
POSTER: Unexpected Scaling in Path Copying Trees
Vitaly Aksenov
ITMO University

Russia

Trevor Brown
University of Waterloo

Canada

Alexander Fedorov
IST Austria
Austria

Ilya Kokorin
ITMO University

Russia

CCS Concepts: • Computing methodologies → Concur-
rent algorithms.

Keywords: concurrency, persistent trees, path copying

1 Introduction
Although a wide variety of handcrafted concurrent data
structures have been proposed, there is considerable in-
terest in universal approaches (Universal Constructions or
UCs) for building concurrent data structures. UCs (semi-
)automatically convert a sequential data structure into a con-
current one. The simplest approach uses locks [3, 6] that pro-
tect a sequential data structure and allow only one process
to access it at a time. However, the resulting data structure
is blocking. Most work on UCs instead focuses on obtain-
ing non-blocking progress guarantees such as obstruction-
freedom, lock-freedom or wait-freedom. Many non-blocking
UCs have appeared. Key examples include the seminal wait-
free UC [2] by Herlihy, a NUMA-aware UC [10] by Yi et al.,
and an efficient UC for large objects [1] by Fatourou et al.
In this work, we consider the simpler problem of imple-

menting persistent data structures which preserve the old
version whenever the data structure is modified [7]. Usually
this entails copying a part of the data structure, for example,
the path from the root to a modified node in a tree [4], so
that none of the existing nodes need to be changed directly.

We borrow ideas from persistent data structures and multi
version concurrency control (MVCC) [9], most notably path
copying, and use them to implement concurrent versions of
sequential persistent data structures. Data structures imple-
mented this way can be highly efficient for searches, but we
expect them not to scale in write-heavy workloads. Surpris-
ingly, we found that a concurrent treap implemented in this
way obtained up to 2.4x speedup compared to a sequential
treap [8] with 4 processes in a write-heavy workload. We
present this effect experimentally, and analyze it in a model
with private per-processor caches: informally, as the number
of processes grows large, speedup in our treap of size 𝑁

tends to Ω(log𝑁 ).

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0015-6/23/02.
https://doi.org/10.1145/3572848.3577512

2 Straightforward Synchronization for
Persistent Data Structures

In the following discussion, we focus on rooted data struc-
tures, but one could imagine generalizing these ideas by
adding a level of indirection in data structures with more
than one entry point (e.g., one could add a dummy root node
containing all entry points).

We store a pointer to the current version of the persistent
data structure (e.g., to the root of the current version of a
persistent tree) in a Read/CAS register called Root_Ptr.
Read-only operations (queries) read the current version

and then execute sequentially on the obtained version. Note
that no other process can modify this version, so the sequen-
tial operation is trivially atomic.
Modifying operations are implemented in the following

way: 1) read the current version; 2) obtain the new version
by applying the sequential modification using path copying
(i.e., by copying the root, and copying each visited node);
3) try to atomically replace the current version with the new
one using CAS; if the CAS succeeds, return: the modifying
operation has been successfully applied; otherwise, the data
structure has been modified by some concurrent process:
retry the execution from step (1). This approach trivially
results in a lock-free linearizable data structure.
We expect read-only operations to scale extremely well.

Indeed, two processes may concurrently read the current
version of the persistent data structure and execute read-only
persistent operations in parallel.

However, modification operations seemingly afford no op-
portunity for scaling. When multiple modifications contend,
only one can finish successfully, and the others must retry.
For example, consider concurrent modification operations
on a set: 1) process P calls insert(2) and fetches the cur-
rent pointer RP; 2) process Q calls remove(5) and fetches the
current pointer RP; 3) P constructs a new version RPP with
key 2; 4) Q constructs a new version RPQ without key 5; 5) P
successfully executes CAS(&Set.Root_Pointer, RP, RPP);
6) Q executes CAS from RP to RPQ but fails; thus, Q must retry.

Successful modifications are applied sequentially, one after
another. Intuitively, this should not scale at all in a workload
where all operations must perform successful modifications.
As we will see in Section 4, this intuition would be incorrect.
3 Analysis
The key insight is that failed attempts to perform updates
load data into processor caches that may be useful on future
attempts. To better understand, consider the binary search
tree modification depicted in Fig. 1. Suppose we want to

438

https://doi.org/10.1145/3572848.3577512
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3572848.3577512&domain=pdf&date_stamp=2023-02-21


PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Vitaly Aksenov, Trevor Brown, Alexander Fedorov, and Ilya Kokorin

Figure 1. The new version (green) of the tree shares its nodes
with the old version (white)

insert two keys: 5 and 75. We compare how these insertions
are performed sequentially and concurrently.
At first, we consider the sequential execution. We insert

key 5 into the tree. It should be inserted as a left child of 10.
Thus, we traverse the tree from the root to the leaf 10. On the
way, we fetch nodes {40, 30, 20, 10} into the processor’s
cache. Note this operation performs four uncached loads.

Now, we insert 75. It should be inserted as the right child
of 70. Our traversal loads four nodes: {40, 50, 60, 70}.
Node 40 is already cached, while three other nodes must
be loaded from memory. Thus, we perform three uncached
loads, for a total of seven uncached loads.
Now, we consider a concurrent execution with two pro-

cesses, in which P inserts 5 and Q inserts 75. Initially, both
processes read Root_Ptr to load the current version. Then,
1) P traverses from the root to 10, loading nodes {40, 30,
20, 10}, and 2) Q traverses from the root to 70, loading
nodes {40, 50, 60, 70}.
Each process constructs a new version of the data struc-

ture, and tries to replace the root pointer using CAS. Suppose
P succeeds and Q fails. Q retries the operation, but on the new
version (Fig. 1). Note that the new version shares most nodes
with the old one.

Q inserts 75 into the new version. Again, the key should
be inserted as the right child of 70. Q loads four nodes {40,
50, 60, 70} from the new version of the tree. Crucially,
nodes {50, 60, 70} are already cached by Q. This retry
only incurs one cache miss!

Thus, there are only five serialized loads in the concurrent
execution, compared to seven in the sequential execution.
3.1 High-level analysis
We use a simple model that allows us to analyze this ef-
fect. (For the full proof see [5].) In this model, the processes
are synchronous, i.e., they perform one primitive operation
per tick, and each process has its own cache of size𝑀 . We
show that for a large number of processes 𝑃 , the speedup is
Ω(log𝑁 ), where 𝑁 is the size of the tree.
Now, we give the intuition behind the proof. To simplify it,

we suppose that the tree is external and balanced, i.e., each
operation passes though log𝑁 nodes. We also assume that

the workload consists of successful modification operations
on keys chosen uniformly at random. We first calculate the
cost of an operation for one process: (log𝑁−log𝑀)·𝑅+log𝑀
where 𝑀 is the cache size (𝑀 < 𝑁 ) and 𝑅 is the cost of
an uncached load. This expression captures the expected
behaviour under least-recently-used caching. The process
should cache the first log𝑀 levels of the tree, and thus, log𝑀
nodes on a path are in the cache and log𝑁 − log𝑀 are not.

To calculate the throughput in a system with 𝑃 processes,
we suppose that 𝑃 is quite large (≈ Ω(𝑚𝑖𝑛(𝑅, log𝑁 ))). Thus,
each operation performs several unsuccessful attempts, end-
ing with one successful attempt, and all successful attempts
(over all operations) are serialized. Since the system is syn-
chronous, each operation attempt 𝐴 loads the version of
the data structure which is the result of a previous success-
ful attempt 𝐴′. The nodes evicted since the beginning of
𝐴 are those created by 𝐴′. One can show that in expecta-
tion only two nodes on the path to the key are uncached.
Finally, the successful attempt of an operation incurs cost
2 · 𝑅 + (log𝑁 − 2). Since successful attempts are serial-
ized, the expected total speedup is (log𝑁−log𝑀) ·𝑅+log𝑀

2·𝑅+(log𝑁−2) giving
Ω(log𝑁 ) with 𝑅 = Ω(log𝑁 ) and𝑀 = 𝑂 (𝑁 1−𝜀).
4 Experiments
We implemented a lock-free treap and ran experiments com-
paring it with a sequential treap in Java on a system with
an 18 core Intel Xeon 5220. Each data point is an average of
15 trials. We highlight the following two workloads. (More
results appear in [5].)
4.1 Batch inserts and batch removes
Suppose we have 𝑃 concurrent processes in the system. Ini-
tially the set consists of 106 random integer keys. Processes
operate on mutually disjoint sets of keys. Each process re-
peatedly: inserts all of its keys, one by one, then removes
all of its keys. Since the key sets are disjoint, each operation
successfully modifies the treap. We report the speedup for
our treap over the sequential treap below.
4.2 Random inserts and removes
In this workload, we first insert 106 random integers in
[−106; 106], then each process repeatedly generates a ran-
dom key and tries to insert/remove it with equal probability.
Some operations do not modify the data structure (e.g., in-
serting a key that already exists).

Workload Seq Treap UC 1p UC 4p UC 10p UC 17p
Batch 451 940 0.89x 1.23x 1.47x 1.47x

Random 419 736 1.48x 2.38x 3.07x 3.19x

Acknowledgments
This work was supported by: the Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery Program grant:
RGPIN-2019-04227, and the Canada Foundation for Innovation
John R. Evans Leaders Fund (CFI-JELF) with equal support from
the Ontario Research Fund CFI Leaders Opportunity Fund: 38512.

439



POSTER: Unexpected Scaling in Path Copying Trees PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

References
[1] Panagiota Fatourou, Nikolaos D Kallimanis, and Eleni Kanellou. 2020.

An efficient universal construction for large objects. arXiv (2020).
[2] Maurice Herlihy. 1991. Wait-free synchronization. ACM Transactions

on Programming Languages and Systems (TOPLAS) 13, 1 (1991), 124–
149.

[3] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear.
2020. The art of multiprocessor programming. Newnes.

[4] Haim Kaplan. 2018. Persistent data structures. In Handbook of Data
Structures and Applications. Chapman and Hall/CRC, 511–527.

[5] Ilya Kokorin, Alexander Fedorov, Trevor Brown, and Vitaly Aksenov.
2022. POSTER: Unexpected Scaling in Path Copying Trees. arXiv

preprint arXiv:2212.00521 (2022).
[6] Leslie Lamport. 1987. A fast mutual exclusion algorithm. ACM Trans-

actions on Computer Systems (TOCS) 5, 1 (1987), 1–11.
[7] Chris Okasaki. 1999. Purely functional data structures. Cambridge

University Press.
[8] Raimund Seidel and Cecilia R Aragon. 1996. Randomized search trees.

Algorithmica 16, 4 (1996), 464–497.
[9] Y Sun, G Blelloch, W Lim, and A Pavlo. 2019. On supporting efficient

snapshot isolation for hybrid workloads with multi-versioned indexes.
VLDB 13, 2 (2019).

[10] Z Yi, Y Yao, and K Chen. 2021. A Universal Construction to implement
Concurrent Data Structure for NUMA-muticore. In 50th ICPP. 1–11.

440


	1 Introduction
	2 Straightforward Synchronization for Persistent Data Structures
	3 Analysis
	3.1 High-level analysis

	4 Experiments
	4.1 Batch inserts and batch removes
	4.2 Random inserts and removes

	Acknowledgments
	References

