS),

in which we wish to validate against a set of locations and swing

a pointer. Clearly, this usage can be directly simulated via VAS,

especially since we notice that all the locations which were part

of the corresponding LLX are tagged by the previous step in the

transformation. The second usage of SCX is in finalizing, which
is implemented via marking in [31], and is designed to cause any

SCX that depends on a finalized node to fail. Naturally, this usage

of SCX should be replaced by IAS on the corresponding locations,

implementing transient marking.

Key Difficulty in the Transformation. Thus, the key non-trivial
step is in mapping an LLX/SCX implementation using finalizing to

a tagged implementation using hand-over-hand tagging (avoiding

the need for finalizing by using HoH tagging similarly to our linked

list). Crucially, the purpose of finalizing nodes in the (a,b)-tree is

to prevent erroneous changes to nodes that have been deleted: By

finalizing deleted nodes, and disallowing changes to finalized nodes,

it becomes impossible to modify a deleted node.

Similarly, the goal of HoH tagging is to guarantee that validate/-
VAS/IAS succeeds only if all tagged nodes are currently reachable
from the root (i.e., semantically, they are not finalized).

The exact way to do this, and in particular to untag nodes, is

data-structure specific, as described below.

(a,b)-Tree using Hand-over-Hand Tagging.We avoid some spe-

cial cases in the code (as in [31]) by setting the initial root pointer to
point to a sentinel internal node containing a single pointer, which

2
At the same time, if the snapshot return value is required, we can simulate snapshot

semantics via tag validation.

points to an empty leaf node. This sentinel node is never deleted (so

the root pointer always points to it) nor modified by rebalancing (so

it always contains a single pointer). All keys in the set are always

found in the subtree rooted at the child of root.
Each operation in this implementation tags nodes in hand-over-

hand fashion. Let us reason about when it is safe to untag nodes.

Observation: By inspection of the (a,b)-tree operations in [8], the

longest path of nodes that can be atomically removed from the tree

has length 2. In other words, an operation may remove a node and

its parent, but no operation also removes its grandparent. Thus, for

a node to be deleted, a child pointer must change in its parent or

grandparent.

Algorithm 3 (a,b) tree using HoH tagging

1: type node { weight w, array(key) keys, array(node*) ptrs }

2: class abtree { node* root, constant a, constant b }

3: procedure LOCATE (key k)

4: gparent← NIL

5: parent← NIL

6: curr← root ▷ root pointer never changes, so no need to tag it

7: AddTag (curr, sizeof (node))

8: while curr is internal node do
9: next← selectChildPointer (k, curr) ▷ determine which subtree should contain k
10: AddTag (next, sizeof (node))

11: if ¬Validate() then ClearTagSet () and start again

12: if gparent ̸= NIL then RemoveTag (gparent, sizeof (node))

13: gparent← parent

14: parent← curr

15: curr← next

16: end while
17: return ⟨ gparent, parent, curr ⟩ ▷ these remain tagged
18: end procedure
19: procedure INSERT (key k)

20: ⟨ gparent, parent, curr ⟩ ← LOCATE (k)

21: if curr contains key then return false
22: if gparent↛ (does not point to) parent or parent↛ curr thenClearTagSet () and restart
23: let parentIndex be the index in gparent→ ptrs[] where we saw a pointer to parent

24: let currIndex be the index in parent→ ptrs[] where we saw a pointer to curr

25: if curr contains fewer than b keys then
26: newNode← create new copy of curr with key k added to it

27: if ¬Invalidate-and-swap (&(parent→ ptrs[currIndex], newNode) then
28: ClearTagSet () and restart
29: end if
30: else ▷ curr overflows into two new leaves

31: let left and right be pointers to new leaves that evenly share keys (curr→ keys ∪{k })
32: let newNode be a pointer to a new internal node that points to left and right

33: if ¬Invalidate-and-swap (&(gparent→ ptrs[parentIndex], newNode) then
34: ClearTagSet () and restart
35: end if
36: end if
37: ClearTagSet ()

38: Rebalance (k)

39: return true
40: end procedure
41: procedure DELETE (key k, value v)

42: Similar to INSERT, but instead of overflow,
43: we merge any two nodes whose keys would fit in one node

44: (by creating a new node and performing IAS)

45: end procedure

Pseudocode appears in Algorithms 3, 5, 4. Consider an update

operation (insert or delete) that involves a node u, its parent p and
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Algorithm 4 Example (a,b)-tree rebalancing step

|β| < a and |α|+ |β| < 2a

0

0 0 0

0p

α β α βs l nl

n

gp gp

1: procedure AbsorbSibling (gp, pIndex, p, lIndex, l, sIndex, s)

2: ▷ arguments: grandparent, index of parent in gp→ptrs, parent,

3: ▷ index of leaf in p→ ptrs, leaf, index of sibling in p→ ptrs, sibling

4: AddTag (gp, sizeof (node))

5: if gp does not point to p then return
6: AddTag (p, sizeof (node))

7: if p does not point to l then return
8: if p does not point to s then return
9: AddTag (l, sizeof (node))

10: AddTag (s, sizeof (node))

11: newLeaf← create new node containing all keys from l and s

12: newInternal← create new node by copying p , removing the child pointer to s (and the

corresponding key), and changing the pointer to l to point to newLeaf instead

13: Invalidate-and-swap (&(gp→ ptrs[pIndex]), newInternal)

14: end procedure

Algorithm 5 Rebalancing the (a,b)-tree

1: procedure Rebalance (key k)

2: do
3: ▷ This algorithm is unchanged from the LLX/SCX version

4: do a sequential BST search towards k, stopping at any node that has a balance violation
5: if no balance violations were found on the search path to k then return
6: do the appropriate rebalancing step for the type of violation found, i.e., one of:

7: RootUntag, RootAbsorb, AbsorbChild, PropagateTag, AbsorbSibling, Distribute

8: while true
9: end procedure

its grandparent дp. Such an operation should fail if any of u, p or дp
is deleted. (Recall that in the implementation using LLX and SCX,

if any of these nodes are deleted, they will be finalized (marked),

which will cause any subsequent SCX on them to fail.) So, whenever

we perform a successful validate/VAS/IAS on the contents of u, p
or дp, we want to know that none of these nodes are deleted (or

else we might succeed erroneously where an SCX would detect a

marked node and fail).

It turns out that we can ensure a validate/VAS/IAS on a deleted

node will fail with the following Synchronization Rule: Any op-
eration that deletes a node will be performed via an IAS operation
which will invalidate all of the nodes it deletes. To see why this rule

helps, note that as long as a node is tagged before it is deleted, its
deletion will cause a subsequent validate/VAS/IAS on it to fail. But

what about a node that is tagged after it is deleted? We avoid such

cases by maintaining the following Invariant: All tagged nodes
were in the tree when we last validated successfully.

We initially establish this invariant at the root of the tree by

tagging the root node, then validating. If validation succeeds, we

then tag the next node on the search path (in addition to the root),

and validate again, extending the invariant to the first two nodes
on the search path. And, after tagging the third node on the search

path, we validate to extend the invariant yet again. At this point, we

have three nodes, u, p and дp, that we know were in the tree when

we performed our last validate instruction. The next challenge lies

in showing that we can extend the invariant to the fourth node on

the search path without keeping the root node tagged.

We tag the fourth node on the search path, and validate to extend

the invariant to it. Then, we untag the root. Note that, immediately

after untagging the root, it could be modified to delete our next

tagged node, and a since the root is not tagged, a subsequent val-

idate/VAS/IAS will not detect any changes to the root. However,

any such deletion will still cause validate/VAS/IAS to fail, because

of our synchronization rule. Since our nodes were tagged before the
root was untagged, deleting any of them after the root is untagged
will cause them to be invalidated. And such a deletion before the
root was untagged will clearly cause validate/VAS/IAS to fail, since

the entire path is tagged.

Correctness Argument. We are now ready for the general ar-

gument. Suppose the invariant holds after our i-th consecutive

successful validate instruction in a search. Let u, p, and дp be the

nodes we currently have tagged. We read a pointer to the next node

n on the search path from u → ptrs , tag it, then validate. If valida-

tion succeeds, then u, p and дp are still in the tree at that time, since

they were in the tree when we did our i-th successful validation,

and they have not been invalidated since then (or validation would

fail). It remains to argue that n was in the tree when we performed

our (i + 1)-th validation.

Since our (i + 1)-th validation succeeds, u must be unchanged
between our i-th and (i + 1)-th validations. Thus, when we did our

i-th validation, n was a child of u, and u was in the tree, so n was

as well. We can prove that n is not deleted between our i-th and

(i +1)-th validations with the help of our earlier observation: for n to

be deleted, u or p must change. However, neither u nor p changes

between these two validations, since the latter one succeeds. This

proves that the invariant is extended to n.
As a result of our Synchronization Rule, we are able to prove

that no validate/VAS/IAS ever modifies a deleted node. (I.e., we

correctly simulate the finalizing performed by SCX.)

Linearization Points. Linearization points for operations are as

follows: a successful update is linearized at its successful VAS/IAS.

A search is linearized at the last successful validate. The use of

tagging and VAS/IAS guarantees that updates are performed in a

single atomic step. Note, however, that the HoH tagging argument

is needed to argue that the modification is actually performed on

reachable nodes (and not in a deleted part of the tree).

Generality. The above transformation is specific to the (a,b)-tree

only in terms of the way we allow nodes to be untagged. In the (a,b)-

tree, it suffices to tag three ancestors, since no operation atomically

deletes a chain of more than two nodes, but in other data structures,

more or fewer ancestors may need to be tagged. Note, however, that

we are able to transform LLX/SCX variants of other data structures

into efficient HoH-tagged versions. We have verified this for the

chromatic tree, and we believe the same would hold for every tree

implemented via LLX/SCX following [8, 31].

Rebalancing. After each successful insertion/deletion of key k ,
a procedure called Rebalance(k) is invoked (Algorithm 5). This

procedure repeatedly finds any arbitrary balance violation on the

search path to k , and invokes the appropriate rebalancing step

(which will either eliminate the violation, or move it upwards in the

tree—along the search path to k). This continues until it traverses
the entire search path to k without seeing any balance violation.

An example rebalancing step, AbsorbSibling, appears in Algo-

rithm 4. The transformation from the LLX/SCX version of Absorb-

Sibling to Algorithm 4 is straightforward (mechanical, in fact).
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It may surprise the reader that nodes дp,p, l , s are first found in

Rebalance(k), where the flag violation field and number of keys in l
and s are used to decide which rebalancing step to perform, but they

are only tagged later in AbsorbSibling. In the LLX/SCX version,

LLX is performed on these nodes in the exact same place. Let us see

why this is correct. The flag violation field and number of keys in a

node cannot be changed in this algorithm. (One must replace a node
with a new copy to accomplish this.) Only the pointers of a node
can be changed. And, after tagging, we explicitly check that дp still

points to p, and p still points to l and s . (These same checks are

performed in the LLX/SCX version, after each corresponding LLX.)

Thus, any change that makes it incorrect to perform AbsorbSibling

will cause the IAS at the end of AbsorbSibling to fail (just as the

corresponding SCX would fail).

5.2 Tagged NOrec TM
NOrec (No ownership records) [28] is a software transactional

memory (STM) system that has very low fast-path latency. NOrec

combines three key ideas: (1) a single global sequence lock; (2) an

indexed write set; and (3) value-based conflict detection. NoRec

uses a sequence lock to protect the transaction commit protocol.

Readers check, after each read, to see if any writer has recently

committed; if so, they perform value-based validation to make sure

their previous reads, would return the values previously seen if

performed at the current point.

Multiple read-only transactions can run and commit concur-

rently. A reader can upgrade to writer status at any time, but there

can be only one writer, system-wide. While it precludes write con-

currency, this system avoids the need for buffered writes, and re-

quires only minimal instrumentation: readers check the sequence

lock immediately after reading, to see if they must abort; writers

acquire the sequence lock immediately before writing, if they do

not hold it already.

Writing transactions do not attempt to acquire the sequence

lock until their commit points, allowing speculative readers and

writers to proceed concurrently. Any changes made by a writing

transaction are buffered in a write log, which must be searched on

each read to avoid possible read-after-write hazards. NOrec satisfies

opacity [38], the standard correctness condition for transactional

memory. After a transaction reads, it validates to determinewhether

the read set is still consistent. We now list the NOrec operations,

briefly sketching their implementation.

• ReadSequence - Repeatedly read the global sequence lock

until it is unlocked. Return the sequence number observed

in the final read.

• TXBegin - Beginning a transaction in NOrec simply entails

invoking ReadSequence and saving the result in a local vari-

able V . Intuitively, V is the last sequence number at which

the read set is known to be consistent.

• TXValidate - Invoke ReadSequence and if it returns V , then

no writers have committed since the transaction began, so

return True. Otherwise, value-based validation (VBV) is

needed.

VBV: Invoke ReadSequence and let V ′ be the return value.

For all addresses in the read set, check whether they contain

the same values that were seen previously. If not, return

False (triggering a transaction abort). Invoke ReadSequence

and check whether it is equal to V ′. If so, the read set is

consistent as of the last read of the sequence lock (since no

writing transactions committed between these two invoca-

tions of ReadSequence), soV is set toV ′ and True is returned.
Otherwise, TXValidate starts again.

• TXRead - First check if this transaction has already written to

this address. If so, the value saved in the read set is returned.

Otherwise, TXRead reads the address and saves it in the

read set, then invokes TXValidate. If TXValidate returns

True, TXRead returns the saved value. If not, the transaction
aborts.

• TXWrite - The value to be written is stored in a write buffer,
alongside the target address it should be written to.

• TXCommit - The validation protocol tries to atomically incre-

ment the sequence lock fromV toV +1 using CAS (acquiring

the lock). If this CAS succeeds, then no further validation

is required because no other write has invalidated the read-

/write set. So, the contents of the write buffer are written to

their target addresses, andV + 2 is written the sequence lock

(releasing the lock).

Tagged NOrec. The key idea behind applying MemTags is that

tagging the read set should allow for much more efficient valida-

tion. This serves two purposes. In the favorable case where the read

transaction would succeed, it is able to do so immediately, via suc-

cessful validation. In the unlucky case where the read transaction

would abort, it would not need to perform value-based validation

in order to simply fail. In both cases, we save significantly on cache

traffic; this speeds up the read transactions, as well as the try com-

mit. Acquisition of the global lock is done by IASing on it rather

than spinning until the CAS succeeds. If the IAS fails, the sequence

number is updated by invoking transaction validate to fetch the

count at which the concurrent writer has committed. This is a sim-

ple modification, but induces significant performance benefits since

the coherence traffic required by transactions is greatly reduced,

leading to higher throughput. We illustrate the performance ben-

efits of this in the case of NOrec applied to the STAMP Vacation

benchmark in Figure 8. Examination of the simulator traces con-

firms that this performance improvement comes because of reduced

coherence messaging.

6 EXPERIMENTAL EVALUATION

Setup and Methodology. To emulate the performance impact of

MemTags, we implemented this mechanism in Graphite [32], a tiled

multi-core chip simulator, with 1 to 64 1GHz cores, having private

32 KB caches, and 256 KB inclusive L2 caches, implementing a MESI

coherence protocol. The cacheline size is the standard 64B. Simula-

tion is run in full mode, which accurately models the application’s

instructions. We implemented the semantics of MemTags at each

core’s L1 cache. We note that Graphite does not simulate reordering,

and that it only implements basic branch prediction.

The tests were performed in a controlled simulation environment,

and results are consistent across runs. The implementation uses C++

and POSIX threads. The main metric we investigate is operation

throughput, i.e. number of operations completed per time unit. Each

data point is obtained by averaging over 5 runs.
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Figure 4: Throughput, Cache Miss Rate and Energy results for the lock-free Harris linked list, compared with our VAS-based
and HoH-based implementations with 35% inserts, 35% deletes workload.

Figure 5: Throughput, Cache Miss Rate and Energy results for the lock-free Harris linked list, compared with our VAS-based
and HoH-based implementations with 15% inserts, 15% deletes workload.

Figure 6: Throughput, Cache Miss Rate and Energy results for the (a,b)-tree, compared with our HoH-based implementations
with 35% inserts, 35% deletes workload.

Figure 7: Throughput, Cache Miss Rate and Energy results for the (a,b)-tree, compared with our HoH-based implementations
with 15% inserts, 15% deletes workload.

On every run, we set the initial size of the data structure and

the key range that the threads operate on. On every iteration, each

thread selects a key at random within the range.

The initial size is half of the range, and the percentage of inser-

tions and deletions are the same, which keeps the data structure
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Figure 8: Throughput, Cache Miss Rate and Energy results for the STAMP vacation benchmark on NOrec, compared with our
tagged implementations for -n4 -q60 -u90 -r16384 -t4096 parameter values.

size roughly constant. For the same reason, about half of the update

operations return False.
We evaluated the performance of tagging for varying contention

workloads for all data structures: between 80%/20% to 20%/80%

reads versus updates. The results are consistent across the range,

although the gains from tagging are more pronounced in settings

with higher update rate. We present the results on a workload

with 35% inserts, 35% deletes & 30% contains and 15% inserts, 15%

deletes & 70% contains. Specifically, we tested tagging for a range

of well-known concurrent data structure implementations in the

simulator, including the Harris-Michael lock-free linked list [11, 12,

14], (a,b) tree [30] and NOrec STM [28] on the STAMP Vacation

benchmark [33].

Implementation details. For the hand-over-hand tagging ap-

proach to work, we map each data structure node to a unique

cache line, avoiding false sharing. Note that we could modify Mem-

Tags such that remove tag would not untag a cache line until all

nodes mapped to it are untagged; however, this would lead to more

frequent invalidations due to what is essentially false sharing.

Discussion. The results demonstrate that under moderate-to-high

update rates, tagging can improve throughput significantly. Mem-

Tags can speed up highly optimized linked list by 10 to 30%, balanced

search trees by up to 2× versus the optimized implementations

based on LLX/SCX [8]. In practice, we observed that the impact of

cache line eviction for reasonable sizes of the data structure was

negligible.

Since only update methods of data structures are affected by

tagging, we depict the results for scenarios with more write opera-

tions. For read operations (without contention), the implementa-

tions remain the same and the throughput is same as in the original

structures. Closer examination of the execution logs reveals that the

overhead of spurious invalidations is negligible (< 1%), while the

performance benefits of tagging are directly correlated to reduced

cache traffic.

7 CONCLUSIONS
While many systems providing hardware support for concurrency,

such as TM, have been originally introducedwith non-blocking data

structure applications in mind [1], such methods have gradually

shifted towards providing broader support for other forms of con-

currency. In this paper, we have re-visited the question of efficient

architectural support for non-blocking semantics, and investigated

the power of hardware-data-structure co-design by proposing a

method called MemTags, and investigating its impact on concurrent

search data structures.

Our results suggest that MemTags induce a new, non-trivial

point in the space of trade-offs between usability, expressivity and

performance for concurrency abstractions. For instance, for bal-

anced search trees, MemTags are the only technique that is able to

simultaneously avoid atomically validating an entire root-to-leaf

path and support updates via a single atomic pointer change. (The

(a,b)-tree implemented with LLX/SCX must perform finalizing, in
addition to changing a pointer, to obtain atomicity.) Our results

suggest that MemTags can be used to significantly increase per-

formance for search data structures. Additionally, MemTags may

simplify the design of some data structures. For example, one could

pair a design that uses HoH tagging with a simple slow path that

uses a global lock to ensure atomicity (similar to transactional lock

elision). Of note, rather than requiring completely new designs,

MemTags serve as an efficient fast-path for existing non-blocking

data structure mechanisms.
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