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Abstract
van Emde Boas (vEB) trees are sequential data structures op-
timized for extremely fast predecessor and successor queries.
Such queries are an important incentive to use ordered sets or
maps such as vEB trees. All operations in a vEB tree are dou-
bly logarithmic in the universe size. Attempts to implement
concurrent vEB trees have either simplified their structure in
a way that eliminated their ability to perform fast predeces-
sor and successor queries, or have otherwise compromised
on doubly logarithmic complexity. In this work, we lever-
age Hardware Transactional Memory (HTM) to implement
vEB tree-based sets and maps in which operations are dou-
bly logarithmic in the absence of contention. Our proposed
concurrent vEB tree is the first to implement recursive sum-
maries, the key algorithmic component of fast predecessor
and successor operations. Through extensive experiments,
we demonstrate that our algorithm outperforms state-of-the-
art concurrent maps by an average of 5× in a moderately
skewed workload, and the single-threaded C++ standard
ordered map and its unordered map by 70% and 14%, respec-
tively. And, it does so while using two orders of magnitude
less memory than traditional vEB trees.

CCS Concepts: • Computing methodologies→ Concur-
rent algorithms; Shared memory algorithms; • Infor-
mation systems→ Data scans; • Theory of computation
→ Concurrent algorithms; Predecessor queries.

Keywords: Concurrent Data Structures, vEB Trees, van Emde
Boas Trees, Transactional Memory, Lock Elision
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1 Introduction
There has been significant recent interest in improving the
implementations of ordered sets and maps, which are two of
the most important abstract data types in computer science.
Ordered sets store only keys, while ordered maps (dictio-
naries) associate each key with a value. These structures
typically provide insert, delete, and search operations. Cru-
cially, they also offer successor and predecessor queries that
are popular, e.g., for data management [4, 48]. These two
operations are the key difference between ordered and un-
ordered sets and maps, and they are the primary reason to
consider using an ordered set or map.
Most of the concurrent ordered sets and maps that have

been proposed offer operations with logarithmic runtimes
(ignoring contention). Binary search trees, B-tree variants,
and skip lists fall into this well-explored category.

A few concurrent maps have been proposed with doubly
logarithmic runtimes. Most notably, interpolation search
trees offer amortized expected𝑂 (lg lg𝑛) complexity, but only
for a limited set of distributions. Skip tries, on the other hand,
offer𝑂 (lg lg𝑢) complexity for arbitrary distributions, where
𝑢 is the size of the universe of keys, but they are complex,
and there are no publicly available implementations.

van Emde Boas (vEB) trees are alternative doubly logarith-
mic data structures well known in the sequential setting for
their extremely fast predecessor and successor operations.
vEB trees are recursive data structures, where the root for
a universe of size 𝑢 has

√
𝑢 children (often called clusters),

each of which is a vEB tree of universe size
√
𝑢. Additionally,

the root has a special summary vEB tree of universe size
√
𝑢.

(These smaller vEB trees also have summaries and clusters,
and so on, recursively.) Unfortunately, the standard vEB tree
requires 𝑂 (𝑢) space which renders it practically unusable
for large universes.

https://doi.org/10.1145/3627535.3638504
https://doi.org/10.1145/3627535.3638504
https://doi.org/10.1145/3627535.3638504
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This work addresses this key pitfall of vEB trees. Our vEB
tree implementations use orders of magnitude less memory
than traditional vEB trees. This is achieved by (1) dynamically
allocating nodes on-demand, and (2) tuning the base case
where the recursion stops.

Prior attempts to implement vEB trees in the concurrent
setting have substantially compromised their capabilities in
order to avoid the difficulties of producing a full-featured
concurrent implementation. Such implementations fail to
guarantee𝑂 (lg lg𝑢) complexity for their operations (even in
the absence of contention) and/or do not guarantee correct
results for successor/predecessor queries [25, 30, 31]. Some
data structures have borrowed ideas from vEB trees but do
not offer doubly logarithmic complexity for their operations
as well [42].
Our contributions in this paper are efficient concurrent

implementations of vEB tree-based sets and maps using In-
tel’s Hardware Transactional Memory (HTM) instructions.
Importantly, our concurrent vEB set and map implementa-
tions guarantee the classical time complexity of𝑂 (lg lg𝑢) for
the standard operations including successor and predecessor
queries, in the absence of contention. Our implementations
use Transactional Lock Elision (TLE) to synchronize threads
and to guarantee that operations are linearizable. We start
by giving a naive concurrent implementation of a vEB tree
using TLE, and iteratively improve it with a sequence of
optimizations.
It is remarkable that TLE can be used to produce a fast

concurrent implementation of a data structure with such
extensive recursive substructure. Implementing vEB trees
with conventional locking or lock-free techniques would be
exceptionally difficult. Using HTM in a straightforward way
to implement this sophisticated data structure results in a
surprisingly performant algorithm. The resulting synchro-
nization overhead is so low that our best implementation
exceeds the single threaded performance of the C++ stan-
dard library’s ordered map by up to 70% and its unordered
map by up to 14%. Moreover, extensive experiments using
both uniform and Zipfian workloads show that our vEB
map implementation is up to about 5× and 3× faster than
state-of-the-art concurrent binary search tree and (a,b)-tree
implementations, respectively.
The contributions of this paper are as follows: (1) To the

best of our knowledge, we present the first concurrent vEB
tree that implements recursive summaries, which are crucial
for fast successor and predecessor operations. (2) In the ab-
sence of contention, the insert, delete, search, successor, and
predecessor operations complete in 𝑂 (lg lg𝑢) steps. More-
over, our algorithm is simpler than prior work that offers
similar runtimes. (3) We offer up to two orders of magnitude
improvement in memory usage compared to traditional vEB
sets, addressing their key drawback.

2 Background
In this section, we provide a brief overview of the van Emde
Boas (vEB) tree together with Hardware Transactional Mem-
ory (HTM) and Transactional Lock Elision (TLE).

2.1 van Emde Boas Trees
Most well-known data structures for maintaining a dynamic
ordered set of integers are based on binary search trees or 𝐵-
trees. These data structures usually offer operations: search,
insert, delete, predecessor, and successor. In a set containing
𝑛 keys, these operations typically have a runtime complex-
ity of 𝑂 (lg𝑛). However, the van Emde Boas (vEB) tree is
different in that the complexity is defined with respect to
the universe size, similar to tries. The universe is the set of
integers {0, . . . , 𝑢−1}, the members of which can be inserted
into the data structure. For simplicity, the universe size is
often assumed to be a power of two (𝑢 = 2lg𝑢 ). A sequential
vEB tree implements all aforementioned operations with a
runtime complexity of 𝑂 (lg lg𝑢).
The vEB tree is a recursive data structure [43, 44]. Each

sub-tree of a vEB tree with universe size 𝑢 is a vEB tree itself
with a smaller universe size, specifically

√
𝑢. (And sub-trees

one level deeper have universe size
√︁√

𝑢.) The recursion bot-
toms out at a base case of 𝑢 = 2, where the vEB tree is simply
a bit vector of size 2 without any children. Consequently,
there are lg lg𝑢 levels in a vEB tree. This recursion results in
integer universe sizes at every level when lg𝑢 is a power of
two. However, this rarely is the case, with𝑢 = 248 as an exam-
ple. In this case, there are ↑√𝑢 sub-trees, where ↑√𝑢 = 2⌈

lg𝑢
2 ⌉ ,

and each sub-tree has universe size ↓√𝑢 = 2⌊
lg𝑢
2 ⌋ . In addition,

the vEB tree (and each sub-tree, recursively) has a summary
vEB tree. The summary for a vEB tree with universe size 𝑢
has universe size ↑√𝑢. 1

Figure 1. A vEB node with universe size 𝑢

Sequential vEB Tree Implementation. Figure 1 depicts
the root of a vEB tree with universe size 𝑢 [13]. At this node,
the universe size is stored alongside min and max fields that
keep track of the smallest and largest key currently contained
in the sub-tree rooted at the node. The root contains an array
of ↑
√
𝑢 pointers to clusters, where each cluster is the root of a

1To be clear, each node in a vEB tree has a summary tree, and each summary
tree is a vEB tree, so each node in a summary tree has its own smaller
summary tree, and so on recursively.
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Figure 2. How data is stored in a vEB set

vEB tree with universe size ↓√𝑢. Additionally, the root has a
pointer to a summary with universe size ↑√𝑢 that keeps track
of non-empty clusters. The summary plays a crucial role in
predecessor and successor queries in the vEB tree.
The minimum value in each cluster is stored directly in

the min field of that cluster, and it is not stored in any of its
sub-clusters. The same is not true for the maximum value.
The max field essentially stores a duplicate key that exists
solely to accelerate successor and predecessor operations,
and the real key is stored in a sub-cluster.
An insert operation in a vEB tree with universe size 𝑢

proceeds as follows. If the key to be inserted is smaller than
the current min field, it becomes the new min key, and the
old min key is recursively inserted in a sub-cluster. The
particular sub-cluster to insert into is determined by the
⌈ lg𝑢2 ⌉ most significant bits (high bits) of the key, and the
⌊ lg𝑢2 ⌋ least significant bits (low bits) form the key that is
recursively inserted into the sub-cluster. If that sub-cluster
was previously empty, its index is inserted into the summary
to reflect the fact that it is now non-empty. In the base case
of the recursion, there are no clusters, and only two keys
are possible, which occupy min and max. At the end of the
recursive call, the max fields of all nodes visited are updated,
as appropriate.
A search operation is similar to insert, except for the

fact that it stops the recursion when it encounters an empty
cluster, or finds the key it is searching for in the min or max
fields of a node.

A delete operation is more complicated because if a thread
deletes amin ormax key, it must find a suitable replacement.
Moreover, if it deletes the only key in a cluster, it must delete
the cluster’s index from the summary.
The successor operation requires additional discussion

regarding how a vEB tree stores its elements. Take Figure 2
as an example: The set {. . . ,𝑤, 𝑥,𝑦, 𝑧, . . . } where 𝑤 < 𝑥 <

𝑦 < 𝑧 is stored in a vEB tree. Out of the 𝑛 elements present
in this set,𝑤 and 𝑥 are stored in the 𝑖-th cluster, while 𝑦 and
𝑧 are stored in the 𝑗-th cluster. As a result, since the 𝑖-th and
𝑗-th clusters are non-empty, {𝑖, 𝑗} ⊆ 𝑆𝑢𝑚𝑚𝑎𝑟𝑦. Recall that
each cluster is itself a vEB tree with universe size ↓√𝑢, and
the summary is a vEB set too, with a universe size of ↑√𝑢.

In order for a thread to identify the successor of 𝑥 , which
is 𝑦, the first place to search is the cluster where 𝑥 itself is
stored. However, in this example, the thread will not find 𝑦
in that cluster. Consequently, the thread needs to find the
minimum key of the next occupied cluster to return as the
answer. Without consulting the summary, this would be

an expensive 𝑂 ( ↑
√
𝑢) operation. However, it can recursively

retrieve the successor of 𝑖 (which is 𝑗 ) from the summary
with a runtime complexity of 𝑂 (lg lg ↑√𝑢), and then return
the minimum of the 𝑗-th cluster in an additional 𝑂 (1) steps.
The predecessor operation is similar, but it uses the max
field of nodes instead ofmin. We have provided pseudocodes
of these operations in the supplementary material.

2.2 Hardware Transactional Memory (HTM)
Transactional Memory (TM) [27] is a concurrency control
mechanism that aims to simplify the development of con-
current programs by providing an interface that allows pro-
grammers to define blocks of instructions as transactions
that either commit and take effect atomically or abort and
have no effect on shared memory. TM can be implemented
in software [19, 23, 26, 39, 40] or in hardware [27].

Hardware transactions offer atomicity and serializability,
and incur minimal overhead to the existing procedures and
mechanisms in the processor. HTM was commercialized
by IBM and Intel in the 2010s [29, 47]. There has been a
significant amount of work on how to best utilize HTM in
different setups and on the strengths and weaknesses of the
mechanism [1, 5, 10, 17, 20, 21, 47]. The work in this paper is
implemented on top of Intel’s Transactional Synchronization
Extensions (TSX).
Using the appropriate APIs, a transaction is started by

invoking _xbegin, and it is committed by invoking _xend.
It can also be explicitly aborted by invoking _xabort. Intel’s
best-effort implementation of HTM does not guarantee any
transactions to commit, and the system can abort them at
any time. Every transaction abort is accompanied by an abort
reason provided by the hardware or the developer in the case
of explicit aborts. Two of the most important abort reasons
are conflict and capacity. Conflict aborts are the result of
two threads accessing the same cache line, which means
that false sharing is especially important. Capacity aborts,
on the other hand, are caused by the exhaustion of shared
resources within the HTM system, such as exceeding the L1
cache capacity or the associativity of a particular cache set.

2.3 Transactional Lock Elision (TLE)
HTM is a powerful mechanism that facilitates the implemen-
tation of correct concurrent data structures, offering more
simplicity compared to traditional lock-based or lock-free
methods. However, some performance pitfalls associated
with it are easy to slip into. If transactions are aborted fre-
quently, the naive workaround of repeating until commit can
lead to significant performance degradation and progress
concerns. Transactional Lock Elision (TLE) is a mechanism
that aims to address this issue [16, 18]. The idea behind TLE
is that a transaction that fails repeatedly will eventually
acquire a global lock and execute alone in the system to en-
sure progress. The code path where the threads are making
progress through hardware transactions is sometimes called
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1 retriesLeft ← 35
2 while retriesLeft > 0
3 wait until globalLock is not held
4 if _xbegin () == SUCCESS
5 // control jumps to the else case on abort
6 if globalLock is held
7 _xabort(EXPLICIT)
8 result ← criticalSection (...)
9 _xend()
10 return result
11 else
12 // control jumps here on abort
13 retriesLeft ← retriesLeft - 1
14
15 // fallback path
16 acquire(globalLock)
17 result ← criticalSection (...)
18 release(globalLock)
19 return result

Algorithm 1: Typical TLE implementation

the fast path. Conversely, the code path where the global
lock is held by one thread is usually called the fallback path,
since it acts as a last resort for threads to make progress.
Algorithm 1 shows how TLE is typically implemented.

The call to _xbegin at line 4 begins a transactional region.
The thread running this code “subscribes” to the global lock
at line 6 by reading its value, meaning that if the lock be-
comes acquired by another thread sometime in the future,
the transaction will be aborted. If control reaches line 10, it
means that the transaction has been committed, and any of
its modifications to shared memory will be visible to others.
On the other hand, if a transaction is aborted explicitly at
line 7, or if it is aborted by hardware, then control jumps to
the else block at line 12. In this else block, the thread can
determine the reason for the abort and act accordingly. Each
thread will attempt a transaction up to a fixed number of
times, 35 in this example, ensuring the global lock is not
held by any thread before each attempt. If none of those
attempts succeed, the thread executes the fallback code path
between the calls to 𝑎𝑐𝑞𝑢𝑖𝑟𝑒 and 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 at lines 16 and 18,
performing its task as the lone thread making progress.

3 Our Algorithm
The high-level idea of our algorithm is to use a slightly
modified sequential van Emde Boas tree implementation
and wrap it in a Transactional Lock Elision (TLE) block.
This entails implementing each operation by replacing the
criticalSection in Algorithm 1 with a sequential imple-
mentation of the operation. However, the most straightfor-
ward way of doing this results in poor performance and
memory efficiency. To address these issues, we propose a set
of algorithmic improvements that are built on top of one an-
other. Each algorithmic improvement is designed to address
a specific problem with the previous algorithm.
Figure 3 depicts the speedup and memory savings of our

final vEB set implementation compared to a naive implemen-
tation using TLE. This figure shows result of an experiment
where up to 144 threads perform operations on the same tree
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Figure 3. Comparing our initial and final vEB sets.

concurrently. The threads perform 50% searches and 50%
updates on random keys following a uniform distribution
for a fixed period of time, and total throughput (number of
successful operations per second) is reported alongside the
memory footprint of the tree (in bytes). (Further detail on
the experimental methodology appears in Section 4.) The
final implementation yields a 210% speedup (with 72 threads)
and uses orders of magnitude less memory. The rest of this
section is devoted to two goals, (1) describing the sequence
of algorithmic improvements that led to this final imple-
mentation and (2) exploring the impact of converting our
best-performing set to a map on performance and memory.

3.1 Naively TLE-Wrapped vEB
Memory allocation often aborts hardware transactions [15].
Traditional vEB trees pre-allocate all necessary memory
when they are first constructed [13]. Thus, one straight-
forward way to build a HTM based vEB tree is to first pre-
allocate all memory and construct a skeleton tree and then
use TLE to perform operations on this tree. As depicted by
bars labeled naive in Figure 6, this algorithm scales reason-
ably well as the number of threads increases. However, it
suffers from a major issue.

Since the entire tree is pre-allocated at the beginning, the
memory footprint of this implementation is proportional to
the universe size without any regard for the actual number
of keys present in the set. This issue is a substantial bar-
rier to the incorporation of vEB trees in most real world
applications. Even with cheaply accessible large memories,
allocating the entire tree before using it is undesirable and
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1 void allocateClusterIfNeeded(VEB vEB , long high)
2 if (vEB.clusters[high] == nil)
3 long clusterSize =

↓√
𝑣𝐸𝐵.𝑢;

4 vEB.clusters[high] = popFromThePool(clusterSize);
5 rememberToRefill(clusterSize);

Algorithm 2: Thread-local object pool usage

wasteful, especially for sparse sets. Consequently, our first
algorithmic improvement addresses this issue.

3.2 Dynamically Allocated vEB
To this end, we propose a dynamically allocated vEB tree.
The idea is to allocate, on demand, only nodes that are
needed. With this approach, the memory footprint of the set
is no longer directly proportional to 𝑢 (although it is at least
Ω(
√
𝑢) since the root node is that large), and sparser sets

can use significantly less memory than dense sets.
However, as mentioned earlier, memory allocation often

aborts transactions, which makes it difficult to allocate mem-
ory only as needed. To overcome this challenge, we use a
simple memory pooling mechanism.
In our implementation, there are thread-local pools of

𝑁 ≥ 2 nodes per size class, where 𝑁 is configurable. The pool
elements are stored in C++ standard vectors. The size classes
are defined by the universe sizes at each level of recursion
in the vEB tree. The reason behind a minimum pool size of 2
per size class is that, in an insert operation, a thread could
possibly add a new cluster and a new summary node, of the
same size, to the structure in the same transaction. In our
formative experiments, we did not observe any meaningful
differences in performance between 𝑁 = 2, 𝑁 = 5, and
𝑁 = 10.
When inserting a key, the inserting thread needs access

to the corresponding cluster. Recall that the index of that
cluster is determined by taking the most significant ⌈ lg𝑢2 ⌉
bits of the key. Before accessing the cluster, it checks if the
cluster is already allocated. If not, it retrieves a new clus-
ter from the thread-local pool and attaches it to the node
(Algorithm 2). The same procedure is followed when the
thread needs access to the summary node (when inserting
the very first key to a cluster). After the insert operation
is completed, either transactionally or through the fallback
path, we replace any nodes that were removed from the
thread-local pools by retrieving their size classes that were
recorded by the rememberToRefill procedure. The refill-
ing is performed outside transaction boundaries to prevent
transaction aborts caused by memory allocation.
In the case of deleting a key, the thread needs to deter-

mine whether it is deleting the only key in the node. If so, it
should return the node to the pool for later reuse. To limit the
amount of memory used by a pool, we set an upper bound
on the number of nodes that it can contain.
As we demonstrate later, this dynamically allocated vEB

set consumes considerably less memory compared to the
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Figure 4. Cut-off vEB tree structure for three different uni-
verse sizes. Gray nodes are summary nodes. Square-shaped
nodes are leaves. Only one cluster is represented per node,
while the number of clusters is denoted by edge labels. For
example, on Figure (a) the root node contains 212 cluster
nodes of size 212.

naive implementation, especially in sparsely filled sets, where
empty nodes and sub-trees are not fully allocated. In our fig-
ures, we refer to this variation of our vEB sets as dynamic.

3.3 Cut-off vEB
Dynamically allocating vEB nodes on-demand led to consid-
erable memory savings. However, as Figure 6 shows, it did
not have a substantial impact on throughput. We observed
that recursing until 𝑢 = 2 is inefficient on modern hardware
when loading a single word necessitates loading an entire
cache line. A more efficient vEB tree would tune the base
case of the recursion to use the processor cache more effi-
ciently. Our next optimization does exactly this, terminating
recursion once a node with universe size 𝑢 ≤ 64 is encoun-
tered. Different options for this threshold are discussed in
the supplementary material.

Leaf nodes with 𝑢 ≤ 64 use a bitmap for storing keys, and
they have a min and max field to comply with the original
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228

214 214
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228

24 224
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Figure 5. Modifying the way the root node is divided

vEB semantics. Figure 6 shows the effects of this improve-
ment on throughput (referred to as cut-off). In a vEB set
with universe size 𝑢 = 227, cutting off at the described level
results in a 3× throughput compared to the dynamically allo-
cated naive vEB set. This improvement also has a substantial
positive impact on the memory footprint of the set, which is
discussed further next.

3.4 Modifying The Root
Cutting off the recursion at a certain level of the tree (𝑢 ≤ 64
in our case) yields significant improvements in both through-
put and memory footprint. However, there is an unexpected
performance drop induced by doubling the universe size
from 227 to 228 (compare the cut-off bars in Figures 6b
and 6c).

To get to the bottom of this unexpected performance drop,
we need to take a closer look at how a vEB tree is structured,
and how it is being affected by our implementation of the
cut-off. Figure 4 compares the structure of a cut-off vEB tree
with universe sizes 224, 227, and 228.

The reason for the performance drop boils down to the
fact that the universe size 𝑢 = 228 creates a relatively large
number of leaf nodes (see Figure 4c), where the universe size
of those leaves is small compared to those of vEB trees with
𝑢 = 224 or 𝑢 = 227 (Figures 4a and 4b). There are 36 million
leaf nodes with universe size 𝑢 = 23 or 𝑢 = 24 in a vEB tree
with 𝑢 = 228, but the number of such nodes in a vEB tree
with 𝑢 = 227 is not nearly that large, and leaf nodes that
small do not even exist in a vEB tree with 𝑢 = 224.
To address the performance drop caused by the over-

whelming number of small nodes, we first attempted to
modify the internal nodes on one level above the leaves
in a way that forced the clusters to be of size 64. For example,
a vEB node with universe size 27 was divided to 21 clusters
of universe size 64 (rather than 24 clusters of universe size
23). Although this approach yielded some improvement (re-
ported in the supplementary material), it did not fully resolve
the issue, which led us to a different approach.
While the aforementioned approach tackled the issue at

the leaf level, our new approach attempts to resolve the
problem bymodifying how the root node is structured. Given
that the size 224 does not have the overhead of leaf nodes
smaller than 64 (see Figure 4a), the idea is to divide the root
node into 𝑢

224 clusters of size 2
24. More generally, the nodes

are divided such that the number of clusters is a power of
26 = 64.

Figure 5 depicts how the root modification is implemented
for a root node of size 228. It is worth mentioning that if we
stick with this method for universe sizes from 225 to 248, the
division derived for the root node with 𝑢 = 248 is exactly
the same as how the original vEB tree would be structured
( 2

48

224 = 224 clusters of size 224).
Figure 6c shows how modifying the root (new-root in the

legend) this way has a positive impact on the performance
of sets with the universe size of 228 (75% more throughput
with 144 threads). The performance implications of root
modification on sets with universe sizes that do not induce
an overwhelming number of small nodes are sometimes
slightly negative (see Figures 6a and 6b), but it is a small
price to pay for a scalable vEB structure with larger universe
sizes.

3.5 Correctness
We briefly sketch why our TLE-based data structure is cor-
rect. In all variants of our vEB sets, each operation is per-
formed in either a hardware transaction or in the fallback
path. The changes made by an operation running in a hard-
ware transaction take effect atomically when the transaction
commits. In the event that a transaction aborts, its changes
are discarded and are never visible to other threads. An
operation running on the fallback path does not execute
concurrently with any other operation. To see why, note
that an operation on the fallback path acquires the global
lock, at which point all concurrent hardware transactions
are automatically aborted by the hardware, because the lock
state has changed (see Line 3 of Algorithm 1). Therefore,
operations running in the fallback path are serialized. At any
given time, one can have either a single transaction running
on the fallback path (alone), or potentially many transactions
running in hardware. In both cases, all vEB operations ap-
pear to take effect atomically, either because one operation
is running alone in the system, or because multiple opera-
tions are running in hardware transactions (and atomicity is
provided directly by the hardware). The result is a (family
of) linearizable vEB set(s).

3.6 Adding Values To Our Set
So far, we have demonstrated the performance effects of our
algorithmic improvements on sets, i.e., data structures that
support only keys. Since we are using HTM, it is not difficult
to modify our vEB set to a vEB map so that we can leverage
our optimizations in the design of a map as well.
To achieve a vEB map, two simple modifications need to

be made. Recall that the minimum key at each node is stored
directly in the min field of the node, as opposed to being
recursively inserted into its corresponding cluster. (Note
that max is stored in the cluster instead.) First, we need to
add a single value to every internal (non-leaf) node to store
the value associated with the minimum value. Second, we
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Figure 7. From vEB set to vEB map, 𝑢 = 228. y-axes for insertion time and memory footprint are log-scaled.

need to add an array of values to each leaf. The size of the
array will be equal to the universe size of the leaf. Note that
summaries in the vEB map are still implemented as sets,
which means that these modifications need not be applied
to summary nodes.

Adding values to our vEB set induces some last level cache
(LLC) misses that diminish performance, but there is a pos-
sible improvement that can alleviate this issue. The trivial
way of adding an array of values to each leaf node is to add
a pointer, which points to the values array, to the node. Al-
though this approach keeps the node small, it causes the
values array to be allocated in a different memory location
than the node itself, which could lead to an extra cache miss
when accessing a value. Alternatively, the values array can
be embedded in the leaf node itself, but C/C++ do not allow
variable-sized structs or classes. To circumvent this issue,
we defined a node class that contains all fields except for
the values array. Rather than allocating an instance of this
class, we allocated a raw block of memory (i.e., char *) large
enough to contain the class and the values array, and casted
it to the class type. We then accessed the values array using
macros to perform direct accesses, as appropriate, to the
trailing memory after the end of the class definition that
semantically represents the values array. This reduced LLC
misses and improved performance significantly, as results in
the supplementary material demonstrate.
Figure 7 depicts how taking the best version of our vEB

set and making the aforementioned modifications to it af-
fects performance, insertion time, and memory footprint of
a data structure with 𝑢 = 228. It is shown in Figure 7a that
embedding the values array in the node has a significant
positive impact on the throughput of the map (with 𝑢

210 keys
pre-inserted). Moreover, embedding the values array in the
node improves the time needed to insert different quanti-
ties of uniformly random keys in an insert-only workload

(Figure 7b). For example, it takes 72 threads 4.9 seconds to
insert 227 key-value pairs into a vEB map with a universe
size of 228 if the values array is not embedded in the leaf
itself. On the other hand, embedding the values array results
in the same operation taking 2.1 seconds. We use this best
performing version of vEB map when evaluating against
other concurrent dictionaries in the next section.

4 Evaluation
Our experiments were executed using the publicly avail-
able benchmark, SetBench [11]. The experiments are run on
a 4-socket machine with Intel’s 2.2 GHz Xeon Gold 5220
processors. Each socket has 18 cores, and there are 2 hyper-
threads per core, adding up to 144 threads. Threads in our
experiments are pinned in a way that the first 72 threads
are divided between sockets 2, 3, 4, and 1, in that order (18
threads per socket)s. The next 72 threads use hyperthreads
on the same sockets in the same order. We begin with the
second socket to delay the negative interactions between
HTM and system processes on the first socket as much as
possible. Moreover, we delay the utilization of hyperthreads
because hyperthreading induces L1 cache sharing, which
diminishes the cache capacity available for each transaction
thereby increasing the rate of aborts. The implementations
were compiled using G++ version 9.3.0 and -O3 optimization
level. jemalloc was used for fast memory allocation, and
memory pages were interleaved across the working sockets
using numactl.

We compare our best-performing vEB map structure (see
end of Section 3) with some of the most prominent concur-
rent maps available:
• Elim-ABT [41]: A concurrent (a,b)-tree designed for
highly skewed write-heavy workloads.
• C-IST [11]: A doubly logarithmic interpolation search
tree. The branching factor (fanout) in this tree is

√
𝑢,
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Figure 8. Performance. 𝑢 = 228. 𝑢
210 keys inserted before the measurements. x-axes: number of threads. y-axes: throughput.

which makes it the most structurally similar data struc-
ture to our vEB map.
• NAT-BST [34]: A lock-free binary search tree.
• BRON-BST [7]: An optimistic concurrency control
binary search tree.
• O-BWT [45]: The open source implementation of Mi-
crosoft’s BW-Tree [32].

We also compared our vEB map to the concurrent BST by
David et al. and the concurrent (a,b)-tree by Brown [12, 14],
but we do not report on the results here since our implemen-
tation performed significantly better than these comparison
trees on all workloads.
In our comparisons, we fix the universe size to 𝑢 = 228,

and the number of inserted keys prior to beginning the mea-
surements to 𝑢

210 , while experimental results with 𝑢
2 and

𝑢
213 prefilling are included in the supplementary material.2
The operations performed on all of the data structures are
searches, inserts, and deletes, except for the experiments in
Section 4.6, where we evaluate the performance of successor
queries. We have read-heavy workloads in our experiments
where 90% of the operations are searches, as well as work-
loads with a high percentage of writes (50% and 100%). For
random keys generated as operands, we use (1) uniform keys
where each key is selected with equal probability ( 1

𝑢
), and

(2) Zipfian keys with a skew factor of 𝛼 = 0.50 [24]. To save
space, we sometimes omit uniform workloads in favour of
Zipfian ones, because skewed workloads are more charitable
to competing data structures. Experimental results with dif-
ferent 𝛼 values are reported in the supplementary material.

2The choice of 𝑢

210 is somewhat arbitrary, but we note increasing the denom-
inator in this fraction has two effects: clusters in our vEB sets will be more
sparsely populated, and the total number of keys inserted will be smaller
(relative to the universe size). In particular, we expect larger denominators
would be charitable to other competing algorithms, as we expect our vEB
set(s) to perform worse as sparsity increases.

4.1 Performance
In this section, we present the performance comparison of
the vEB map with the competing data structures by mea-
suring the throughput (operations executed per second) for
our different workloads. Each data point on all graphs repre-
sents the average value over 5 independent runs with error
bars around the means showing the minimum and maximum
measured values.

Uniform Distribution. For a uniformly distributed work-
load, shown in the first row of Figure 8, our proposed vEB
map performs substantially faster than its competitors. For
update-only workloads executing with 144 threads, the vEB
map is twice as fast as its closest competitor, Elim-ABT. In a
read-heavy situation (90% searches, 10% inserts and deletes),
our proposal offers a 1.58× speedup compared to Elim-ABT.
Compared to C-IST, the most structurally similar data struc-
ture, our vEB map performs 2.06× faster in the read-heavy
workload, and the advantage increases to 5.73× in the update-
only setting. O-BWT, a popular data structure for databases,
was the slowest data structure in most of our experiments.

Zipfian Distribution. Depicted in the second row of Fig-
ure 8, this set of experiments includes the same workloads
in terms of update to read ratio but with a fairly skewed
Zipfian key-generator (skew factor 𝛼 = 0.50). For workloads
with 10% and 50% updates, the vEB map delivers about 25%
speedup compared to Elim-ABT with 144 threads, with the
advantage being bigger when there is less contention (10%
updates). For write-only workloads, the vEB map is 9% faster
than Elim-ABT. Decreasing 𝛼 results in a less skewed distri-
bution, leading to an increase in our vEB map’s advantage.
As 𝛼 increases beyond 0.50, this performance gap narrows
as expected due to the following reasons. First, by increas-
ing the skew factor, we introduce a small set of hot keys
that are frequently written to. As a result, HTM transactions
begin to abort more often and the fallback path is invoked
more frequently, which means more threads are serialized.
Second, Elim-ABT is specifically designed to perform well
under highly contended write-heavy workloads while our



Practical Hardware Transactional vEB Trees PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

100

101

102

In
se

rt
s

100

101

102

D
el

et
es

101

102

103

Se
ar

ch
es

90.0 95.0 99.0 99.9

Percentile

100

3× 10−1

4× 10−1

6× 10−1

Su
cc

es
so

rs

O-BWT NAT-BST BRON-BST C-IST Elim-ABT VEB

Figure 9. Per-operation latency in microseconds. Log-
scaled y-axis. 72 Threads running a 50% updates workload
with a Zipfian distribution (𝛼 = 0.50), except for the lower-
most graph, which is explained in Section 4.6.

vEB map shows better performance in moderately skewed
workloads despite the fact that it is not specifically engi-
neered for skewed distributions. Regarding the other data
structures, our vEB map is 90% faster in the worst case (ver-
sus BRON-BST in the read-heavy workload), and 15× faster
in the best case (versus O-BWT in the write-only workload).
Experimental results with a more diverse set of skew fac-
tors are included in the supplementary material. Briefly, our
vEB map outperforms other data structures in all workloads
where 𝛼 = 0.60. In addition, it is still faster in 10% and 50%
update workloads where 𝛼 = 0.70. In extreme cases where
𝛼 = 0.80 or 𝛼 = 0.99, however, it cannot compete with Elim-
ABT in 50% and 100% updates workloads, but it is faster than
other competing data structures except for NAT-BST in some
workloads.

Operation Latencies. We measured operation latencies in
a 50% update workload with a Zipfian distribution (𝛼 = 0.50).
Results appear in the top three charts of Figure 9, where
it can be observed that the latency of search operations is
relatively low in BST structures, while inserts and deletes
have a higher latency compared to Elim-ABT and vEB. This
observation shows how the well-studied cache issues in con-
current binary search trees affect their overall performance
by slowing down updates.
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Performance Limitations. In this section, we briefly dis-
cuss some limitations to our vEB map’s performance.
Firstly, the vEB map’s performance struggles with heav-

ily skewed workloads. Heavily skewed workloads naturally
induce more memory contention than uniform workloads
(since some data is hot). HTM and TLE are known to suffer
under high contention, as increased contention leads to more
aborts and more transactions running on the fallback path. A
data structure like Elim-ABT is specifically designed to per-
form well under highly contended write-heavy workloads,
and it outperforms our vEB map in such cases.
Secondly, our vEB map thrives with large, densely pop-

ulated universes, but struggles to compete with other data
structures when the universe size is small. Figure 10 shows
the performance of our vEB map compared with other data
structures with different universe sizes. In these experiments,
we have fixed the thread count to 72, and we have inserted
𝑢
210 keys to the data structures prior to the measurements.
The workload consists of 25% inserts and 25% deletes, as well
as 50% searches (lookups) of keys that follow a Zipfian distri-
bution with 𝛼 = 0.50. As is evident from the figure, the vEB
map is outperformed by Elim-ABT when the universe size
equals 224, even when the workload is not heavily skewed.

4.2 Insertion Time
We fix the number of threads to 72 and measure the time it
takes to insert 𝑘 key-value pairs into structures with a key
range (universe size) of 𝑢 = 230, where 𝑘 = 219, 221, . . . , 229.
The keys are generated using a uniform distribution and are
inserted in random order.

As Figure 11 shows, in sparser settings, different variants
of concurrent binary search trees (NAT-BST and BRON-BST)
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Figure 12. Memory footprint (bytes). Log-scaled y-axis.
𝑢 = 230.

perform better than the other algorithms. However, contrary
to our expectations, O-BWT performs poorly, and we were
unable to obtain the data point for 𝑘 = 229 because of seg-
mentation faults in its open-source implementation. Due to
its target for databases, good performance for bulk inserts
is expected. Nevertheless, its performance might be better
with sequential, ordered inserts rather than randomly or-
dered ones. As expected, our vEB map performs best when
the universe is densely populated (𝑘 = 225 and higher).

4.3 Memory Footprint of vEB Sets
In this section, we evaluate the impact of our algorithmic
improvements on the memory footprint of vEB sets. The
experimental setup is identical to that of Section 4.2, but
instead of key-value pairs, only keys are inserted since we
are comparing sets rather than maps. The results are shown
in Figure 12.
The first observation is that the memory footprint of the

naive implementation of vEB sets remains constant regard-
less of the data structure’s density. Mere dynamic allocation
of nodes impacts the memory footprint substantially, with
the sparsest data point being 99.6% more memory efficient
than that of the naive implementation. Additionally, cutting
off the recursion at 𝑢 = 64 is also significantly impactful
on memory efficiency. This technique results in a 75% im-
provement over its predecessor (dynamically allocated vEB
sets without cut-off) when 𝑘 = 229. The same argument
could be made for the root modification technique, which is
about 49% more efficient than its predecessor in the densest
configuration. However, the root modification technique is
not as impactful on the memory footprint in universe sizes
with a relatively small number of small nodes, which is to
be expected (per Figure 4).

4.4 Memory Footprint of vEB Map vs. Competitors
Having demonstrated the memory advantages of our algo-
rithmic improvements on vEB sets, we now compare the
memory footprint of our vEB map with other concurrent
maps. The results are shown in Figure 13. The experiment
is set up similarly to the last one. Recall that we used 𝑘 to
denote the number of inserted keys. Two extra data points
are added for reference: Naive VEB depicts the memory
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Figure 14. Single-threaded performance compared with C++
standard containers. Zipfian (𝛼 = 0.50) workloads.

footprint of a traditional (without any of our improvements)
vEB map of universe size 𝑢 = 230 [13], and IDEAL is the
memory footprint of having a 𝑘-bit bitmap for the keys, and
an array of 𝑘 8-byte values, which is a very optimistic im-
plementation. Note that the IDEAL data points refer to a
hypothetical implementation where there is no structure to
the data and up to 𝑘 key-value pairs can be stored. In such
a configuration, efficient implementation of successor and
predecessor queries is impossible. Note that the O-BWT im-
plementation available to us did not have a mechanism for
calculating the memory footprint, so results are unavailable
for that data structure.
The vEB structure sacrifices memory for speed, but as

Figure 13 depicts, our root-modified, cut-off vEB map uses
99.9% and 87.1% less memory compared to the naive vEB
map in the sparsest and the densest settings respectively.
Moreover, as the set of inserted keys becomes denser, the
memory footprint size of our vEB map draws closer to the
memory footprint of other competitors, even those that use
memory proportional to 𝑛 rather than 𝑢.

4.5 Single-threaded Performance
For this set of experiments, we compare the throughput
of our vEB sets and maps with the standard ordered and
unordered sets and maps available in the C++ programming
language. Since those containers are not thread safe, the
experiments are executed with a single thread. The universe
size is fixed to 224, and 216 keys (or key-value pairs for maps,
respectively) are inserted into the data structures before the
measurement begins. The keys generated for the operations
follow a Zipfian distribution with 𝛼 = 0.50. Figure 14 shows
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the results for workloads with 10%, 50%, and 100% updates.
As in previous experiments, performance tends to decrease
when the update rate increases.

For the update-only workload, our vEB set performs 66%
better than the standard ordered set and is better than the
standard unordered set (a hash table!) by 3%. The vEB map
is also 70% faster than its ordered competitor, and it is 14%
faster than the standard unordered map.

4.6 Successor Queries
The vEB tree offers 𝑂 (lg lg𝑢) successor and predecessor
queries, in the absence of contention. These queries make it
attractive for many applications. In this section, we compare
the performance of successor queries against Elim-ABT, the
closest competitor in the previous experiments. Even though
Elim-ABT is an ordered map, its publicly available implemen-
tation does not offer predecessor and successor operations.
To make a comparison possible, we implemented a successor
operation for Elim-ABT, but it is not linearizable. Thus, our
implementation of the successor operation for Elim-ABT is
unfairly advantaged by being extremely fast because it does
not have to perform any consistency validations or retries
for correctness. A correct implementation would be slower
in practice because of necessary synchronization overheads.

To sanity check our successor and predecessor implemen-
tations, we implemented and executed some stress tests that
inserted multiples of a constant number into the data struc-
ture: 𝑐 · 𝑘 ∀𝑘 . We then ran workloads that queried the data
structure for successors and predecessors of randomly gen-
erated keys, and compared the results to expected answers.
We conducted these stress tests on both vEB maps and Elim-
ABT maps. (The latter would produce incorrect results in
the presence of updates, but there were no updates in this
workload.)

Having completed our sanity checks, we evaluated perfor-
mance using the following workload. We fixed the universe
size to𝑢 = 228 and initially inserted 223 uniformly distributed
keys into the data structure. In this workload, the threads
perform 98% successor queries, and 2% inserts and deletes.
The keys generated in the workload follow a Zipfian distri-
bution with 𝛼 = 0.50 to simulate moderate skew. Figure 15
compares the performance of our vEB’s linearizable succes-
sor operation to the Elim-ABT’s (unfair) non-linearizable
successor operation. The vEB consistently outperforms the
Elim-ABT, by up to 56%, although its advantage shrinks at
the highest thread count. Note that Elim-ABT achieves
its high performance by sacrificing correctness, which
makes our vEB map’s advantage more significant. The vEB
map’s advantage is also evident in the “Successors” plot in
Figure 9, which reports operation latencies for the same
workload as shown in Figure 2.

Although our implementation of the vEB map does not
support range queries, it is worth mentioning that they can
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Figure 15. Successor operation performance. Elim-ABT is
non-linearizable. The workload consists of 98% successor
queries and 2% updates that follow a Zipfian distribution
(𝛼 = 0.50).

be implemented as a sequence of successor operations per-
formed in a transaction. The performance of such a range
query would depend on the length of the query (i.e., both
the size of the range queried and how densely populated
the range is). We expect small range queries to be fast, but
large range queries to be prone to interruption by concurrent
updates.

5 Related Work
The literature on concurrent sets and maps is rich. We limit
our discussion to work that is most closely related to our
proposal in this paper.

Binary Search Trees. A wide variety of concurrent bi-
nary search trees have been implemented and extensively
evaluated [3]. The first provably correct concurrent BST was
proposed by Ellen et al. [22]. They presented a lock-free un-
balanced BST that uses flagging and marking to implement
helping to guarantee lock-free progress. Natarajan and Mit-
tal improved upon this work by flagging and tagging edges
rather than nodes, increasing possible concurrency, along-
side other improvements (NAT-BST) [34]. Bronson et al.
proposed an optimistic lock based AVL tree (BRON-BST)
[7]. David et al. presented a methodology for implementing
optimistic lock based data structures, and implemented an
unbalanced BST as an example of their methodology [14].
Many other implementations of concurrent BSTs have also
appeared [9, 28, 35, 38].

B-Trees. Braginsky and Petrank were the first to pro-
pose concurrent B-Trees based on lock-free linked lists of
key-value pairs [6]. Brown presented a lock-free (a,b)-tree,
based on wait-free synchronization primitives LLX and SCX
[8, 9, 12]. This (a,b)-tree was shown to be significantly faster
than the concurrent BSTs mentioned above [9]. Srivastava
and Brown proposed another concurrent (a,b)-tree (Elim-
ABT). It introduced a technique called publishing elimination
in which, at a high level, each node has a publishing area
where threads that are trying to insert and delete the same
key meet up with one another and eliminate each other’s
operations. This technique makes it well-suited for highly
skewed workloads [41]. The BW-Tree is a lock-free B+tree,
and it is a popular data structure in the database community
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[32]. We use the optimized version of BW-Tree proposed by
Wang et al. (O-BWT) in our experiments [45].

Tries. Willard introduced x-fast-tries and y-fast-tries, data
structures that support doubly logarithmic predecessor op-
erations, similar to vEB trees [46]. However, they would be
significantly harder to implement than our vEB map, since
they require dynamic universal hashing or cuckoo hashing.
As a result, to the best of our knowledge, concurrent imple-
mentations have not appeared, and their performance has
not been well studied empirically. Moreover, the leaves of
an x-fast-trie are binary search trees, which are known to
utilize processor caches poorly compared to data structures
with fat nodes (containing many keys).

Oshman and Shavit introduced skip tries, taking inspi-
ration from x-fast-tries and y-fast-tries [36]. A skip trie is
a concurrent variant of a y-fast-trie in which skip lists are
used instead of binary search trees (resulting in amortized
expected doubly logarithmic runtimes). A skip trie would be
a natural competitor for our vEB map in our experiments,
but we are not aware of any fast or stable publicly available
implementation.

Distribution-aware data structures. There has been
some study of distribution-aware data structures in the con-
current setting. Brown et al. proposed a concurrent inter-
polation search tree (C-IST) that offers doubly-logarithmic
runtime and is robust to certain types of distributional skew,
but as observed in our experiments, its performance degrades
in update-heavy workloads [11]. Skip lists are probabilistic
data structures that are robust to distributional skew [37]
(although not distribution aware per se). Aksenov et al. pro-
posed the Splay list, which is a concurrent skip list that
continually moves frequently-accessed keys to make them
more efficient to access [2].

vEB Trees. Kulakowski presented cvEB, a vEB-like con-
current data structure using locks [30]. However, it does not
offer doubly logarithmic complexity, and the maximum and
predecessor operations are not implemented in it. The same
author also introduced dcvEB, the dynamic version of cvEB
with some modifications and improvements [31]. The stated
runtime complexity is doubly logarithmic, but there is no
publicly available implementation of the algorithm for us
to compare against. Moreover, as the paper states, dcvEB al-
lows its successor operation to occasionally return incorrect
values, which would make any performance comparisons
unfair.
Guo and Suda proposed a lock-free concurrent vEB-like

data structure, but they fix the branching factor at 64, and
the summary structures are not recursive. Consequently, the
presented data structure is neither doubly logarithmic nor
can it offer fast successor and predecessor queries. The code
for this data structure is not publicly available, so we could
not include it in our experiments.

Mayr et al. proposed a vEB set designed for SIMD archi-
tectures [33]. They presented a method that optimizes the
construction of vEB trees for GPUs, and they compared their
work with binary search trees on graphical processors using
Nvidia’s CUDA.

6 Conclusion
In this paper, we introduced practical vEB tree-based sets
and maps. We leveraged Hardware Transactional Memory to
achieve simple, low overhead thread synchronization, andwe
used Transactional Lock Elision to guarantee progress. Our
data structures show excellent single threaded performance,
outperforming C++ standard ordered and even unordered
sets and maps. In the concurrent setting, our vEB map is
on average 5× faster than state-of-the-art concurrent binary
search trees and (a,b)-trees. Our work’s high performance is
accompanied by orders of magnitude less memory consump-
tion compared to traditional vEB structures.

To the best of our knowledge, our work is the first concur-
rent implementation of vEB trees that implements recursive
summaries and, as a result, in the absence of contention,
obtains doubly logarithmic runtime complexity for its pre-
decessor and successor queries.
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A Artifact Description
The artifacts for this paper are available at the following link:
https://zenodo.org/records/10493788.

The artifact requires GCC 9.3.0 and GNU Make 4.2.1, as
well as python3. We have run our experiments on ubuntu
20.04.
We have created a set of Python scripts that generate

graphs for different workloads. The workloads include the
comparison of different vEB set variations, the comparison
of vEB sets and maps, as well as the comparison of vEB
maps and other structures. We have done our best to make
it straightforward to mix and match the workloads and the
parameters. Here is a brief description of each script and its
role in the artifact:
• 01-sets-comparison.py: This script reproduces Fig-
ure 6, while the workload and the prefilling amount
is customizable. If PAPI is enabled, LLC cache miss
performance will be compared too.
• 02-sets-vs-maps.py: This script reproduces Figures 7a
and 7c, and offers LLC cache performance comparison
between vEB sets and maps.
• 03-veb-vs-others-uniform.py: This script reproduces
the first row of Figure 8. Similar to other scripts, the
prefilling denominator, universe size, and thread count
are easily customizable in the script.
• 04-veb-vs-others-zipfian.py: This script reproduces
the second row of Figure 8. The 𝛼 parameter of the
Zipfian distribution can be modified to experiment
with less or more skewed workloads.
• 05-successor-vs-nonlin-pub.py: This script repro-
duces Figure 15.
• 06-veb-vs-others-memory-and-insertion-time.py:
This script reproduces Figures 11 and 13.
• 07-veb-vs-std.py: This script reproduces Figure 14.

More information about the artifact can be found in the
README.md file.
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