
Unexpected Scaling in Path Copying Trees
Ilya Kokorin Vitaly Aksenov

ITMO University, Russia ITMO University, Russia
kokorin.ilya.1998@gmail.com aksenov.vitaly@gmail.com

Trevor Brown Alexander Fedorov
University of Waterloo, Canada ISTA, Austria
trevor.brown@uwaterloo.ca afedorov2602@gmail.com

Motivation
How to make a data structure concurrent?
• Use techniques designed specifically for that data structure

(e.g., hand-over-hand locking, descriptors)
• Use coarse grained techniques

(e.g., Universal Construction, global lock)
• Use a “functional” approach, such as path-copying

Simple synchronization for path-copying trees:
• Maintain a pointer to the current version of the tree
• Read-only operation: fetch current version, execute the se-

quential operation on it
• Update operation: fetch current version, copy entire path

from the root to the target node, replace the current version
using CAS.

Can this approach scale on write-dominant workloads?

Workload description
Performance evaluated using two write-only workloads:
• P processes concurrently insert and then remove disjoint

batches of elements to a single search tree
• P processes concurrently insert or remove random elements

from a search tree

Theoretical result
Some scaling of updates is possible, in theory, thanks to proces-
sor caches. Failed update attempts can benefit future successful
attempts. Some values read during the first attempt remain in
the cache during subsequent re-tries.

Proposed a simple model for these caching effects.
Result: path-copying trees of size N can have Ω(logN) scala-
bility for write-only workloads with many processes.

Implementing a concurrent path-copying tree

struct Tree <T> {
TreeNode <T>* Root_Ptr

}

fun <T> Find(Tree <T> tree , T key):
// read linearization point
root := tree.Root_Ptr
return Find_Sequential(root , key)

fun <T> Insert(Tree <T> tree , T key):
while true:

root := tree.Root_Ptr
new_root := Persistent_Insert(root , key)
if CAS(&tree.Root_Ptr , root , new_root ):

// insert linearization point
return

// else retry

Performance measurements
Experiments on a path-copying treap confirmed our theoretical
results. Surprisingly, we do see (limited) scaling on write-only
workloads.
Batch workload: up to 1.88x single threaded performance.
Random workload: up to 3.55x single threaded performance.
Outperforms sequential tree by 1.47x and 3.54x, resp.

Experimental results

Experimental metrics

As the number of processes increases:
L1 cache loads grow substantially, but L1 misses do not. Shared
L3 cache’s behaviour is relatively stable. Operation retries in-
crease loads and instructions, but do not increase cache misses
meaningfully.

Remarks

• On workloads with read operations, scaling is even better.
Read operations are mostly uncontended.

• Similar results are expected for other path-copying trees: e.g.,
AVL trees, Splay trees, AA trees, Red-Black trees, B-trees

kokorin.ilya.1998@gmail.com
aksenov.vitaly@gmail.com
trevor.brown@uwaterloo.ca
afedorov2602@gmail.com

